
CS354 Computer Graphics
Spatial Data Structure

Qixing Huang

February 7th 2018

Slide Credit: Michael Wimmer



What is it?

• Data structures that organize geometry (point clouds 
and triangular meshes) in 2D,3D or higher dimensions

• Used for every search related problem

• Very important mathematical tool in CG
– Ray tracing/Photon mapping

– Collision/Intersection

– Culling

– Data compression

– Level of detail

• Goal is faster processing and searching



How

• Organize geometry in a hierarchy



Usage of Spatial Data Structures

• Ray intersection (for picking)

• View frustum culling

• Occlusion culling

• Backface culling

• Collision detection (for physics or gameplay)

• Silhouette extraction (for drawing outlines)



Ray Intersection Algorithm

• Recursively descend down the tree

• If ray misses bounding volume, no intersection

• If ray intersects bounding volume, recurse with the 
enclosed volumes and objects

• Maintain near and far bounds to prune further

• Overall effectiveness depends on model and 
constructed hierarchy



Culling



Grid

• Most simple data structure

• Regular subdivision

– Directly addressable cells

– Simple neighborhood finding in O(1)

• Problem:

– Too few/many cells

– Hierarchical grid

• Good for uniformly distributed 
problems



Bounding Volume Hierarchy (BVH)

• Most used structure in real-time graphics
• Most common bounding volumes (BVs):

– Sphere
– Boxes (AABB)

• BVs give information about maximum extend 
of an object
– Encloses complete object

• Data structure is a k-ary tree
– Leaves hold geometry
– Internal nodes have at most k children
– Internal nodes hold BVs that enclose all 

geometry in its subtree



How to create a BVH

• Find minimal box, then split along longest axis

x is longest
Find minimal 
boxes

Split along
longest axis

Find minimal
boxes

Called TOP-DOWN method
More complex for other BVs



Stopping Criteria for BVH

• We need to stop recursion when:

– BV is empty

– Only one primitive (e.g. Triangle, object) is inside Bounding 
Volume

– <n primitives is inside BV

– Recursion level l has been reached

• Similar critera for other BSP trees



Octree (3D) Quadtree (2D)

• Split at half the length axis aligned

– Always 4 children

• In 3D each square becomes a box with 8 children



Octree (3D) Quadtree (2D)

• Expensive to rebuild (all BSPs are)

• Easy to implement

– No geometry analysis needed

– Just test if something is in leaf

• Used to speed up

– Culling, Raytracing, Picking



Octree (3D) Quadtree (2D)



Q:Space/Time Complexity of a 
Quadtree/Octree for n elements



Kd-tree

• Split along axis alinged planes/lines which results in 
minimum search time



Kd-tree

• Test one attribute at a time instead of all 
simultaneously as in the point quadtree 

• Usually cycle through all the attributes 

• Shape of the tree depends on the order in 
which the data is encountered



Kd-tree

• Each internal node holds a divider plane
• Leafs hold geometry
• Problem: splitting criteria is complicated

– Surface area heuristic (SAH) is best



Kd-tree



Q:Space/Time Complexity of a 
Kd-tree for n elements



General BSP-Tree

• Same as kd-tree but without axis aligned splitting

– Splitting criteria is even harder for general generation

– Intersection calculations more expensive than kd-tree

• Usually used on a per triangle/quad splitting 
basis

– Good for per triangle or quad collision detection



Selection of Bounding Volumes

• Effectiveness depends on:

– Probability that ray hits bounding volume, but not 
enclosed objects (tight fit is better)

– Cost of calculating intersections with bounding 
volume and enclosed objects

• Break-down into steps the calculations of 
bounding volumes

• Use heuristics



Data Structures Demos

• BSP Tree construction

• KD Tree construction

http://symbolcraft.com/graphics/bsp/index.html

http://donar.umiacs.umd.edu/quadtree/points/kdtree.html



Questions?


