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Last Lecture

 Hough transform for model fitting (e.g., line)

* Pros:

— Detecting multiple lines whose number is not fixed
— Input may contain outliers

* Cons:
— May be affected by noisy edge points



This lecture — two other model fitting
techniques

* RANSAC

* Robust fitting



Counting inliers




Counting inliers

Inliers: 4




Counting inliers

Inliers> 20



How de we find the best line?

* Unlike least-squares, no simple closed-form
solution — we will get back to this, e.g., using
robust norms

* Hypothesize-and-test

— Try out many lines, keep the best one
— Which lines?



RANSAC

e General version:

— Randomly choose s samples

* Typically s= minimum sample size that lets you fit a
model

— Fit a model (e.g., line) to those samples

— Count the number of inliers that approximately fit
the model

— Repeat N times

— Choose the model that has the largest set of
inliers



Analysis of RANSAC

however, can be determined as a function of the desired probability of success p using a theoretical result. Let p be the desired probability that the RANSAC
algorithm provides a useful result after running. RANSAC returns a successful result if in some iteration it selects only inliers from the input data set when it
chooses the 7 points from which the model parameters are estimated. Let w be the probability of choosing an inlier each time a single point is selected, that is,

w = number of inliers in data / number of points in data

A common case is that w is not well known beforehand, but some rough value can be given. Assuming that the » points needed for estimating a model are
selected independently, w" is the probability that all n points are inliers and 1 — w" is the probability that at least one of the 7 points is an outlier, a case which
implies that a bad model will be estimated from this point set. That probability to the power of £ is the probability that the algorithm never selects a set of » points
which all are inliers and this must be the same as 1 — p. Consequently,

1-p=(1-w")
which, after taking the logarithm of both sides, leads to
_ log(1-p)
log(1 — w™)
This result assumes that the » data points are selected independently, that is, a point which has been selected once is replaced and can be selected again in the
same iteration. This is often not a reasonable approach and the derived value for k should be taken as an upper limit in the case that the points are selected

without replacement. For example, in the case of finding a line which fits the data set illustrated in the above figure, the RANSAC algorithm typically chooses two
points in each iteration and computes maybe_model as the line between the points and it is then critical that the two points are distinct.

To gain additional confidence, the standard deviation or multiples thereof can be added to k. The standard deviation of & is defined as

JI=o

wn

SD(k) =

https://en.wikipedia.org/wiki/Random_sample_consensus



Basic RANSAC

Comments
- li‘;f’(i—l_;% with p = 0.99
w

N 90 80 70 60 50
2 3 5 7 11 17
3|4 | 7 |11 ]19 |35
4 5 9 17 34 72

1 5 6 12 26 57 146
6 7 16 37 97 | 293
7 | 8 |20 | 54 |163 |588
8 9 26 78 | 272 (1177

* Typically we do not know
the ratio of outliers in our
data set, hence we do not
know the probability w or
the number N

* Instead of operating with a
larger than necessary N we
can modify RANAC to
adaptively estimate N as we
perform the iterations



How to estimate the Inlier ratio?



Adaptive RANSAC

* Objective

— To robustly fit a model y = f(x,a) to a data set S containing
outliers

e Algorithm
— Let N = infty, S,,= null and #iterations =0
— While N > #iterations repeat 3-5
— Estimate parameters a,, from a random n-tuple from S

— Determine inlier set S, i.e., data points within a distance t
of the model y = f(x; a,,)

— If |Sie| > ISy, s€t Sy =Sity @ = 0y, W =[Sy 1/1S]| and N =
log(1-p)/log(1-w") with p = 0.99. Increase #iterations by 1



Example
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Fit a circle (x — x)? + (y — yo)? = 12
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Circle + Gaussian noise
Random points
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Least square approach

Separate observables from parameters:
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Comparison
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Summary

* RANSAC

— A robust iterative method for estimating the parameters of
a mathematical model from a set of observed data
containing outliers

— Separates the observed data into “inliers”and “outliers”

— Can be applied in an iterative manner to obtain multiple
models

— Not perfect



Application of RANSAC

Recognising Panoramas [Brown and Lowe’ 03]



Application of RANSAC

Camera calibration



Application of RANSAC

Structure-from-motion [Snavely et al. 06]



Reweighted Least Squares



1D case

n

* Mean min Y (z — ;)
=1
* Median min PR
1=1
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Median Mean



General formulation

LP norm linear regression [ edit]
To find the parameters B = (81, ...,8x)" which minimize the LP norm for the linear regression problem,
n
argmin||y — X8|, = argmin ) _ [y; — X, 8[",
B B i=1
the IRLS algorithm at step t + 1 involves solving the weighted linear least squares problem:*!

B — argmin 3wy, — X, 87 = (XTWO X) 1 XTW Wy,

=1

where WA is the diagonal matrix of weights, usually with all elements set initially to:
wl(.o) =1
and updated after each iteration to:

wﬁt) = | — x; 8% ’p—z-

https://en.wikipedia.org/wiki/lteratively_reweighted_least_squares



Optimization

* For LP-norm where p>=1, the objective
function is convex and we can apply convex
optimization

* For other robust norms, a popular approach is
reweighted least squares



When the fraction of inliers > 50%

where WA is the diagonal matrix of weights, usually with all elements set initially to:
w® =1
(2
and updated after each iteration to:
t t) 1 p—2
wﬁ) = |1 _Xiﬁ()‘ ;

In the case p = 1, this corresponds to least absolute deviation regression (in this case, the problem would be better approached
by use of linear programming methods,” so the result would be exact) and the formula is:

1

W = — .

lyi — XiB"|
To avoid dividing by zero, regularization must be done, so in practice the formula is:
1
w) = :
' ()

max{5, vi — Xip |}

where & is some small value, like 0.0001."”! Note the use of § in the weighting function is equivalent to the Huber loss function in
robust estimation.

https://en.wikipedia.org/wiki/lteratively_reweighted_least_squares






