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Motivation

* Many applications need a definition of surface
based on point samples

— Reduction
— Up-sampling
— Ray tracing
* Desirable surface properties
— Manifold
— Smooth
— Local (efficient computation)



Overview

 Introduction & Basics
* Fitting Implicit Surfaces
e Surfaces from Local Frames



Introduction & Basics

Notation, Terms

— Regular/Irregular, Approximation/Interpolation,
Global/Local

Standard interpolation/approximation techniques

— Global: Triangulation, Voronoi-Interpolation, Least
Squares (LS), Radial Basis Functions (RBF)

— Local: Shepard/Partition of Unity Methods, Moving LS

Problems
— Sharp edges, feature size/noise

Functional -> Manifold



Notation

Consider functional (height) data for now

Data points are represented as

— Location in parameter space p,
— With certain height f, =f(p,)

N

Goal is to approximate f from f.,p,



Terms: Regular/Irregular

* Regular (on a grid) or irregular (scattered)

* Neighborhood (topology) is unclear for irregular
data
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Terms: Approximation/Interpolation

* Noisy data = Approximation

* Perfect data = Interpolation
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Terms: Global/Local

» Global approximation

* Local approximation

* Locality comes at the expense of fairness



Introduction & Basics

* Notation, Terms

— Regular/Irregular, Approximation/Interpolation,
Global/Local

» Standard interpolation/approximation techniques

— Global: Triangulation, Voronoi-Interpolation, Least
Squares (LS), Radial Basis Functions (RBF)

— Local: Shepard/Partition of Unity Methods, Moving LS

Problems
— Sharp edges, feature size/noise

* Functional -> Manifold



Triangulation

* Exploit the topology in a triangulation (e.g.
Delaunay) of the data

* Interpolate the data points on the triangles
— Piecewise linear > C°
— Piecewise quadratic > C1?




Triangulation: Piecewise linear

« Barycentric interpolation on simplices
(triangles)
— given point x inside a simplex defined by p.
— Compute «; from

X = Zialpl. and 1= Ziazi

— Then
f(X) — Ziaifz




Voronoi Interpolation

« compute Voronoi diagram (dual of Delaunay
triangulation)

 for any point x in space
— add x to Voronoi diagram

— Voronoi cell zaround x intersects original cells z; of
natural neighbors n,

— interpolate J(x)= Ziﬂg(x)ff/zfﬂf(ﬂ
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Voronoi Interpolation

« Compute Voronoi diagram (dual of Delaunay
triangulation)

« For any point x in space
— Add x to Voronoi diagram

— Compute weights from
the areas of new cell
relative to old cells

* Properties
— Piecewise cubic

— Differentiable,
continous derivative




Voronoi Interpolation

Properties of Voronoi Interpolation:
* linear Precision

* |ocal

* f(x) e C' on domain

 f(x,x,,...,.x ) IS continuous in x,



Least Squares

* Fits a primitive to the data

* Minimizes squared distances between the
p;'s and primitive g

(X)=a+ bx +cx’

mginZ(f; ~g(p,))




Least Squares - Example

* Primitive is a (univariate) polynomial
g(x)= (l,x,xz,...)- ¢’

minZ(fl. —(l,pl.,pl.z,...)cT)2 —
0= zzpij (fz — (lapnpz'za'“):T)

 Linear system of equations



Least Squares - Example

* Resulting system

0= Z2p£j (fz - (lapiapz'zﬂ"'}T)Q
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Radial Basis Functions

+ Solve  J; :wa’/'(ﬂpf_pfu)

to compute weights w,
 Linear system of equations

r(0) fﬂ|Po -py) r(”po -p)f|) -
(b, —pof) r(0) r(p, —p.[))
r(|p. —Po||) r(p. - p.) r(0)
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Radial Basis Functions

* Represent approximating function as
— Sum of radial functions r
— Centered at the data points p,

f(x)= Zwir([pl. — XH)

B




Radial Basis Functions

» Solvability depends on radial function

» Several choices assure solvability
- r(d)=d’logd (thin plate spline)

_ —d*/h* _
— r(d)— € (Gaussian)
« h IS a data parameter

« h reflects the feature size or anticipated spacing
among points



Function Spaces!

 Monomial, Lagrange, RBF share the same
principle:
— Choose basis of a function space

— Find weight vector for base elements by
solving linear system defined by data points

— Compute values as linear combinations
* Properties

— One costly preprocessing step
— Simple evaluation of function in any point



Functional Spaces!

* Problems
— Many points lead to large linear systems
— Evaluation requires global solutions

» Solutions
— RBF with compact support

* Matrix is sparse

« Still: solution depends on every data point, though
drop-off is exponential with distance

— Local approximation approaches



Introduction & Basics

* Notation, Terms

— Regular/Irregular, Approximation/Interpolation,
Global/Local

» Standard interpolation/approximation techniques

— Global: Triangulation, Voronoi-Interpolation, Least Squares
(LS), Radial Basis Functions (RBF)

— Local: Shepard/Partition of Unity Methods, Moving LS

Problems
— Sharp edges, feature size/noise

* Functional -> Manifold



Shepard Interpolation

+ Approach: f(x)=)_ 4,(x)/,

-P
[x—x/|

with basis functions $/(x) Z,”X - XjH—p

» define f(p,)=/, = limi(x)

X—P;




Shepard Interpolation

« f(x)Is a convex combination igﬁ

because all ¢, € [0,1] and $.(x)=1
« f(x) is contained in the convex hull of data points
- p}{>1=f(x)e C* and Vi(p,)=0

=» Data points are saddles

» global interpolation
= every f(x) depends on all data points

* Only constant precision, i.e. only constant functions are
reproduced exactly



Shepard Interpolation

| ocalization:

LSet  fx)=Y (),

<R

. with ﬂ_(x):<(1—\\X—Pf\\/Rz-)v if [x—p|
| 0 else

\

for reasonable R, and v >1

=»no constant precision because of possible
holes in the data




Partition of Unity Methods




Partition of Unity Methods

e Subdivide domain into cells




Partition of Unity Methods

« Compute local interpolation per cell




Partition of Unity Methods

* Blend local interpolations?
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Partition of Unity Methods

« Subdivide domain into overlapping cells
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Partition of Unity Methods

« Compute local interpolations

<



Partition of Unity Methods

* Blend local interpolations
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Partition of Unity Methods

* Weights should
— have the (local) support of the cell
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Partition of Unity Methods

* Weights should
— sum up to one everywhere (Shepard weights)
— have the (local) support of the cell
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Moving Least Squares

 Compute a local LS approximation at x
* Weight data points based on distance to x

T ® ,
/.\‘\g({):aw—byﬁ—cx‘
! R

minZ(fi _ g(pi))Zg(”X -P,

)



Moving Least Squares

 The set
f(x)=g,(x).g, :mginZ(Ji ~g(p,)) A(x —p.|)

IS @ smooth curve, iff 6 Is smooth




Moving Least Squares

« Typical choices for 0:
— H(d): a’
— g(d)ze—dz/hz

* Note: 6,=6(|x-p,]|) is fixed
* Foreach x

— Standard weighted LS problem
— Linear iff corresponding LS is linear



Introduction & Basics

Notation, Terms

— Regular/Irregular, Approximation/Interpolation,
Global/Local

Standard interpolation/approximation techniques

— Global: Triangulation, Voronoi-Interpolation, Least
Squares (LS), Radial Basis Functions (RBF)

— Local: Shepard/Partition of Unity Methods, Moving LS

Problems
— Sharp edges, feature size/noise

Functional -> Manifold



Typical Problems

« Sharp corners/edges

A N

 Noise vs. feature size



Functional->Manifold

« Standard techniques are applicable
If data represents a function

e e

« Manifolds are more general
— No parameter domain

— No knowledge about neighbors, Delaunay
triangulation connects non-neighbors



Overview

 Introduction & Basics
* Fitting Implicit Surfaces
e Surfaces from Local Frames



Implicits

 Each orientable 2-manifold can be
embedded in 3-space

* |dea: Represent 2-manifold as zero-set of
a scalar function in 3-space
— Inside: f(x)<0
— On the manifold:

— Outside: f(x)>0




Implicits from point samples

 Function should be zero °
In data points
— f(pi):O )
 Use standard

approximation
techniques to find

* Trivial solution: =0

o Additional constraints are
needed

0



Implicits from point samples

» Constraints define inside | o
and outside ®

» Simple approach (Turk, *
O’Brien) °
— Sprinkle additional + o -

information manually

— Make additional
information soft T e o
constraints



Implicits from point samples

» Use normal information "\ .[

 Normals could be o
computed from scan

* Or, normals have to be
estimated A



Estimating normals

« Normal orientation
(Implicits are signed)

— Use inside/outside
information from scan

 Normal direction
by fitting a tangent
— LS fit to nearest neighbors
— Weighted LS fit

— MLS fit .\/(



Estimating normals

* General fitting problem
. 2
n;ﬂ}Z(fl—pi,n) Ola—p.|) P&

— Problem is non-linear /q
because n is constrained
to unit sphere

. |



Estimating normals

» The constrained minimization problem
. 2
min (q—p;-n)" 6
ni=1""

Is solved by the eigenvector corresponding to
the smallest eigenvalue of the following co-
variance matrix

2.@-p)(@-p) 0

which is constructed as a sum of weighted outer
products.



Implicits from point samples

+1

« Compute non-zero W

anchors in the +K. ?
distance field

* Use normal
information directly as ,-—°
constraints N

f(p,+n,)=1 *l e y

+1—e
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Implicits from point samples

+1

« Compute non-zero W

anchors in the +K. ?
distance field

* Use normal
information directly as ,-—°
constraints N

f(p,+n,)=1 *l e y

+1—e
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Implicits from point samples

« Compute non-zero
anchors In the
distance field

« Compute distances at
specific points
— Vertices, mid-points,
etc. in a spatial
subdivision
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Computing Implicits

* Given N points and normals P;,1,
and constraints f(p,)=0,f(c,)=4d,

* Let pz‘+N :ci
* An RBF approximation

f(x)= Zw A(lp. —x[)

leads to a system of linear equations



Computing Implicits

* Given N points and normals P;,1,
and constraints f(p,)=0,f(c,)=4d,

* Let pz‘+N :ci
* An RBF approximation

f(x)= Zw A(lp. —x[)

leads to a system of linear equations



Computing Implicits

* Practical problems: N > 10000
 Matrix solution becomes difficult

* Two solutions
— Sparse matrices allow iterative solution
— Smaller number of RBFs



Computing Implicits

° Sparse matrlceS 9(0) gqp()_pl D Qqh)o_sz)
&(lp. —pof) (0) &(lp, —p.|)

op-vl) ob.-pl)  a0)

—Needed: d>c—>r(d)=0,7"(c)=0

| | |
C C

— Compactly supported RBFs




Computing Implicits

« Smaller number of RBFs

» Greedy approach (Carr et al.)
— Start with random small subset

— Add RBFs where approximation quality is not
sufficient

ol



RBF Implicits - Results

* Images courtesy Greg Turk




RBF Implicits - Results

« Imaaes courtesv Grea Turk




Overview

 Introduction & Basics
* Fitting Implicit Surfaces
e Surfaces from Local Frames



Projection

 |dea: Map space to surface
« Surface is defined as fixpoints of mapping

Vol



Projection

* Projection procedure (Levin)

— Local polyonmial approximation
* Inspired by differential geometry

— “Implicit” surface definition /'/'_'
\.

— Infinitely smooth &
— Manifold surface



Surface Definition

« (Constructive definition

Input point
Compute a local
reference plane

Compute a local
polynomial over
the plane

Project point r=G/(0)
Estimate normal



Surface Definition

« (Constructive definition

Input point
Compute a local
reference plane

Compute a local
polynomial over
the plane

Project point r=G/(0)
Estimate normal



Local Reference Plane

Weight function

* Find plane H,,=<q,n>+l/ psed on dstance 10
= min ) (q—p,.n) O(la—p,|)

alnf-14
_ f(d)=e"" .
 his feature size/ /'
point spacing f
— H_is independent

of r's distance
— Manifold property



Projecting the point

* MLS polyonomial over H,

~ min ZZ: «q — pl.,n> — G(pl.

Gell,

— LS problem
_¥'=G (0) {.

— Estimate normal

) éla-p])

e



Spatial data structure

» Regular grid based on support of 6
— Each point influences only 8 cells

« Each cell is

an octree
— Distant octree cells

/./—.'_.

7

are approximated
by one point in

center of mass




Summary

* Projection-based surface definition
— Surface is smooth and manifold
— Surface may be bounded

— Representation error mainly depends on point
density

— Adjustable feature size h allows to smooth out
noise



