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‘ Geometry Reconstruction




‘A Standard Approach

* Scanning
* Registration

e Reconstruction




‘A standard pipeline




‘A standard pipeline




‘A standard pipeline
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Limitation | — complete observation




Data-Driven
Geometry Reconstruction



‘The Big Bang in internet 3D models

3D Warehouse

3M models in more than 4K categories




Image-based shape retrieval

20 years ago 10 years ago now




Single-view image based shape modeling
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The benefit of data-driven
geometry processing

e Partial observation




‘ Classification

Input Scan
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Final Completion Result

Shen et al. 12

Nearest Neighbor Parametric Methods




Nearest Neighbor



‘ Example-Based Scan Completion
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Part-based Shape Reconstruction
[TOG'12]
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Structure Recovery by Part Assembly TOG’12



‘ Recover the structure by part assembly




‘ Algorithm Overview



‘ Algorithm Overview

ffffffff

\

side bar

WKS

Candidate Parts Selection



‘ Algorithm Overview

Structure Composition



‘ Algorithm Overview

Part Conjoining



‘ Results: Chairs

11 part categories

e 70 repository models,
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‘ Results: Tables

* 61 repository models, 4 part categories

Part Assembly




‘ Results: Bicycles

e 38 repository models, 9 part categories

Part Assembly




‘ Results: Airplanes

e 70 repository models, 6 part categories

Part Assembly




Discussion

* Hard to make it fully automatic --- many parameters
to tune

 More data -> better algorithm

e Easy to add user interaction




Parametric Methods



A Morphable model for the synthesis of
3D faces

e Start with a catalogue of 200 3D Cyberware scans

30 Database
Morphable

@ @ ﬁ @ ™ Face Model
Face F i
' Analyzer =/

0 Input S0 Cutput

* Build a model of average shape and texture, and
principal variations




‘ Morphable 3D face model
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‘ Adding attributes
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‘ Reconstruction from single image
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SCAPE: Shape completion and animation
of people --- joint pose and shape model

[Anguelov et al 05]

a) Cyberwarescans  b) Place 4-10 ¢)CCalgorithm: d)Nonrigid e) Articulated f) Deformable
markers ~150 markers  registration =~ model articulated




SCAPE: Shape completion and animation
of people --- joint pose and shape model




Data-Driven Shape Modeling



Modeling By Example [Funkhouser et al. 04]
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Figure 6: Results of shape similarity queries where the query pro-
vided to the system 1s (top) the chair with the legs selected, and
(bottom) the chair with the arms selected.
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Figure 8: Attaching the head of a cow to the body of a dog: (a) a
boundary contour is selected on each part (C1 and C2); (b) the pair
of closest points (V1 and 72) 1s found and the local direction near
those points is used to determine the relative orientation of the con-
tours; (c) a fillet is constructed attaching the contours; (d) the mesh
1s smoothed in the region nearby the seams of the fillet. (e) the
result is a smooth, watertight seam.



Data-Driven Suggestions for Creativity Support in 3D Modeling
[Chaudhuri and Koltun’ 11]



‘ Basic idea

* Automatically suggest ways in which the user can extend
a basic shape, to stimulate creative exploration




Overview
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D’ histogram

e Bin pairs of sample points on the shape

e Bins indexed by the distance between a pair of
points, and the shape diameter (local thickness) of
each point

e Comparison by histogram intersection and pyramid
matching, for partial and approximate matches




Histogram Intersection




Suggestion Generation

Query Correspondence scores
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Segmentation

e Prior segmentation of database models based on
shape diameter and approximate convexity

e No need for compatible segmentation of query




Diversification

e Problem: Large databases contain many near-
identical shapes

 |If one Is a good match, so are its twins
« Most of the top-ranked options look the same

» Maximal Marginal Relevance (MMR) breaks up long

runs of similar results in a ranked list [Carbonell
and Goldstein '98]



Results
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‘ Results: Creatures




‘ Results: Aircraft




Exploratory Modeling with Collaborative Design Spaces
[Talton et al. 09]



130 dimension human-space [Allen et al. 03]



‘ Density Estimation from data
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‘Sampling

Local sampling

ég(X;Xoazo)  f(x)

Constrained sampling
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Figure 5: (Left) Typical points sampled from the computed density functions of trees (top) and humans (bottom). (Right) Typical points
chosen uniformly at random from these parametric spaces.



Exploratory Modeling with
Collaborative Design Spaces

Jerry O.Talton  Daniel Gibson  Lingfeng Yang
Pat Hanrahan  Vladlen Koltun

Stanford University




Probabilistic model for presenting relevant components

Head Tail Clothes Spikes an - »
Complete Misc. Head Parts | - »

A "\/’
Inference % i
4 &

Y
Current

Shape PrObabiIiStiC mOdel Ranked Components

Arm-Torso
adjacent

Arm
Cluster 1
exists

~>- Observed
data

Arm
Cluster 2
exists

Torso '
Cluster 1

exists




‘ The model is learned from an input shape repository
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Formulation



The probabilistic model: a Bayesian Network

Shape attributes wessssp Random variables X ={x}

Dependencies ) P(X) :HP(Xi | parents(x;))

between attributes Represent with DAG

P(X) — P(X1)P(X2 | Xl)P(X3 | Xl) @




Random variables E,

Existence of component from category |




Random variables N,

Number of components from category |
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Random variables A, .

Adjacency between components from categories | and [’
T G
exist
Arm-Torso
adjacenc

D
exist




Random variables R

Symmetry relation between components from categories | and [’
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Random variables Ss,|

Existence of component from style cluster s of category |

rm styl

xl}}/ g b/
Am style I 1 {{{¢
<Ar“.‘(5) GOf ArnD < exists >t\({(zx
exist U
Cranre (1]
eXiStS \ | \
adjacenc |
@)rso styleDﬁ-ﬂ'
Arm-Torso exists A )
Cl'orso(sD symmetry Q)rso styleD@
- exists =




Dependencies between random variables
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Conditional probability tables
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Dependencies between random variables
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Learning



‘ Learning the CPTs and the graph structure

[Kalogerakis et al. 2010]

(modified)




‘ Learning the CPTs and the graph structure
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‘ Learning the CPTs and the graph structure
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Structure and parameter learning

Maximize Bayesian Information Criterion

BIC =logP(D|G,0) — %vlogn




Structure and parameter learning

Maximize Bayesian Information Criterion

1
BIC =llogP(D|G,0)— =vlogn
gP(D|G,0) 5 V1og

Likelihood term
D: training data
G: graph structure
6. CPT entries




Structure and parameter learning

Maximize Bayesian Information Criterion

BIC =logP(D|G,0) — %vlogn

Penalize model complexity
V: # of independent CPT entries
N: # of training shapes

Optimized using local search heuristics (adding, removing and flipping edges)




Inference
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Inference
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Inference
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Inference

Evidenc
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Particle-based inference
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Examples of shapes created by users




