CS354 Computer Graphics
Introduction to OpenGL

Qixing Huang
February 14th 2018

Synthetic Camera Model

projector

AR T /ége plane
\ projection of p
. ‘ center of projection

/|

\

Pinhole Camera

/ (x,y,2)
. e Se e tEe e e a{% -

To find perspective projection of point at (X,y,z)

X,= -X/z/d y,= -y/z/d z=d

P

Objects and Scenes

Programmers want to render “objects”

Arranged relative to other objects (a scene) & then viewed

Graphics pipeline approach—used by OpenGL and

GPUs

Break objects into geometry batches

* Batches may be meshes or “patches”

Batches reduce to polygonal primitives

» Typically triangles, also lines, points, bitmaps, or images

Geometric primitives are specified by vertices

* So vertices are assembled into primitives

Primitives are rasterized into fragments

Fragments are shaded

Raster operations take shaded fragments and update the
framebuffer

Advantages

Separation of objects, viewer, light sources

Two-dimensional graphics is a special case of
three-dimensional graphics

Leads to simple software API
— Specify objects, lights, camera, attributes
— Let implementation determine image

Leads to fast hardware implementation

What is OpenGL?

* The OpenGL Graphics System
— Not just for 3D graphics; imaging too
— “GL” standard for “Graphics Library”

— “Open” means industry standard meant for broad
adoption with liberal licensing

e Standardized in 1992
— By Silicon Graphics
— And others: Compagq, DEC, Intel, IBM, Microsoft
— Originally meant for Unix and Windows workstations
* Now de facto graphics acceleration standard
— Now managed by the Khronos industry consortium
— Available everywhere, from supercomputers to cell phones

Student’s View of OpenGL

* You can learn OpenGL gradually
— Lots of its can be ignored for now
— The “classic” APl is particularly nice

* Plenty of documentation and sample code

 Makes concrete the abstract graphics pipeline
for rasterization

OpenGL APl Example

glShadeModel(GL SMOOTH); // smooth color interpolation
glEnable(GL DEPTH TEST); // enable hidden surface removal

glClear(GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT);

glBegin(GL TRIANGLES); // every 3 vertexes makes a triangle
glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
glVertex31(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

glColor4ub(0, 255, 0, 255): // RGBA=(0,1,0,100%)
olVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex31(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

Initial Logical Coordinate System

* Think of drawing into a [-1,+1]3 cube

(0.8, 0.8) (-0.8, 0.8)

origin at (0,0)

(0, -0.8)

Normalized Device Coordinates

* What does this simple triangle look like with the [-1,+1]3
cube’s coordinate system?

— We call this coordinate system “Normalize Device Coordinate” or NDC
space

i Wire frame cube shows
boundaries of NDC space

| simple triangle

From NDC views, you
can see triangle isn’ t
“flat” in the Z direction

Two vertices have Z of -0.2—third has Z of 0.3

GLUT APl Example

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
/| <<'insert code on prior slide here >>
glutSwapBuffers();

;

void main(int argc, char **argv) {
// request double-buffered color window with depth buffer
glutlnitDisplayMode(GLUT RGBA | GLUT DOUBLE | GLUT DEPTH);
glutlnit(&argc, argv);
glutCreateWindow(“simple triangle”);
glutDisplayFunc(display); // function to render window
glutMainLoop();

Simplified Graphics Pipeline

Application I
_____________ F-———-——-————— === == —-

Vertex batching & assembly I OpenGL API

3

| Clipping |

1 Really lots more steps
than this but these
are the non-trivial operations
l, in our simple triangle
example

NDC to window space

NDC = Normalized . .
:) Rasterization
Device Coordinates,

this is a [-1+1]° cube v
IFragment shading I

v

I Depth testing I<—>| Depth buffer I
v
I Color update —>| Framebufter I—-’ !

Application

Application
* What's the app do? o I
— Running on the CPU Vertex batching & assembly
s I
[J
Initializes app process Clippine
— Creates graphics resources such as 1|
— OpenGL context NDC to window space
— Windows l :
Rasterization
 Handles events |
— Input events, resize windows, etc. Fragmeni shading

— Crucial event for graphics: Depth testing |[«—+{ Depth buffer

Redisplay I

* Window needs to be drawn —so do it Color update || Framebuffer

| simple triangle

App Stuff

* GLUT is doing the heavy lifting
— Talking to Win32, Cocoa, or Xlib for you
— Other alternatives: SDL, etc.

#include <GL/glut.h> // includes necessary OpenGL headers

void display () {
// << 1insert code on prior slide here >>

glutSwapBuffers();

void maim{int argc, chag 2fargv) 4
// request double-buffered color window with depth buffer
glutlnitDisplayMode (GLUT RGBA | GLUT DOUBLE | GLUT DEPTH) ;
glutIinit (earge, dzgv):
glutCreateWindow (“simple triangle”);
glutbDisplayFune(display); // function to render window

glutMainLoop () ;
} display function is being registered as a " callback”

Rendering - the display Callback

glShadeMcdel (GL SMOOTH) ;
glEnable (GL DEPTH TEST) ;

// smooth color interpolation
// enable hidden surface removal

glClear (GL_COLOR BUFFER BIT|GL DEPTH BUFFER BIT);

glBegin (GL TRIANGLES); {

}

glColord4ub (255, 0, 0, 255);
glVertex3f (-0.8, 0.8,

glColord4ub (0, 255, 0, 255);

glvertex3f(0.8, 0.8, -0.2);

glColord4ub (0,
glvertex3f(O.
glEnd();

0, 255, 255);
0

0.3);

r _0-81 _0-2);

//
//

//
//

//
//

// every 3 vertexes makes a triangle

RGBA=(1,0,0,100%)
XYz=(-8/10,8/10,3/10)

RGBA=(0,1,0,1008%)
XYZ=(8/10,8/10,-2/10)

RGBA=(0,0,1,100%)
XYZ=(0,-8/10,-2/10)

Graphics
state
setting

Framebuffer
buffer
clearing

Triangle
rendering

simple triangle

Graphics State Setting

e Within the draw routine

glShadeModel (GL_SMOOTH) ; // smooth color interpolation
glEnable (GL_DEPTH TEST); // enable hidden surface removal

glClear (GL_COLOR_BUFFER_BIT|GL DEPTH BUFFER BIT) ;

glBegin (GL TRIANGLES); { // every 3 vertexes makes a triangle
glColordub (255, 0, 0, 255); // RGBA=(1,0,0,100%)
glvertex3f(-0.8, 0.8, 0.3); // XYz=(-8/10,8/10,3/10)

glColor4ub (0, 255, 0, 255); // RGBA=(0,1,0,100%)
glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

glColord4ub (0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)

b 9lEnd 07 oraphics context state is “stateful” (sticky) so technically

doesn’t need to be done every time display is called

State Updates

e ShadeModel(SMOOTH)
requests smooth color
interpolation

— changes fragment shading
state

— alternative is “flat shading”

 Enable(DEPTH_TEST) enables
depth buffer-based hidden
surface removal algorithm

e State updates happenin
command sequence order

* Infact, all OpenGL commands
are in a stream that must
complete in order

Application

!

Vertex batching & assembly

:
I Clipping

!

NDC to window space

¥

Rasterization I

!

’I Fragment shading

v

4" Depth testing

G

Depth buffer

v

I Color update

Framebufter

N
simple triangle

Clearing the buffers

e Within the draw routine

glShadeModel (GL_SMOOTH); // smooth color interpolation
glEnable (GL DEPTH TEST); // enable hidden surface removal

glClear (GL_COLOR BUFFER BIT|GL DEPTH BUFFER BIT) ;

glBegin (GL TRIANGLES) ; // every 3 vertexes makes a triangle
glColordub (255, 0, 0, 255); // RGBA=(1,0,0,100%)
glvertex3£(-0.8, 0.8, 0.3); // XYZ2=(-8/10,8/10,3/10)

glColor4ub (0, 255, 0, 255); // RGBA=(0,1,0,100%)
glvVertex3f(0.8, 0.8, -0.2); // XYz=(8/10,8/10,-2/10)

glColor4ub (0, 0, 255, 255); // RGBA=(0,0,1,100%)
glVertex3f(0.0, -0.8, -0.2); // XYzZ=(0,-8/10,-2/10)
glEnd () ;

Buffer Clearing

e New frame needs to reset Application
entire color buffer to Y
“background” or “clear” color hrtex batcmlig AUl

— Avoids having remnants of prior Clipping

frame persist Y
NDC to window space

* Depth buffer needs to be T
cleared to “farthest value” Rasterization
— More about depth buffering later ! _
_ Fragment shading
* Special operation in OpenGL !
— Hardware wants clears to run at Depth testing f«—> Depth buffer
memory-saturating speeds !
Color update p—>| Framebufter

— Still in-band with command
stream

Batching and Assembling Vertices

* glBegin and glEnd designate —
c el Application
a batch of primitives T
— Begin mode of GL_TRIANGLES Vertex batching & assembly
means every 3 vertexes | |
IClipping
|
NDC to window space
* \Various vertex attributes :
— Position attribute sent with Rasterization
glVertex®* commands Y
Fragment shading
— Also colors, texture T
coordinates, normals, etc. Depth testing I |Depth buffer

v

Color update f—"| Framebuffer

Assembling a Vertex

glVertex* command assembles a complete vertex

glColordf PR
N
’
glColor3f —IR |G ‘B ‘A — .
4

1Color4ub, etc.
¥ &t 1 [RIGIBTA]

glTexCoord2f ~~ /

| ISITIRIO]

|
glTexCoord3s —=S |T ‘R ‘Q > ,l >
glTexCoord4i, etc. — \ [N Nyl Nj J—o
\) [riangle

glNorman \ \\I X IY Z | W I/ o/ assembly
glNormal3s — Nx Ny ‘NZ |/' S o 7’
gINormal3b, etc. — 1)
assemble a vertex X |Y |Z |W |

with all its attributes / f \

glVertex2s glVertex3f glVertex4d

Vertex Attribute Commands

* OpenGL vertex attribute commands follow a regular pattern
— gl-prefix :: common to all OpenGL API calls

— Vertex, Normal, TexCoord, Color, SecondaryColor,
FogCoord, VertexAttrib, etc.

* Name the semantic meaning of the attribute

— 1, 2,3, 4 :: Number of components for the attribute

* For an attribute with more components than the number, sensible
defaults apply

* For example, 3 for Color means Red, Green, Blue & Alpha assumed
1.0
—f,i,s, b, d, ub, us, ui

* Type of components: float, integer, short, byte, double, unsigned
byte, unsigned short, unsigned integer

Example

* Consider glColor4ub and glVertex3fv

glColor4ub(red, green, blue, alpha);

” § e

Belongs to Meaning Number of
OpenGL of attribute = components

Nl |

glVertex3{v(const GLfloat v[3]);

NG

Vector arguments

@ | simple triangle lg‘ﬂg

Assemble a Triangle

e Within the draw routine

glBegin (GL TRIANGLES) ;
glColordub (255,90, 0, “sEhe- First
glVertex3f£(-0.8, 0.8, 0.3); vertex

glColor4ub (0, 255, 0, 255); o >_ First

—

glVertex3f(0.8, 0.8, -0.2); triangle
vertex

glColordub (0, 0, 255, 255); Third

glvertex3f(0.0, -0.8, -0.2); vertex

glEnd(); /

glBegin Primitive Batch Types

Va W

® Va v3\ Ve Vs Vo Vs
Vse oV, VS/ Va Vs’) V2 VS@VZ
® -
Vo Vi Vo V4 Vo V3 Vo Vi
GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP
V4 V3 V4 V3 V3 V1
V2 V5
(D) SR
Ve .
v v, V2
3 4 Vv
Vo V; Ve V, 0
GL_POLYGON GL_TRIANGLES GL_TRIANGLE_STRIP
VS V4
Vs Vg Vs v, Vs "
@ V2 3
VZ V6 V1
v 7 @ " v
A V.
Vv \' 2
VB V3 2} 2

GL_TRIANGLE_FAN GL_QUADS GL_QUAD_STRIP

Assembly State Machines

* Fixed-function hardware performs primitive
assembly

— Based on glBegin’s mode
e State machine for GL_TRIANGLES

' Vertex Verte Vertex /
Begin(TRIANGLES) one two Emit Triangle
vertex vertexes

End

GL_TRIANGLE_STRIP

End
Vertex /

two
Emit Reverse \ Vertexes
Emit Triangle

two
vertexes

GL_POINTS and GL_LINES

Vertex /
Emit Point

Vertex /
Emit Line

Actual hardware state machine handles all OpenGL begin
modes, so rather complex

Triangle Assembly

Now we have a triangle
assembled

Later, we’ll generalize how the
vertex positions get
transformed

— And other attributes might
be processed too

For now, just assume the XYZ
position passed to glVertex3f
position is in NDC space

Application

!

Vertex batching & assembly

3

Clipping
!

NDC to window space

]

Rasterization

y

Fragment shading

'

Depth testing [«

Depth buffer

y

Framebuffer

Color update f—>

Our Newly Assembled Triangle

* Think of drawing into a[-1,+1]3 cube

(-0.8,0.8,0.3) (0.8,0.8,-0.2)

Origin at (0,0,0)

(0,-0.8,-0.2)

Clipping

 What if any portion of our triangle extended beyond the NDC
range of the [-1,+1]3 cube?
— Only regions of the triangle [-1,+1]3 cube should be rasterized!

* No clipping for our simple triangle
— This situation is known as “trivial accept”
— Because all 3 vertices in the [-1,+1]3 cube

Triangles are
convex, So entire
triangle must also
be in the cube if the
vertexes are

Triangle Clipping

Application I
* Triangles can straddle the |
NDC cube Vertex batching & assembly
L !
— Happens with lines too IChppmg
* In this case, we must “clip” y
the triangle to the NDC cube NDC to WiildOW space
— This is an involved process Rastoria
asterization I
but one that must be |
done I Fragment shading
v
I Depth testing I<—>| Depth buffer I
v

I Color update —>| Framebuffer I

Consider a Different Triangle

* Move left vertex so it’'s X =-1.8
— Result is a clipped triangle

(-0.8, 0.8, -0.23

(-1.8, 0.8, 0.
$

origin at (0,0,0)

0,-0.8,-0.2)
(0,-0.8, -0.2)

Clipped Triangle Visualized

Clipped and Rasterized Normally Visualization of NDC space

Notice triangle is “poking out” of the cube;
this is the reason that should be clipped

New triangles out

But how do we find these “new” vertices?
The edge clipping the triangle is the line at X = -1
so we know X = -1 at these points—but what about Y?

Linear Interpolation

(-1,0.8,0.146153)

0.8-(-1.8)=2.6
\ (-0.8. 0.8,-0.2)

(-1.8, 0.8,0.3)

121 0,0,0
-1-(-1.8)=0.8 origin at (0,0,0)
Weights:
1.8/2.6
0.8/2.6, sum to 1

(0,-0.8,-0.2) X=-1
Straightforward because Y =(1.8/2.6)x0.8 +(0.8/2.6)x0.8

=0.8
Z = (1.8/2.6)x0.3 + (0.8/2.6)x-0.2
=0.1461538

all the edges are orthogonal

Linear Interpolation

(-0.8, 0.8,-0.2)

(-1.8, 0.8,0.3)

origin at (0,0,0)
(-1,0.0888,0.0777)
v
1-(-1.8)=028
X=-1 CELB=LE 0 08,02 |
Y = (1/1.8)%0.8 + (0.8/1.8)x-0.8 rieiehis

1/1.8

=(.08888...
0.8/1.8, sumto 1

Z = (1/1.8)x0.3 + (0.8/1.8)x-0.2
=0.07777...

Clipping Complications

* Four possibilities
— Face doesn’t actually result in any clipping of a triangle
* Triangle is unaffected by this plane then
— Clipping eliminates a triangle completely

e All 3 vertices on “wrong” side of the face’s plane
— Triangle “tip” clipped away
* Leaving two triangles

— Triangle “base” is clipped away

e Leaving a single triangle
* Strategy: implement recursive clipping process

— “Two triangle” case means resulting two triangles must be clipped by
all remaining planes

Attribute Interpolation

* When splitting triangles for clipping, must also
interpolate new attributes

— For example, color/texture coordinates

* Back to our example
— BLUEx0.8/1.8 + REDx1/1.8
* (0,0,1,1)x0.8/1.8 + (1,0,0,1)x1/1.8
e (0.444,0,.555,1) or MAGENTA
Weights:

1/1.8
0.8/1.8, sumto 1

What to do about this?

* Several possibilities
— Require applications to never send primitives that
require clipping
* makes clipping their problem

— Rasterize into larger space than normal and
discard pixels outsize the NDC cube
* Increases useless rasterizer work

— Break clipped triangles into smaller triangles that
tessellate the clipped region...

Triangle clipped by Two Planes

Recursive process can make 4 triangles
And it gets worse with more non-trivial clipping

NDC to Window Space

e NDCis “normalized” to the Appﬁi:ation|
_ 3
[1'+1] cube Vertex batching & assembly
— Nice for clipping 3
, IClipping
— But doesn’t yet map to T
pixels on the screen NDC to window space
y
 Next: a transform from —
NDC space to window !
space I Fragmeni shading
I Depth testing <—>| Depth buffer I
¥
I Color update —>| Framebufter

Viewport and Depth Range

* OpenGL has 2 commands to configure the state to map NDC
space to window space
— glViewport(GLint vx, GLint vy, GLsizei w, GLsizei h);

* Typically programmed to the window’s width and height for w & h
and zero for both vx & vy

* Example: glViewport(0, 0, window_width, window_height);
— glDepthRange(GLclampd n, GLclampd f);

* n for near depth value, f for far depth value

* Normally set to glDepthRange(0,1)

* Which is an OpenGL context’s initial depth range state

 The mapping from NDC space to window space depends on
vx, vy, w, h, n, and d

OpenGL Data Type Naming

 The OpenGL specification allow an implementation to specify how
language data types map to OpenGL API data types

— GLfloat is usually typedef’ed to float but this isn’t necessarily true
* Butis true in practice

— GlLbyte is byte-sized so expected it to be a char
— GLubyte, GLushort, and GLuint are unsigned versions of GLbyte,
— GLshort, and GLint

e Certain names clue you into their parameter usage

— GLsizei is an integer parameter that is not allowed to be negative
* An GL_INVALID_VALUE is generated if a GLsizei parameter is ever negative

— GlLclampd and GLclampf are the same as GLfloat and GLdouble, but
indicate the parameter will be clamped automatically to the [0,1]
range

* Notice
— glViewport uses GLsizei for width and height
— glDepthRange uses GLclampd for near and far

OpenGL Errors

* OpenGL reports asynchronously from your commands

— Effectively, you must explicitly call glGetError to find if any prior
command generated an error or was otherwise used incorrectly

— glGetError returns GL_NO_ERROR if there is no error
e Otherwise an error such as GL_INVALID_VALUE is returned
* Rationale

— OpenGL commands are meant to be executed in a pipeline so the
error might not be identified until after the command’s function has

returned
— Also forcing applications to check return codes of functions is slow
e So if you suspect errors, you have to poll for them

— Learn to do this while you are debugging your code
— If something fails to happen, suspect there’s an OpenGL errors

Mapping NDC to Window Space

* Assume (x,y,z) is the NDC coordinate that’s passed to
glVertex3f in our simple_triangle example

* Then window-space (w,,w,,w,) location is
— wx = (W/2)xx + vx + w/2
— wy = (h/2)xy + vy + h/2 X means scalar
— wz = [(f-n)/2]xz + (n+f)/2 multiplication here

Where is glViewport set?

 The simple_triangle program never calls glViewport

e Alternatively, you can use glReshapeFunc to register a callback

— Then calling glViewport or otherwise tracking the window height
becomes your application’s responsibility

— Example reshape callback:
— void reshape(int w, int h) {
glViewport(0, 0, w, h);

}

— Example registering a reshape callback: glReshapeFunc(reshape);

FYIl: OpenGL maintains a lower-left window-space origin
— Whereas most 2D graphics APIs use upper-left

What about glDepthRange?

e Simple applications don’t normally need to call
glDepthRange

— Notice the simple_triangle program never calls
glDepthRange

e Rationale
— The initial depth range of [0,1] is fine for most application

— It says the entire available depth buffer range should be
used

* When the depth range is [0,1] the equation for
window-space z simplifies to wz = Jaxz + %4

Triangle Vertices in Window Space

* Assume the window is 500x500 pixels
— So glViewport(0,0,500,500) has been called

(-0.8, 0.8, 0.3) (-0.8, 0.8,-0.2)

origin at (0,0,0)

(0, -0.8, -0.2)

Apply the Transforms

* First vertex :: (-0.8, 0.8, 0.3)
— wx = (w/2)xx + vx + w/2 = 250%(-0.8) + 250 = 50
— wy = (h/2)y + vy + h/2 = 250%(0.8) + 250 = 450
— wz = [(f-n)/2]xz + (n+f)/2 = 0.65

 Second vertex :: (0.8, 0.8, -0.2)
— wx = (w/2)xx + vx + w/2 = 250%(-0.8) + 250 = 50
— wy = (h/2)y + vy + h/2 = 250%(0.8) + 250 = 450
— wz = [(f-n)/2]xz + (n+f)/2 = 0.4

 Third vertex :: (0, -0.8, -0.2)
— wx = (w/2)xx + vx + w/2 = 250x0 + 250 = 250
— wy = (h/2)y + vy + h/2 = 250%(-0.8) + 250 = 50
— wz = [(f-n)/2]xz + (n+f)/2 = 0.4

Next Lecture

Rasterize the clipped triangle

— But our triangle’s vertexes are in window space so
we are ready

nterpolate color values over the triangle
Depth test the triangle

Update pixel locations
Swap buffers

Questions?

