What is it?

• Data structures that organize geometry (point clouds and triangular meshes) in 2D, 3D or higher dimensions
• Used for every search related problem
• Very important mathematical tool in CG
 – Ray tracing/Photon mapping
 – Collision/Intersection
 – Culling
 – Data compression
 – Level of detail
• Goal is faster processing and searching
How

• Organize geometry in a hierarchy
Usage of Spatial Data Structures

• Ray intersection (for picking)

• View frustum culling
• Occlusion culling
• Backface culling

• Collision detection (for physics or gameplay)
• Silhouette extraction (for drawing outlines)
Ray Intersection Algorithm

• Recursively descend down the tree

• If ray misses bounding volume, no intersection
• If ray intersects bounding volume, recurse with the enclosed volumes and objects

• Maintain near and far bounds to prune further
• Overall effectiveness depends on model and constructed hierarchy
Culling

Figure 9.7. Different culling techniques. Culled geometry is dashed. (Illustration after Cohen-Or et al. [135].)
Grid

- Most simple data structure
- Regular subdivision
 - Directly addressable cells
 - Simple neighborhood finding in O(1)
- Problem:
 - Too few/many cells
 - Hierarchical grid
- Good for uniformly distributed problems
Bounding Volume Hierarchy (BVH)

• Most used structure in real-time graphics
• Most common bounding volumes (BVs):
 – Sphere
 – Boxes (AABB)
• BVs give information about maximum extend of an object
 – Encloses complete object
• Data structure is a k-ary tree
 – Leaves hold geometry
 – Internal nodes have at most k children
 – Internal nodes hold BVs that enclose all geometry in its subtree
How to create a BVH

- Find minimal box, then split along longest axis

Find minimal boxes

\(x \) is longest

Split along longest axis

Find minimal boxes

Called TOP-DOWN method

More complex for other BVs
Stopping Criteria for BVH

• We need to stop recursion when:
 – BV is empty
 – Only one primitive (e.g. Triangle, object) is inside Bounding Volume
 – \(<n\) primitives is inside BV
 – Recursion level \(l\) has been reached

• Similar criteria for other BSP trees
Octree (3D) Quadtree (2D)

- Split at half the length axis aligned
 - Always 4 children
- In 3D each square becomes a box with 8 children
Octree (3D) Quadtree (2D)

- Expensive to rebuild (all BSPs are)

- Easy to implement
 - No geometry analysis needed
 - Just test if something is in leaf

- Used to speed up
 - Culling, Raytracing, Picking
Octree (3D) Quadtree (2D)
Q: Space/Time Complexity of a Quadtree/Octree for n elements
Kd-tree

- Split along axis aligned planes/lines which results in minimum search time
Kd-tree

• Test one attribute at a time instead of all simultaneously as in the point quadtree

• Usually cycle through all the attributes

• Shape of the tree depends on the order in which the data is encountered
Kd-tree

- Each internal node holds a divider plane
- Leafs hold geometry
- Problem: splitting criteria is complicated
 - Surface area heuristic (SAH) is best
Kd-tree
Q: Space/Time Complexity of a Kd-tree for n elements
General BSP-Tree

- Same as kd-tree but without axis aligned splitting
 - Splitting criteria is even harder for general generation
 - Intersection calculations more expensive than kd-tree

- Usually used on a per triangle/quad splitting basis
 - Good for per triangle or quad collision detection
Selection of Bounding Volumes

• Effectiveness depends on:
 – Probability that ray hits bounding volume, but not enclosed objects (tight fit is better)
 – Cost of calculating intersections with bounding volume and enclosed objects

• Break-down into steps the calculations of bounding volumes

• Use heuristics
Data Structures Demos

• BSP Tree construction
 http://symbolcraft.com/graphics/bsp/index.html

• KD Tree construction
 http://donar.umiacs.umd.edu/quadtree/points/kdtree.html
Questions?