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Motivation
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Motivation

Character posing for animation




Challenges

User says as little as possible, and algorithm deduces the rest
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Challenges

Efficient!




Problem Statement

Shape
> Algorithm
Constraints

Position
Orientation/Scale

Other shape property

> Deformed shape



Approaches
e Surface deformation
— Shape is empty shell

e Curve for 2D deformation
» Surface for 3D deformation 5?

— Deformation only defined on shape M

— Deformation coupled with shape representation



Approaches

e Space deformation

— Shape is volumetric
* Planar domainin 2D
* Polyhedral domainin 3D

— Deformation defined in neighborhood of shape

— Can be applied to any shape representation



Approaches

e Surface deformation

— Find alternative representation which is
“deformation invariant”

* Space deformation
— Find a space map which has “nice properties”
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* Space deformation
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Surface Deformation

Setup:
— Choose alternative representation f(S)

— Given Sfind S’ such that
* Constraints(S’) are true
* fIS) =1(S)
(or close)
* An optimization problem




Shape Representation

Robustness
— How hard is it to solve the optimization problem?
— Can we find the global minimum?

— Small change in constraints = similar shape?

Efficiency
— Can it be solved at interactive rates?



Surface Representations

Laplacian coordinates
Edge lengths + dihedral angles
Pyramid coordinates

Local frames



Laplacian Coordinates [Sorkine et al. 04]

* Control mechanism
— Handles (vertices) moved by user
— Region of influence (ROI)

Movie




Laplacian Coordinates

&=LV=ID'A)V

I =ldentity matrix
D = Diagonal matrix [d,; = deg(v;)]

S =v.— z iv_ = z i(v,-—vj) A = Adjacency matrix
N d; JeN (@ “i V = Vertices in mesh

Approximation to normals - unique up to translation

Reconstruct by solving | LV =0 | for V, with one constraint

Poisson equation




Deformation

* Pose modeling constraints for vertices C C V
—v.=u, 1€C

* No exact solution, minimize error

V' —argman"(S — L(Vv' )II —I—Z”V — U, "

VA

Laplacian Laplacian User Constraints
coordinates of coordinates of
original mesh deformed mesh



Deformation

2289

\'A —argmmzn(S — L(v' )|| —I—Z”v —u, ||

7=

Laplacian Laplacian User Constraints
coordinates of coordinates of
original mesh deformed mesh




Laplacian Coordinates
Sanity Check

 Translation invariant? O
§=L(v)=Lv,+t) VR

e Rotation/scale invariant? 0

AN



Problem




Laplacian coords “Rotation invariant” coords



“Rotation Invariant” Coords

The representation should take into account
local rotations + scale

0, =L(v) To,=L(v’)
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Solution: Implicit Transformations

ldea: solve for local transformation and
deformed surface simultaneously

/ 2
V. —u,
J j

v =argmin(SIL0v) ~(T6) + 3

/

Transformation
of the local frame




Similarities

Restrict 7T; to “good” transformations = rotation
+ scale = similarity transformation

’ 2
v —u|
J J

' =argmin( $12(v) ~(T)8)F + I

/

Similarity Transformation




Similarities
* Conditions on T’ to be a similarity matrix?

* Linearin 2D:

[ Auxiliary variables }

(s 0 0)(cos@ sinf@ d\ (w a t)
0 s 0||-sin@ cosf@ d |=|-a w {,
oo1)lo o 1){o0o o 1,

-3
Il

Uniform Rotation +
scale translation



Similarities 2D



Similarities — 3D case

e Not linearin 3D:

rotation +
_ }zs epo=s(aI+ﬂH+)
uniform scale /
H 1s 3x3 skew-symmetric, Hx =hx x

* Linearize by dropping the quadratic term
— Effectively: only small rotations are handled



Some Results




Some Results




Limitations: Large Rotations

Approach Pure Translation

1200
Original model ‘;f - n ﬂ (*’
»

1357 twist 70° bend

Laplacian-based
editing with implicit
aptimization [60]




How to Find the Rotations?

* Laplacian coordinates — solve for them

— Problem: not linear

* Another approach: propagate rotations from
handles



Rotation Propagation

* Compute handle’s “deformation gradient”
e Extract rotation and scale/shear components
* Propagate damped rotations over ROI




Deformation Gradient

* Handle has been transformed affinely

T(x) = Ax+t

e

* Deformation gradient is:

VT(x) =A

e Extract rotation R and scale/shear S
A=Uxvl = R=UV! s=vyxv?l
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Smooth Propagation

* Construct smooth scalar field [0,1]
— oux)=1 Full deformation (handle)
— ou(x)=0 No deformation (fixed part)
— o(x)€[0,1] Damp transformation (in between)

* Linearly damp scale/shear:
S(x)= ouX)S(handle)

* Log scale damp rotation:
R(x) = exp(oux)log(R(handle))



Limitations

e Works well for rotations

* Translations don’t change deformation gradient

— “Translation insensitivity”

42



The Curse of Rotations

Can’t solve for them directly using a linear
system

Can’t propagate if the handles don’t rotate

Some linear methods work for rotations
Some work for translations
None work for both



The Curse of Rotations

* Non linear
methods work
for both large
rotations and
translation only

- Gradient

o
A
1

Laplace

* No free lunch:
much more
expensive

Nonlinear




Freeform Deformation

* Deform object’s bounding box

— Implicitly deforms embedded objects




Freeform Deformation

* Deform object’s bounding box

— Implicitly deforms embedded objects

* Tri-variate tensor product spline

d(u,v,w) ZZZdwkN v) Ni(w)

1=0 7=0 k=0



Freeform Deformation

* Deform object’s bounding box
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Freeform Deformation

* Deform object’s bounding box
— Implicitly deforms embedded objects

* Tri-variate tensor-product spline
— Aliasing artifacts

* Interpolate deformation constraints’

— Only in least squares sense




