Slide Credit: Don Fussell

CS354 Computer Graphics
Character Animation and Skinning

Qixing Huang
April 9th 2018

Instance Transformation

e Start with a prototype object (a symbol)
 Each appearance of the object in the model is
an instance

— Must scale, orient, position
— Defines instance transformation

Structure Through Function Calls

car (speed) {
chassis ()
wheel (right front) ;
wheel (left front);
wheel (right rear);
wheel (left rear);

}

« Fails to show relationships well
e Look at problem using a graph

Graphs

e Set of nodes and edges (links)
* Edge connects a pair of nodes

— Directed or undirected

* Cycle: directed path that is a loop

/0/073\@

O-

loop

Tree

e Graph in which each node (except the root) has exactly one
parent node

— May have multiple children
— Leaf or terminal node: no children

O ——— root node

AN

Tree Model of Car

Chassis

Right-front Left-front Rightrear Left-rear
wheel wheel wheel wheel

DAG Model

* |f we use the fact that all the wheels are
identical, we get a directed acyclic graph

— Not much different than dealing with a tre

Chassis

ght front
ght rear

eft front
eft rear

| A B

Wheel

Modeling with Trees

* Must decide what information to place in
nodes and what to put in edges

e Nodes
— What to draw
— Pointers to children

* Edges

— May have information on incremental changes to
transformation matrices (can also store in nodes)

Robot Arm

y 1

A A

o 5

T\ “QJ—>)
e . X
/_:9/

Z Z Z

parts in their own
robot arm coodinate systems

Articulated Models

* Robot arm is an example of an
articulated model
— Parts connected at joints

— Can specify state of model by
giving all joint angles

Relationships in Robot Arm

* Base rotates independently
— Single angle determines position

 Lower arm attached to base
— Its position depends on rotation of base
— Must also translate relative to base and rotate about
connecting joint
 Upper arm attached to lower arm
— |Its position depends on both base and lower arm

— Must translate relative to lower arm and rotate about
joint connecting to lower arm

Required Matrices

m Rotation of base: R,
m Apply M = R, to base
® Translate lower arm relative to base: T,

m Rotate lower arm around joint: R,
mApply M =R, T, R, to lower arm
® Translate upper arm relative to upper arm: T

m Rotate upper arm around joint: R,
mApply M=R, T,,R,, T, R, to upper arm

OpenGL Code for Robot

robot arm() {
glRotate (theta, 0.0, 1.0, 0.0);
base () ;
glTranslate (0.0, hl, 0.0);
glRotate(phi, 0.0, 0.0, 1.0);
lower arm() ;
glTranslate (0.0, h2, 0.0);
glRotate(psi, 0.0, 0.0, 1.0);
upper arm() ;

Tree Model of Robot

* Note code shows relationships
between parts of model

Base
— Can change “look” of parts easily
without altering relationships *
* Simple example of tree model PE——
 Want a general node structure for +
nodes

Upper arm

Possible Node Structure

Code for drawing part or

Do pointer to drawing function

M

Child —m= Child —m

linked list of pointers to children

matrix relating node to parent

Generalizations

* Need to deal with multiple children
— How do we represent a more general tree?
— How do we traverse such a data structure?

* Animation
— How to use dynamically?
— Can we create and delete nodes during execution?

Humanoid Figure

Torso
Head Leftupper Right-upper Leftupper Right-upper
arm arm leg leg
Leftlower Rightlower Leftlower Rightlower

arm arm leg leg

Building the Model

* Can build a simple implementation using
quadrics: ellipsoids and cylinders

* Access parts through functions
— torso()
— left_upper_arm()
* Matrices describe position of node with

respect to Its parent

— M, positions left lower leg with respect to left
upper arm

Tree with Matrices

Torso
Mh Mlua Mrua Mfuf Mruf
Leftupper Rightupper Leftupper Rightupper
Head
arm arm leg leg
+ M”G + Mrla + MIH +Mrﬂ
Left-lower Right-lower Leftlower Rightlower

arm arm leg leg

Display and Traversal

The position of the figure is determined by 11 joint

angles (two for the head and one for each other
part)

Display of the tree requires a graph traversal
— Visit each node once
— Display function at each node that describes the part

associated with the node, applying the correct
transformation matrix for position and orientation

Transformation Matrices

e There are 10 relevant matrices

— M positions and orients entire figure through the
torso which is the root node

— M, positions head with respect to torso

- M., M,,., My, M, position arms and legs with
respect to torso
- M., M., M,;, M, position lower parts of limbs

with respect to corresponding upper limbs

Stack-based Traversal

e Set model-view matrix to M and draw torso

* Set model-view matrix to M M, and draw
nead

* For left-upper arm need M M, , and so on

* Rather than recomputing M M, , from scratch
or using an inverse matrix, we can use the
matrix stack to store M and other matrices as
we traverse the tree

Traversal Code

figure() {

glPushMatrix ()
/
torso() ;

glRotate3f (..) ; update model-view matrix for head
—
head () ;

glPopMatrix() ; - Trecover original model-view matrix
glPushMatrix () ;

glTranslate3£(..) ; ~—— save It again

glRotate3f(..) ;
left upper arm();

save present model-view matrix

update model-view matrix

glPopMatrix () ; for left upper arm

glPushMatrix() ; recover and save original
model-view matrix again

Analysis

* The code describes a particular tree and a
particular traversal strategy

— Can we develop a more general approach?

* Note that the sample code does not include
state changes, such as changes to colors
— May also want to use glPushAttrib and

glPopAttrib to protect against unexpected state
changes affecting later parts of the code

Skinning and Character Animation

Objectives

 Introduce the basics of character animation

* Introduce skinning

* |Introduce basic linear blend skinning

Character Animation

e Skeletons and skin

— skeleton —a
hierarchy of bones
or joints

— note arrows
pointing from
parent to child joint

— skin — the polygon ’
mesh defining the
body surface Yy e Y

Binding

* Define transform
between joint and
skin spaces in rest
or bind pose

e Associate skin
vertices to subset
of the joints

Animation

* Move the joints and
the skin moves with
them

 This deforms the
mesh from its rest
position

Skin

e Skin is a set of
polygonal meshes

* Ameshisa
collection of
(connected)
polygons

Skin

e A skin mesh is defined in its owe local frame

Skin Mesh

<& = O’
Parag Chaudhuri, 2012

Binding

e Each joint (bone) has its own local frame

* Let B, be the transformation from local joint frame j
to the skin mesh local frame in the binding pose

* B, is represented by a binding matrix

)
Parag Chaudhuri, 2012

Skeleton

Rigid skinning — basic idea

e Associate a group of vertices to a single joint j
* LetT, be the transformation from joint j local space
to world space

* Then the skin vertex transform to world space for
vertices v, associated with joint jisv," =T, B/ v,

Parag Chaudhuri, 2012

Joint motion

* When joint j moves, T; changes and the skin vertices
move with it

* The relative positions of the vertices in the local joint
frame don’t change

* v'=TB v,

@

Problems with rigid skinning

* Simple but low quality because large
distortions happen when bends form at joints

L+l

e

(} < Parag Chaudhuri, 2012

Linear Blending Skinning

e Adds flexibility to fix artifacts but still simple and fast
e Commonly used in games
e Vertices associated with multiple joints, not just one

e Vertex transform is a linear combination of the transforms associated with
its joints. Each vertex has weights for this linear combination assigned to it

Vi = sz‘,kTiBi_lvk
sz w,=landO=w,, <1

e Vertex normal can be computed similarly

'/—b

Parag Chaudhuri, 2012

Fewer artifacts

* With proper weights many but not all artifacts are eliminated
or improved

Parag Chaudhuri, 2012

Linear blend skinning algorithm

e Skin::Update()

— Compute M, =T. B, for each joint. Note that B, can be
precomputed and stored. For each vertex compute world
position and normal.

e Skin::Draw()
— Initialize ModelView matrix.
— Draw skin polygons using global positions and vertices.

Problems

e Skin collapse at bends

Pigure 1: The skeleton subspace deformation algorithm. The deformed position of a
point p lies on the line p’ p’’ defined by the images of that point rigidly transformed by
the neighboring skeletal coordinate frames. resulting in the characteristic ‘collapsing
elbow” problem (solid line).

Pose Space Deformation: A Unified Approach to Shape Interpolation and
Skeleton-Driven Deformation, Lewis, Cordner and Fong, SIGGRAPH 2000

Problems

e Skin collapses at twists

Pose Space Deformation: A Unified Approach to Shape Interpolation and
Skeleton-Driven Deformation, Lewis, Cordner and Fong, SIGGRAPH 2000

Dual Quaternion Skinning

* Better solution, nearly as fast

2 &

Geometric Skinning with Approximate Dual Quaternion Blending, Kavan
Collins, Zara and O'Sullivan, ACMTOG 2008

Linear Blend Skinning

* Problems

— Binding is difficult — what joints should each vertex be
associated with?

— Weight assignment is not intuitive and very time-
consuming

— Still have collapse with linear blend skinning
* Advantages

— Simple

— Fast

— Easy GPU implementation

