CS354 Computer Graphics
Midterm Review

Qixing Huang
March 28th 2018

Elements of Rendering

* Object
* Light
* Material

e Camera

Geometric optics

Modern theories of light treat it as both a wave and a
particle

We will take a combined and somewhat simpler view
of light — the view of geometric optics

Here are the rules of geometric optics:

— Light is a flow of photons with wavelengths. We’'ll call
these flows “light rays”

— Light rays travel in straight lines in free space
— Light rays do not interfere with each other as they cross
— Light rays obey the laws of reflection and refraction

— Light rays travel from the light sources to the eye, but the
physics is invariant under path reversal

Whitted ray-tracing algorithm

* |n 1980, Turner Whitted introduced ray tracing to the graphics
community
— Combines eye ray tracing + rays to light
— Recursively traces rays

e Algorithm

— For each pixel, trace a primary ray in direction V to the first visible
surface

— For each intersection, trace secondary rays:
* Shadow rays in directions L to light sources
» Reflected ray in direction R
* Refracted ray or transmitted ray in direction T

Whitted algorithm

eye

Primary rays Shadow rays

Reflection rays Refracted rays

Reflection and transmission

e Law of reflection:

0.= 6,

* Snell’s law of refraction
N, sing, = 1, sin O,
e Where "> 1 are indices of refraction

Ray-plane intersection

* We can write down the plane equation
a-xr+b-y+c-z+d=0
n = la;b;]
n' - [z;y; 2] +d =0

* Using parameterized line segment
n' - (p+td) =0

* We can solve for the intersection parameter

TLTp

t= L
nld

Barycentric coordinates

Barycentric coordinates can be used to
interpolate high-dimensional vectors

Barycentric coordinates

V1(x1,y1)
T = A1x1 + Aoxa + A3x3
Y = A\1y1 + A2y2 + A3ys
° AL+ A2+ A3 =1
P(x,y)

V2(x2,y2) V(x3,y3)

Barycentric coordinates

V1(x1,y1)
T = AMx1+ Ao + A3x3
Yy = AMy1 + Aoys + Asys
M+X+A3=1

V2(x2,y2) V(x3,y3)

Computation

ALY T = AMx1+ Ao + A3x3
Y = AY1 + Aay2 + Asys
) Mo Ao+ g =1
V2(x2,y2) V(x3,y3)

r T2 X3 To T I3 rT ITo X
det | v w2 s det | v vy w3 det | v1 y2 vy
1 1 1 1 1 1 1 1 1

Ay = A3z =
r1 T2 I3 r1 T2 I3 ry T2 I3
det [v1 y2 s det | y1 w2 u3 det | 11 y2 ys
1 1 1 1 1 1 1 1 1

Derivation is not required (yet encouraged)

Al =

You can bring a 2-page cheat sheet to the exam

Elements of Ray Tracing

* Shadows
e Reflection
e Refraction

* Recursive Ray Tracing

Shading --- Phong Model

~ -~ ~ ~

Ry =2(Ly, - N)N = Ly,

Ip—kz‘a Z (kd(f; « N)ima + ks (R V) ims)

m € lights

Ambient Diffuse Specular = Phong Reflection

More details next lecture
Image credit: https://en.wikipedia.org/wiki/Phong_reflection_model

Choosing the parameters

* Experiment with different parameter settings. To get you
started, here are a few suggestions
— Try n in the range [0, 100]
— Try k+ ky+ k< 1
— Use a small k, (~0.1)

Metal large small, carge,
color of metal color of metal

Plastic medium medium, color medium,
of plastic white

Planet 0 varying 0

Phong interpolation

* In Phong shading a normal vector is linearly interpolated across the
surface of the polygon from the polygon's vertex normal

FLAT SHADING PHONG SHADING

* In contrast, Gouraud interpolation computing the lighting at the
corners of each triangle and linearly interpolating the resulting
colours for each pixel covered by the triangle

Gouraud interpolation

Gouraud interpolation is faster, while Phong interpolation is
more accurate

Ray Tracing

Recursive ray tracing: Turner Whitted, 1980

What are the rendering effects in this image?

Texture Mapping

Texture mapping (Woo et al., fig. 9-1)

e Texture mapping allows you to take a simple
polygon and give it the appearance of something
much more complex
— Due to Ed Catmull, PhD thesis, 1974
— Refined by Blinn & Newell, 1976

Non-parametric Texture Mapping

- L,

* With “non-parametric texture mapping”
— Texture size and orientation are fixed

— They are unrelated to size and orientation of
polygon

Parametric Texture Mapping

* With “parametric texture mapping,” texture size and
orientation are tied to the polygon

— Separate “texture space” and “screen space”

— Texture the polygon as before, but in texture space

— Deform (render) the textured polygon into screen space
— Deformation is given by parameterization

* A texture can modulate just about any parameter — diffuse
color, specular color, specular exponent, ...

Implementing Texture Mapping

A texture lives in it own abstract image coordinates
parameterized by (u,v) in the range ([0..1], [0..1]):

e

0 1
It can be wrapped around many different surfaces:

3
u=xw u =020
v =yh v=0/m
)
x
Y
u=¢2n)
v =y/h ¢
¢ \/ u

Computing (u,v) texture coordinates in a ray tracer is fairly
straightforward

Note: if the surface moves/deforms, the texture goes with it

Mapping to Texture Image Coords

The texture 1s usually stored as an 1image. Thus, we need to
convert from abstract texture coordinate:

(#,v) in the range ([0..1], [0..1])
to texture image coordinates:
(U;p10V,e) In the range ([0.. w,, |, [0.. 2,])

Y /h
V=
A g Viex =V Myex
A ' . ‘

N o o0
L2 0 0 O
/ p) S O
e “o u= 021 @ Kiex™® ¥ Wiy
Ray intersection Mapping to Mapping to
abstract texture coords texture pixel coords

Q: What do you do when the texture sample you need lands
between texture pixels?

Displacement and Bump Mapping

e Use surface offsets stored in texture
— Perturb or dispute the surface

— Shade on the resulting surface normals

P(u,v)

_JP(u,v) _dP(u,v)
S(u,v) = o T(u,v)= o
N(u,v)=SXT

Bl Displacement
P’(u,v) =P(u,v)+ h(u,v)N(u,v)
B Perturbed normal
N'(u,v) =P xP
=N+h (TXN)+h (SxN)

From Blinn 1976

Normal Mapping

* Bump mapping via a normal map texture
— Normal map — x,y,z components of actual normal
— Instead of a height field 1 value per pixel
— The normal map can be generated from the height field
— Otherwise have to orient the normal coordinates to the surface

Displacement vs. Bump Mapping

m [nput texture

Displacement vs. Bump Mapping

Original rendering Rendering with

bump map wrapped
around a cylinder

Bump mapping is much faster and consumes less resources for the same level of detail
compared to displacement mapping because the geometry remains unchanged.

Spatial Data Structure

What is it?

e Data structures that organize geometry (point clouds
and triangular meshes) in 2D, 3D or higher dimensions

* Used for every search related problem

* Very important mathematical tool in CG
— Ray tracing/Photon mapping
— Collision/Intersection
— Culling
— Data compression
— Level of detail

* Goal is faster processing and searching

How

* Organize geometry in a hierarchy

In 2D space
Data structure

Octree (3D) Quadtree (2D)

» Split at half the length axis aligned
— Always 4 children

* In 3D each square becomes a box with 8 children

Sampling

e Occurs when the sampling inherent in rendering does not
contain enough information for an accurate image

Original Scene Sampling Pixel Centers Rendered Image

Scanline Luminnosity Sampled Signal Luminosity Signal

Image from SIGGRAPH 93 Educators’ Slide Set

No antialiasing

No antialiasing

Image from SIGGRAPH 93 Educators’ Slide Set

3x3 supersampling, 3x3 unweighted filter

SIxX3 supersampling

3Ix3 unweighted filter

Image from SIGGRAPH 93 Educators’ Slide Set

Clipping

Linear Interpolation

(-1,0.8,0.146153)

\

0.8-(-1.8)=2.6

(0.8 0.8 -02)

(-1.8, 0.8,0.3)
\ —
-1-(-1.8)=0.8 origin at (0,0,0)
Weights:
1.8/2.6

0.8/2.6, sum to 1
(0,-0.8,-0.2) X=-I
Y = (1.8/2.6)%0.8 + (0.8/2.6)%0.8

Straightforward because
all the edges are orthogonal =08 V
Z=(1.8/2.6)x0.3 + (0.8/2.6)x-0.2
=0.1461538

I

|

Clipping Complications

* Four possibilities
— Face doesn’t actually result in any clipping of a triangle
* Triangle is unaffected by this plane then
— Clipping eliminates a triangle completely

* All 3 vertices on “wrong” side of the face’s plane
— Triangle “tip” clipped away
* Leaving two triangles

— Triangle “base” is clipped away

* Leaving asingle triangle
* Strategy: implement recursive clipping process

— “Two triangle” case means resulting two triangles must be clipped by
all remaining planes

Taxonomy of Projections

planar geometric projections

parallel perspective

‘ . ‘1 point 2 point 3 point
multiview axonometric oblique
orthographic

Isometric dimetric trimetric

Projection

* You should be able to calculate both parallel
and perspective projections

* Homogeneous coordinates

gluLookAt

gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)

-

(at , af , at)
)/ Z

- X

(eye,, eye,, eye)

The “Look At” Algorithm

Vector math
— L=eye—at

— Z=normalize(Z) /* normalize means Z / length(Z) */

— Y=up

— X =Y xZ /* x means vector cross product! */

— Y=27ZxX/* orthgonalize */

— X =normalize(X)
— Y = normalize(Y)

* Then build the following affine 4x4 matrix

X)

X v z

V z

0 0 1

(X, X, X, —-Xceye]

Z Z, —-Zeceye

Y Y Y -=Yeeype
0

Check rounding off issues

Surface Representations

Parametric Surfaces

Bspline curve

Eck and Hoppe’ 96

Implicit Surfaces

y / f f
. f |
/ ! ! i
I i iy !
! / 1 4
1 / [|
| 4 i i
f i J = f
— i -
. S : i g }
iy) - . o, S f
{ o [e e i
S . { = J of
e e [-~
. .
e —— ' —
f — ™ y
' J ™ i J " [
/ I ! BN { . ™
4 | J i
{ I \ f f { %
. " I — i T
| f / ‘ '})
{ J J
[! g J i
I i | i y
f [f
} y { i]
{ f ’
i | / [| .l
{ f f f f
) J | '
§ ! f f ! { f 1 I}
J | | J J
i '] I i Il f { { i]
| i i i y i i ! ! 4
| f / J J ! f i
| i f i f ! i J)
) f f /) i
J | | . !
{ f { / f /
J i i |

f f [{ J

i { f) -I

J | . J f

| ! f f)

f / - ! ! f
j = I = |
. - f
f J [e | S e f
\ e] e S

Image from http://paulbourke.net/geometry/implicitsurf/implicitsurf4.gif

Triangular Mesh

Part-based Models

N\

*@
Yo |
5L’

Image from https://gamedev.stackexchange.com/tags/scene-graph/info

o QI

What we need to know

* Pros and Cons of each representation
* The surface “space”
* Normal computation

e Ray-surface intersection

dP;

Hermite curves ”, P
: t=1
* A cubic polynomial Pod =0

* Polynomial can be specified by the position of,

and gradient at, each endpoint of curve
* Determine: x=X(t) in terms of x,, X,, X, X;
Now:
X(t) = a;t3 +a,t? +a;t + a
and X/(t) = 3a,t2 + 2a,t + a,

Bézier Curves

* Note the Convex Hull has been shown as a
dashed line — used as a bounding extent for

o
v S
/ ~

intersection purposes

(= {g/.\ "chord" Hf

Bézier N/
Specification °P,

Bspline Surfaces

* The same way to we generalize Bezier curves
to Bezier surfaces

P{uvi"} - Eq] EJN‘.':P {H]ijq(‘l"}Pi,j
=0 j=

NURBS Surfaces

* General form of a NURBS curve

k k
N; pw; Y iii Niqyw; P

C(u) = Z P;

k k
i=1 Zj:l Njnwj > im1 Ninw;

* Non-rational splines or Bezier curves may
approximate a circle, but they cannot
represent it exactly. Rational splines can
represent any conic section, including the
circle, exactly.

NURBS Representing an ARC

wo(1 — u)?(1,0) + wi2u(l —u)(1,1) + weu?(0,1)

(#(u), y(u) =

wo(l —u)? + wi2u(l — u) + wou?

wo =1, w; =1, and wy = 2

(1 — u?, 2u)
1+ u?

(#(u), y(u)) =

Approximating

Approximating

Splitting step: split each edge in two

Approximating

Averaging step: relocate each (original) vertex
according to some (simple) rule...

A

C\

Definition of implicit surface

e Definition
{p=(x,y,2): fip)=0, peR’}

* When fis algebraic function, i.e., polynomial
function
— Note that f and c*f specify the same curve

— Algebraic distance: the value of f(p) is the
approximation of distance from p to the algebraic
surface f=0

Marching Squares (2D)

* Connecting vertices by lines
— Lines shouldn’t intersect

— Each vertex is used once

* So that it will be used exactly twice
by the two cells incident on the edge

* Two approaches

— Do a walk around the grid cell
* Connect consecutive pair of vertices
— Or, using a pre-computed look-up
table
e 274=16 sign configurations
* For each sign configuration, it stores

the indices of the grid edges whose
vertices make up the lines.

Key: 0001
Data: {{2,4}}

M Key: 0011
Data: {{3.,4}}

[[]

[] Hl
Key: 1001
Data: {{1,3},
{2.4}}

N []

Slide Credit: Tao Ju

Terms: Approximation/Interpolation

* Noisy data = Approximation

» Perfect data = Interpolation

R s Y

