Data-Driven Geometry Processing
3D Deep Learning |l

Qixing Huang
May 2t 2018




3D Surface Representations
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Matching in Embedding Spaces
[CVPR’ 16]



Existing methods usually follow
a two-step approach (e.g., SIFT flow)

* Local descriptor computation

* Dense pixel labeling via MRF inference

— Preserve descriptors
— Preserve smoothness



Issues of such two-step approach

Partial similarity Inefficient when
matching multiple objects



Embedding --- establishing correspondences
in the embedding space

Spectral embedding [Liu et al. 06]

Sensitive to 1) partial similarity, and 2) geometric and topological changes



Properties of the desired embedding space

Corresponding points are Embedding
matched in the embedding space preserves continuity



The benefits of object embedding

* Correspondences become nearest
neighbor query
— Efficiency for multiple object matching
O(n) embeddings + O(n?) queries

— Partial similarity

— Fuzzy correspondences



The biggest message of deep neural
networks

* Approximate any function given sufficient data




Focus on depth images

* Scanning devices generate depth images

* Complete shape embedding are aggregated
from depth image embeddings

— 3D convolution is not ready yet



Architecture

0 1 2 3 4 5 6 7 8 9 10
layer image conv max conv max 2xXconv conv max 2Xconv int conv
filter-stride - 11-4 3-2 5-1 3-2 3-1 3-1 3-2 1-1 - 3-1
channel 1 96 96 256 256 384 256 256 4096 4096 16
activation - relu Irn relu Irn relu relu idn relu idn relu
size 512 128 64 64 32 32 32 16 16 128 512
num 1 1 4 4 16 16 16 64 64 1 1

The input is a depth image
The output is a per-pixel descriptor (dim 16)

Convolution + Deconvolution



Evaluation on the FAUST dataset

% correspondences
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Evaluation on the FAUST dataset
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Multi-view 3D Models from Single Images
With a Convolutional Network [ECCV’ 16]
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Multi-view 3D Models from Single
Images with a Convolutional Network

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

Department of Computer Science

University of Freiburg
{tatarchm, dosovits, brox}@cs. uni-freiburg.de

ECCV 2016



Perspective Transformer Nets: Learning
Single-View 3D Object Reconstruction
without 3D Supervision [Yan et al. 16]
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Figure 1: (a) Understanding 3D object from learning agent’s perspective; (b) Single-view 3D volume
reconstruction with perspective transformation. (c) Illustration of perspective projection. The
minimum and maximum disparity in the screen coordinates are denoted as d,,;, and d,,qz-
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Volume Generator Perspective Transformer

64x64x3
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Learning Semantic Deformation Flows with 3D
Convolutional Networks [Yumer and Mitra 2016]
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Semantic Scene Completion from a
Single Depth Image [Song et al. 17]
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RGB-D frame observed surface ground truth Zheng etal.[37] Firmanetal.[3] Linetal [18] Geiger and Wang [4] SSCNet




Other Topics (not Covered)



Shape Analysis

Design algorithms to extract semantic information from one
or a collection of shapes
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[Mitra et al. 06]

[Karz and Tal 03]

Segmentation Classification & Clustering



Shape Modeling

IWIRES
An Analyze-and-Edit Approach
to Shape Manipulation

Ran Gal Olga Sorkine
Tel-Aviv University New York University
Niloy Mitra Daniel Cohen-Or
Indian Institute of Technology Tel-Aviv University

(The video contains voice over)



Character Animation

Animating Human Dressing

Alexander Clegg Jie Tan Greg Turk C. Karen Liu

Georgia Institute of Technology

Animating Human Dressing, Alex Clegg, Jia Tan, Greg Turk, and C. Karen Liu, SIGGRAPH 2015



Graphics & Al



Render-for-CNN

Rendering Add background
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Sample lighting parameters Sample background image Sample cropping parameters

3D Model

Sample camera parameters Alpha-blending composition

Hyper-parameter estimation from real images

[Su et al. 15]



Synthetic Image Examples




Viewpoint Estimation Results




SIGGRAPH ASIA" 2016
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input image image-to-shape texture transfer shape-to-shape texture transfer edited original image




Shape Captioning

e There is a bed with three pillows and a bedside e There is a chair and a circular table in the
table next to it. middle of a floral print room.
e The room appears to be a bedroom. A blue bed e a corner widow room with a a table and
and white nightstand are pushed against the  chair sitting to the east side.
furthest wall. A window is on the left side. e There's a dresser in the corner of the room,
e A dark bedroom with a queen bed with blue and a yellow table with a brown wooden
comforter and three pillows. There is a night  chair.
stand. One wall is decorated with a large design
and another wall has three large windows.

Need a feature representation of 3D Scenes Future project



Text-2-Scene Generation [Chang et al. 15]

Input Text Scene Template 3D Scene

0o

room
on(00,01)

“There is a desk and Parsing Generation

there is a notepad on ) 02 -

the desk. There is a pen notepad
next to the notepad.”

on(01,02)

0p— category:room, modelld:420
on(01,03) 0 gory

next_to(03,02) 0; — category:desk, modelld:132

.. 0, - category:notepad, modelld:343
03— category:pen, modelld:144

Figure 2: Illustration of the text to 3D scene generation pipeline. The input is text describing a scene
(left), which we parse into an abstract scene template representation capturing objects and relations (mid-
dle). The scene template is then used to generate a concrete 3D scene visualizing the input description
(right). The 3D scene is constructed by retrieving and arranging appropriate 3D models.



Text-2-Animation

7 MARGARET | MITCHELL

With Joe Langus, Kevin Tai, and Raymood Mooney






