CS354 Computer Graphics
Point-Based Modeling

Qixing Huang
March 26th 2018

Slide Credit: Marc Alexa
Motivation

• Many applications need a definition of surface based on point samples
 – Reduction
 – Up-sampling
 – Ray tracing

• Desirable surface properties
 – Manifold
 – Smooth
 – Local (efficient computation)
Overview

• Introduction & Basics
• Fitting Implicit Surfaces
• Surfaces from Local Frames
Introduction & Basics

• Notation, Terms
 – Regular/Irregular, Approximation/Interpolation, Global/Local

• Standard interpolation/approximation techniques
 – Global: Triangulation, Voronoi-Interpolation, Least Squares (LS), Radial Basis Functions (RBF)
 – Local: Shepard/Partition of Unity Methods, Moving LS

• Problems
 – Sharp edges, feature size/noise

• Functional -> Manifold
Consider functional (height) data for now.

Data points are represented as:
- Location in parameter space p_i
- With certain height $f_i = f(p_i)$

Goal is to approximate f from f_i, p_i.
Terms: Regular/Irregular

- Regular (on a grid) or irregular (scattered)
- Neighborhood (topology) is unclear for irregular data
Terms: Approximation/Interpolation

- Noisy data \Rightarrow Approximation

- Perfect data \Rightarrow Interpolation
Terms: Global/Local

- Global approximation

- Local approximation

- Locality comes at the expense of fairness
Introduction & Basics

• Notation, Terms
 – Regular/Irregular, Approximation/Interpolation, Global/Local

• **Standard interpolation/approximation techniques**
 – Global: Triangulation, Voronoi-Interpolation, Least Squares (LS), Radial Basis Functions (RBF)
 – Local: Shepard/Partition of Unity Methods, Moving LS

• Problems
 – Sharp edges, feature size/noise

• Functional -> Manifold
Triangulation

- Exploit the topology in a triangulation (e.g. Delaunay) of the data
- Interpolate the data points on the triangles
 - Piecewise linear $\rightarrow C^0$
 - Piecewise quadratic $\rightarrow C^1$?
 - ...
Triangulation: Piecewise linear

- Barycentric interpolation on simplices (triangles)
 - given point \mathbf{x} inside a simplex defined by \mathbf{p}_i
 - Compute α_i from
 $$\mathbf{x} = \sum_i \alpha_i \mathbf{p}_i \quad \text{and} \quad 1 = \sum_i \alpha_i$$
 - Then
 $$f(\mathbf{x}) = \sum_i \alpha_i f_i$$
Voronoi Interpolation

- compute Voronoi diagram (dual of Delaunay triangulation)
- for any point \(x \) in space
 - add \(x \) to Voronoi diagram
 - Voronoi cell \(\tau \) around \(x \) intersects original cells \(\tau_i \) of natural neighbors \(n_i \)
 - interpolate
 \[
 f(x) = \sum_i \lambda_i(x) f_i / \sum_i \lambda_i(x)
 \]

 with
 \[
 \lambda_i(x) = \frac{|\tau \cap \tau_i|}{|\tau| \cdot \|x - p_i\|}
 \]
Voronoi Interpolation

- Compute Voronoi diagram (dual of Delaunay triangulation)
- For any point \(x \) in space
 - Add \(x \) to Voronoi diagram
 - Compute weights from the areas of new cell relative to old cells
- Properties
 - Piecewise cubic
 - Differentiable, continuous derivative
Voronoi Interpolation

Properties of Voronoi Interpolation:

- linear Precision
- local
- \(f(x) \in C^1 \) on domain
- \(f(x,x_1,...,x_n) \) is continuous in \(x_i \)
Least Squares

- Fits a primitive to the data
- Minimizes squared distances between the p_i's and primitive g

$$g(x) = a + bx + cx^2$$

$$\min_g \sum_i (f_i - g(p_i))^2$$
Least Squares - Example

- Primitive is a (univariate) polynomial
 \[g(x) = (1, x, x^2, \ldots) \cdot c^T \]

- \[\min \sum_i \left(f_i - (1, p_i, p_i^2, \ldots) c^T \right)^2 \Rightarrow \]

- \[0 = \sum_i 2p_i^j \left(f_i - (1, p_i, p_i^2, \ldots) c^T \right) \]

- Linear system of equations
Least Squares - Example

- Resulting system

\[0 = \sum_i 2p_i^j \left(f_i - \left(1, p_i, p_i^2, \ldots \right)^T \right) \iff \]

\[\sum_i \begin{pmatrix} 1 & p_i & p_i^2 & \cdots \\ p_i & p_i^2 & p_i^3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \end{pmatrix} = 2 \sum_i f_i \begin{pmatrix} 1 \\ p_i \\ p_i^2 \\ \vdots \end{pmatrix} \]
Radial Basis Functions

- Solve
 \[f_j = \sum_{i} w_i r\left(\|p_i - p_j\|\right) \]
 to compute weights \(w_i \)
- Linear system of equations
 \[
 \begin{pmatrix}
 r(0) & r(\|p_0 - p_1\|) & r(\|p_0 - p_2\|) & \cdots \\
 r(\|p_1 - p_0\|) & r(0) & r(\|p_1 - p_2\|) \\
 r(\|p_2 - p_0\|) & r(\|p_2 - p_1\|) & r(0) \\
 \vdots & \vdots & \vdots & \ddots
 \end{pmatrix}
 \begin{pmatrix}
 w_0 \\
 w_1 \\
 w_2 \\
 \vdots
 \end{pmatrix}
 =
 \begin{pmatrix}
 f_0 \\
 f_1 \\
 f_2 \\
 \vdots
 \end{pmatrix}
\]
Radial Basis Functions

- Represent approximating function as
 - Sum of radial functions \(r \)
 - Centered at the data points \(p_i \)

\[
 f(x) = \sum_{i} w_i r(\|p_i - x\|)
\]
Radial Basis Functions

- Solvability depends on radial function
- Several choices assure solvability
 - \(r(d) = d^2 \log d \) (thin plate spline)
 - \(r(d) = e^{-d^2/h^2} \) (Gaussian)
 - \(h \) is a data parameter
 - \(h \) reflects the feature size or anticipated spacing among points
Function Spaces!

- Monomial, Lagrange, RBF share the same principle:
 - Choose basis of a function space
 - Find weight vector for base elements by solving linear system defined by data points
 - Compute values as linear combinations

- Properties
 - One costly preprocessing step
 - Simple evaluation of function in any point
Functional Spaces!

- Problems
 - Many points lead to large linear systems
 - Evaluation requires global solutions

- Solutions
 - RBF with compact support
 - Matrix is sparse
 - Still: solution depends on every data point, though drop-off is exponential with distance
 - Local approximation approaches
Introduction & Basics

• Notation, Terms
 – Regular/Irregular, Approximation/Interpolation, Global/Local

• **Standard interpolation/approximation techniques**
 – Global: Triangulation, Voronoi-Interpolation, Least Squares (LS), Radial Basis Functions (RBF)
 – **Local**: Shepard/Partition of Unity Methods, Moving LS

• Problems
 – Sharp edges, feature size/noise

• Functional -> Manifold
Shepard Interpolation

- Approach: \(f(x) = \sum_i \phi_i(x) f_i \)

 with basis functions

\[
\phi_i(x) = \frac{\|x - x_i\|^{-p}}{\sum_j \|x - x_j\|^{-p}}
\]

- define \(f(p_i) = f_i = \lim_{x \to p_i} f(x) \)
Shepard Interpolation

- $f(x)$ is a convex combination of ϕ_i, because all $\phi_i \in [0,1]$ and $\sum \phi_i(x) = 1$
- $f(x)$ is contained in the convex hull of data points
- $|\{p_i\}| > 1 \Rightarrow f(x) \in C^\infty$ and $\nabla f(p_i) = 0$
 - Data points are saddles
- global interpolation
 - every $f(x)$ depends on all data points
- Only constant precision, i.e. only constant functions are reproduced exactly
Shepard Interpolation

Localization:
• Set \(f(x) = \sum_i \mu_i(x) \phi_i(x) f_i \)

• with \(\mu_i(x) = \begin{cases} (1 - \|x - p_i\|/R_i)\nu & \text{if } \|x - p_i\| < R_i \\ 0 & \text{else} \end{cases} \)

for reasonable \(R_i \) and \(\nu > 1 \)

→ no constant precision because of possible holes in the data
Partition of Unity Methods
Partition of Unity Methods

- Subdivide domain into cells
Partition of Unity Methods

- Compute local interpolation per cell
Partition of Unity Methods

• Blend local interpolations?
Partition of Unity Methods

- Subdivide domain into *overlapping* cells
Partition of Unity Methods

• Compute local interpolations
Partition of Unity Methods

- Blend local interpolations
Partition of Unity Methods

- Weights should
 - have the (local) support of the cell
Partition of Unity Methods

- Weights should
 - sum up to one everywhere (Shepard weights)
 - have the (local) support of the cell
Moving Least Squares

- Compute a local LS approximation at x
- Weight data points based on distance to x

\[g(x) = a + bx + cx^2 \]

\[
\min \sum_i (f_i - g(p_i))^2 \theta(||x - p_i||)
\]
Moving Least Squares

• The set

\[f(x) = g_x(x), g_x : \min \sum_i (f_i - g(p_i))^2 \theta(\|x - p_i\|) \]

is a smooth curve, iff \(\theta \) is smooth
Moving Least Squares

- Typical choices for θ:
 - $\theta(d) = d^{-r}$
 - $\theta(d) = e^{-d^2/h^2}$

- Note: $\theta_i = \theta(\|x - p_i\|)$ is fixed
- For each x
 - Standard weighted LS problem
 - Linear iff corresponding LS is linear
Introduction & Basics

• Notation, Terms
 – Regular/Irregular, Approximation/Interpolation, Global/Local

• Standard interpolation/approximation techniques
 – Global: Triangulation, Voronoi-Interpolation, Least Squares (LS), Radial Basis Functions (RBF)
 – Local: Shepard/Partition of Unity Methods, Moving LS

• Problems
 – Sharp edges, feature size/noise

• Functional -> Manifold
Typical Problems

- Sharp corners/edges
- Noise vs. feature size
Functional -> Manifold

- Standard techniques are applicable if data represents a function

- Manifolds are more general
 - No parameter domain
 - No knowledge about neighbors, Delaunay triangulation connects non-neighbors
Overview

- Introduction & Basics
- Fitting Implicit Surfaces
- Surfaces from Local Frames
Implicits

• Each orientable 2-manifold can be embedded in 3-space

• Idea: Represent 2-manifold as zero-set of a scalar function in 3-space
 – Inside: \(f(x) < 0 \)
 – On the manifold: \(f(x) = 0 \)
 – Outside: \(f(x) > 0 \)
Implicits from point samples

• Function should be zero in data points
 \[f(p_i) = 0 \]

• Use standard approximation techniques to find \(f \)

• Trivial solution: \(f = 0 \)

• Additional constraints are needed
Implicits from point samples

- Constraints define inside and outside
- Simple approach (Turk, O’Brien)
 - Sprinkle additional information manually
 - Make additional information soft constraints
Implicits from point samples

- Use normal information
- Normals could be computed from scan
- Or, normals have to be estimated
Estimating normals

- Normal orientation (Implicits are signed)
 - Use inside/outside information from scan
- Normal direction by fitting a tangent
 - LS fit to nearest neighbors
 - Weighted LS fit
 - MLS fit
Estimating normals

- General fitting problem
 \[
 \min_{\|n\|=1} \sum_i^N \langle q - p_i, n \rangle^2 \theta(\|q - p_i\|)
 \]
 - Problem is non-linear because \(n\) is constrained to unit sphere
Estimating normals

- The constrained minimization problem

\[
\min_{\|n\|=1} \sum_i \left(\langle q - p_i, n \rangle \right)^2 \theta_i
\]

is solved by the eigenvector corresponding to the smallest eigenvalue of the following covariance matrix

\[
\sum_i (q - p_i) \cdot (q - p_i)^T \theta_i
\]

which is constructed as a sum of weighted outer products.
Implicits from point samples

- Compute non-zero anchors in the distance field
- Use normal information directly as constraints

\[f(p_i + n_i) = 1 \]
Implicits from point samples

- Compute non-zero anchors in the distance field
- Use normal information directly as constraints

\[f(p_i + n_i) = 1 \]
Implicits from point samples

- Compute non-zero anchors in the distance field
- Compute distances at specific points
 - Vertices, mid-points, etc. in a spatial subdivision
Computing Implicits

• Given N points and normals p_i, n_i and constraints $f(p_i) = 0, f(c_i) = d_i$

• Let $p_{i+N} = c_i$

• An RBF approximation

$$f(x) = \sum_{i} w_i \theta(||p_i - x||)$$

leads to a system of linear equations
Computing Implicits

- Given N points and normals $\mathbf{p}_i, \mathbf{n}_i$ and constraints $f(\mathbf{p}_i) = 0, f(\mathbf{c}_i) = d_i$

- Let $\mathbf{p}_{i+N} = \mathbf{c}_i$

- An RBF approximation

$$f(\mathbf{x}) = \sum_{i} w_i \theta(\|\mathbf{p}_i - \mathbf{x}\|)$$

leads to a system of linear equations
Computing Implicits

- Practical problems: $N > 10000$
- Matrix solution becomes difficult
- Two solutions
 - Sparse matrices allow iterative solution
 - Smaller number of RBFs
Computing Implicits

- Sparse matrices

\[
\begin{pmatrix}
\theta(0) & \theta(\|p_0 - p_1\|) & \theta(\|p_0 - p_2\|) & \cdots \\
\theta(\|p_1 - p_0\|) & \theta(0) & \theta(\|p_1 - p_2\|) & \cdots \\
\theta(\|p - p_0\|) & \theta(\|p_2 - p_1\|) & \theta(0) & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]

- Needed: \(d > c \rightarrow r(d) = 0, r'(c) = 0\)

- Compactly supported RBFs
Computing Implicits

- Smaller number of RBFs
- Greedy approach (Carr et al.)
 - Start with random small subset
 - Add RBFs where approximation quality is not sufficient
RBF Implicits - Results

- Images courtesy Greg Turk
RBF Implicits - Results

- Images courtesy Greg Turk
Overview

• Introduction & Basics
• Fitting Implicit Surfaces
• Surfaces from Local Frames
Projection

- Idea: Map space to surface
- Surface is defined as fixpoints of mapping
Projection

• Projection procedure (Levin)
 – Local polynomial approximation
 • Inspired by differential geometry
 – "Implicit" surface definition
 – Infinitely smooth &
 – Manifold surface
Surface Definition

- Constructive definition
 - Input point r
 - Compute a local reference plane $H_r = \langle q, n \rangle$
 - Compute a local polynomial over the plane G_r
 - Project point $r' = G_r(0)$
 - Estimate normal
Surface Definition

- Constructive definition
 - Input point \mathbf{r}
 - Compute a local reference plane $H_r = \langle q, n \rangle$
 - Compute a local polynomial over the plane G_r
 - Project point $\mathbf{r}' = G_r(0)$
 - Estimate normal
Local Reference Plane

- Find plane
 \[H_r = \langle q, n \rangle + D \]

 \[\min_{q, \|n\|=1} \sum_i \langle q - p_i, n \rangle^2 \theta(\|q - p_i\|) \]

- \[\theta(d) = e^{d^2/h^2} \]
 - \(h \) is feature size/point spacing
 - \(H_r \) is independent of \(r \)'s distance
 - Manifold property

Weight function based on distance to \(q \), not \(r \)
Projecting the point

- MLS polynomial over H_r
 $$\min_{G \in \Gamma_d} \sum_i \left(\langle q - p_i, n \rangle - G(p_i|_{H_r}) \right)^2 \theta(||q - p_i||)$$
- LS problem
- $r' = G_r(0)$
- Estimate normal
Spatial data structure

- Regular grid based on support of θ
 - Each point influences only 8 cells

- Each cell is an octree
 - Distant octree cells are approximated by one point in center of mass
Summary

• Projection-based surface definition
 – Surface is smooth and manifold
 – Surface may be bounded
 – Representation error mainly depends on point density
 – Adjustable feature size h allows to smooth out noise