# CS376 Computer Vision Lecture 13: Invariant Descriptors





Qixing Huang March 6<sup>th</sup> 2019







#### Recap

• Harris corner detector

• Scale-invariant feature detector

Recall: Harris corner detector  

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- Find points whose surrounding window gave large corner response (*f*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

#### Recall: Harris Detector: Steps



#### Scale-space blob detector: Example



Image credit: Lana Lazebnik

# Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding  $\mathbf{x}_1 =$  each interest point.

3) Matching: Determine correspondence between descriptors in two views

$$\mathbf{x}_{2}^{(1)}, \mathbf{K}, \mathbf{x}_{d}^{(1)}$$

# Geometric transformations







e.g. scale, translation, rotation

## Photometric transformations



Figure from T. Tuytelaars ECCV 2006 tutorial

#### Raw patches as local descriptors



The simplest way to describe the neighborhood around an interest point is to write down the list of intensities to form a feature vector.

But this is very sensitive to even small shifts, rotations.

Figure: Andrew Zisserman

#### Scale Invariant Feature Transform (SIFT) descriptor [Lowe 2004]

• Use histograms to bin pixels within sub-patches according to their orientation.



# Idea of SIFT

• Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters



## Scale Invariant Feature Transform (SIFT) descriptor [Lowe 2004]



Interest points and their scales and orientations (random subset of 50)

SIFT descriptors

http://www.vlfeat.org/overview/sift.html

#### Making descriptor rotation invariant



- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

# SIFT descriptor [Lowe 2004]

- Extraordinarily robust matching technique
  - Can handle changes in viewpoint
    - Up to about 60 degree out of plane rotation
  - Can handle significant changes in illumination
    - Sometimes even day vs. night (below)
  - Fast and efficient—can run in real time
  - Lots of code available, e.g. http://www.vlfeat.org/overview/sift.html





# SIFT properties

- Invariant to
  - Scale
  - Rotation
- Partially invariant to
  - Illumination changes
  - Camera viewpoint
  - Occlusion, clutter

## Example



NASA Mars Rover images

#### Example



NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

# Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views



# Matching local features





# Matching local features



Image 1

Image 2

To generate **candidate matches**, find patches that have the most similar appearance (e.g., lowest SSD) Simplest approach: compare them all, take the closest (c

Simplest approach: compare them all, take the closest (or closest k, or within a thresholded distance)

# Ambiguous matches



Image 1

Image 2

At what SSD value do we have a good match?

To add robustness to matching, consider ratio :

dist to best match / dist to second best match

If low, first match looks good.

If high, could be ambiguous match.

# Matching SIFT Descriptors

• Nearest neighbor (Euclidean distance)



## Scale Invariant Feature Transform (SIFT) descriptor [Lowe 2004]



Interest points and their scales and orientations (random subset of 50)

SIFT descriptors

http://www.vlfeat.org/overview/sift.html

# SIFT (preliminary) matches



img2



img1

img2

http://www.vlfeat.org/overview/sift.html

# Value of local (invariant) features

- Complexity reduction via selection of distinctive points
- Describe images, objects, parts without requiring segmentation
  - Local character means robustness to clutter, occlusion
- Robustness: similar descriptors in spite of noise, blur, etc.

# Applications of local invariant features

- Wide baseline stereo
- Motion tracking
- Panoramas
- Mobile robot navigation
- 3D reconstruction
- Recognition

#### Automatic mosaicing



#### Matthew Brown http://matthewalunbrown.com/autostitch/autostitch.html

#### Wide baseline stereo



[Image from T. Tuytelaars ECCV 2006 tutorial]

#### Photo tourism [Snavalv at al ]



Slide credit: Noah Snavely

#### Recognition of specific objects, scenes





Scale



#### Viewpoint





Lighting





Occlusion

## **Google Goggles**



# Summary

- Interest point detection
  - Harris corner detector
  - Laplacian of Gaussian, automatic scale selection
- Invariant descriptors
  - Rotation according to dominant gradient direction
  - Histograms for robustness to small shifts and translations (SIFT descriptor)

# Coming up

- Additional questions we need to address to achieve these applications:
- Fitting a parametric transformation given putative matches
- Dealing with outlier correspondences
- Exploiting geometry to restrict locations of possible matches
- Triangulation, reconstruction
- Efficiency when indexing so many keypoints