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Vectors

* Avector is a direction and a magnitude

 Does NOT include a point of reference

e Usually thought of as an arrow in space

* Vectors can be added together and multiplied by scalars
e Zero vector has no length or direction
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Vector Spaces

Set of vectors

Closed under the following operations
— Vector addition

— Scalar multiplication

— Linear combinations

Scalars come from some field F
— e.g. real or complex numbers

Linear independence
Basis
Dimension



Coordinate Representation

* Pick a basis, order the vectors in it, then all vectors in
the space can be represented as sequences of
coordinates, i.e. coefficients of the basis vectors, in

order
 The most widely used represention is Cartersian 3-
space
* There are row and column vectors,

Z

and we usually use column vectors




Linear Transformations

* Given vector spaces Vand W

* Afunctionf:V->W s alinear map or linear
transformation if

fav +...+a,v )=a,f(v)+..+a f(V )



Transformation Representation

* Under the choices of basis, we can represent a
2-D transformation M by a matrix
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ldentity

e Suppose we choose a=d=1, b=c=0:
* Gives the identity matrix: [1 0;0 1]

* Doesn’t change anything



Scaling

* Suppose b=c=0, but let a and d take on any
positive value

— Gives a scaling matrix: [a 0; O d]




Reflection

* Suppose b=c=0, but let either a or d go
negative

* Examples:

>




Limitations of the 2 x 2 matrix

 A2x2linear transformation matrix allows
— Scaling
— Rotation
— Reflection
— Shearing

 Q: What important operation does that leave
out?



Points

A point is a location in space
Cannot be added or multiplied together

Subtract two points to get the vector between
them

Points are not vectors




Affine transformations

In order to incorporate the idea that both the basis and the
origin can change, we augment the linear space u, w with
anorigint

Note that while u and w are basis vectors, the origintis a
point

We call u, w, and t (basis and origin) a frame for an affine
space

Then, we can represent a change of frame as

pP=xu+y w+t

This change of frame is also known as an affine
transformation



Basic Vector Arithmetic

u=| s v=| y u+vs=

rF+ X

av =

ax
ay
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Parametric line segment

* Orline, or ray, or just linear interpolation

p=p,+1p,-p,)=>U-1)p, +1p,

_ X - 7 X, — X, - (1-1)x, +1x,
Y I=| Yo |+t ni=Y [=| A=Dy,+1y
i Z d ZO ZI_ZO (l_t)Z0+tZ1

mLine segment O=r=<I
mRay O<t<o
m[Line —0=f=®



Vector dot product

u

u-v=rx+sy+tz=|ul|lv|cos(¢)



Projection

u-'v
m Projection (u component parallel tov) w=——V
V'V
mRejection (u component orthogonal tov) u—w

m Particularly useful when vectors are normalized



Cross Product

J . A w=uxv
i J Kk sz—1ty

W=uxv=|r § [ |=| Ix—rzZ

X vy z ry—Sx v
®w 1s orthogonal to u andv A(:

= [[w]=Jullv]sin(®)

® |w| area of parallelogram
muse right-hand rule
Euxv=—-(vxu)

(UXV)XW=Uux(VXW)

Q: What is an application of cross product?

A: Compute the normal direction of a triangle



R ™R

Determinants

a b
=ad - bc
c d
b g :
d
e [ |=a ¢ J -b j +C G = aei — afh + bfg — bdi + cdh — ceg
no h i g g h

mdet(M'") = det(M)
mdet(AB) = det(A)det(B)

mif det(M) = 0, M 1s singular, has no inverse



Plane equation

® Given normal vector N orthogonal to the
plane and any point p in the plane N-p+d =0

X
[a b c] y |[+d=ax+by+cz+d=0

Normal

m For a triangle
N =norm((v,-v,)x(v,-V,))

® Order matters, usually CCW

It is easy to check whether a given point is on one or another side of the plane



Homogeneous coordinates

To represent transformations among affine frames, we can loft the
problem up into 3-space, adding a third component to every point:

p'=Mp
b f, X
= ¢ d ¢, y
0 0 1 _1_
X
=[u w t] y
-1-

=x-u+y- w+l-t
Note that [a ¢ 0] and [ d 0]" represent vectors and

[z.¢, 11", [xy 1]" and [x" y" 1]" represent points.



Homogeneous coordinates

This allows us to perform translation as well as the linear
transformations as a matrix operation:

p,=MTp
X'l [1 0 1 ][x]
yi{=10 1 z]||y
1{ [0 0 If|1
X'=x+t,
y=y+i,




Barycentric coords from area ratios

* A geometric interpretation of Barycentric
coordinates is through the area ratios

- SArea(pBC)
SArea(ABC)

~ SArea(ApC) ~ SArea(ABp)
SArea(ABC) 4 SArea(ABC)

p

A




A B C, (0, a)
2xArea(ABC) = Ay By C ,
1 1 1 (-c,0) (b,0)

Invariant under translation, rotation



Barycentric coords from area ratios




Affine and convex combinations

* Note that we seem to have added points together,
which we said was illegal, but as long as they have
coefficients that sum to one, it is ok. Why?

* We call this an affine combination. More generally

n

p=ap,+...+top, Za,=1

* If all the coefficients are positive, we call this a
convex combination



Basic 3-D transformations: scaling

 Some of the 3-D transformations are just like
the 2-D ones

* For example, scaling:

x'] [s. 0 0 Offx
y| 10 s, 0 Offy
Z| o o s, Of|z
""" —— 777 ] oo oo




Translation in 3D
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Rotation in 3D

* Rotation now has more possibilities in 3D:

1 0 0 0]

R (6) = 0 C?S(H) —sin(@) O

“ 0O sin(@) cos(6) O

0 0 0 1]

[ cos(f) 0 sin(@) O

0 1 0 0

R(O)=| .

' —sin(@) 0 cos(6) O
L 0 0 L] Use right hand rule

(cos() -sin(@) 0 O

R (6) - sin(@) cos(@) O O

: 0 0 1 O

0 0 0 1]



Rotation in 3D

* Rotation is also more complicated in 3D

* Two rotations generally do not communicate

— Rotation along z followed by Rotation along x is different
from Rotation along x first followed by Rotation along z

e Quaternion |

%(u$i+uyj+uzk)

q=e? :cos§+(umi+uyj—|—uzk)sin§ — B

A quaternion rotation p’ = qpq ! (with q = ¢ + ¢;i + g;j + grk) can be algebraically manipulated into a matrix rotation p’' = Rp, where R is the
rotation matrix given by
1-2s(q7 +aq7) 2s(qig5 — akar)  28(gqiar + 4j9r)
R=|2s(qiqj + @a:) 1-2s(¢ +q7) 2s(gjar — qigr)
2s(qiqr — ¢jar)  2s(gjqr +qigr) 1—2s(q} +¢7)

Here s = ]|qH72 and if ¢ is a unit quaternion, s = 1.



Shearing in 3D

e Shearing is also more complicated. Here is on
example:

x'l [1 b 0 0O][x
y[ 10 1 0 Offy
Z1 10 0 1 ol|z
i | | _0 0 0 1_ _'l_
y Yy

Z

* We call this a shear with respect to the x-z plane



Preservation of affine combinations

e A transformation Fis an affine transformation if it

preserves affine combinations:
F(alpl + "'+anpn) =a1F(p1)+ +anF(pn)

* One special example is a matrix that drops a
dimension. For example:
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e This transformation, known as an orthographic
projection, is an affine transformation. We’ll use this

fact later...

a; =1



Properties of affine transformations

* Here are some useful properties of affine
transformations:
— Lines map to lines
— Parallel lines remain parallel

— Midpoints map to midpoints (in fact, ratios are
always preserved)



Next Lecture

 More about ray tracing, math, and transforms

e Special thanks for Don Fussell for many of the
slides



Questions?



