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Course Setup

 Welcome to the course on Numerical Optimization,
with a focus on its applications to Al and Graphics

* Basic administrative details:
— Instructor: Qixing Huang
— Teaching assistant: Xiangru Huang
— Course website:

http://www.cs.utexas.edu/~huangqx/CS395T Numerical Op
timization.html

— We will use canvas for announcements


http://www.cs.utexas.edu/~huangqx/CS395T_Numerical_Optimization.html

Course Setup

* Prerequisites: no formal ones, but we assume
some knowledge of

— Linear algebra, Probability, Calculus, Geometry
— Programming (Matlab, Python...)

— Core problems in Al or ML or Graphics
* The course material is application driven

— Formal mathematical thinking

* If you just like tuning neural networks, this class will be hard
for you



Course Setup

e Evaluation
— 7 homeworks (70%)
— 1 final project (30%)

Homework: A mixture of theory and coding

Project: solving a real problem in Al/ML/Graphics with
modern optimization techniques. Groups of 2 or 3.

Most important: work hard and have fun!



What is mathematical optimization?

e Optimization models the goal of solving
a problem in the “optimal way”

 Examples
— Running a business: to maximize profit, minimize risk

— Design: maximize the strength, within the design constraints

— Planning: select a route from Austin and Yellowstone to minimize the fuel
consumption

* Formal definition: to minimize (or maximize) a real function by
deciding the values of free variables from within a feasible set.



Optimization problems are ubiquitous

We will see time and time again:
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Translate 7 W Z== into P: min f(x)
M xeD
Real problem Optimization problem

Examples in Vision/Robotics/NLP Example of the contrary?
/ML/Graphics/

This course: how to formulate P, how to solve P,
and what are the guarantees



Why bother how to solve P and what are
the guarantees

 There are plenty of optimization softwares

Solvers: CPLEX, Mosek, Gurobi,
ECOS, Clp, Knitro, Ipopt,...
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Modeling languages: YALMIP,
CVX, GAMS, AMPL, JuMP,...

Almost all algorithms are data-dependent and can perform
better or worse on different problems and data sets

In many cases, studying P leads to new algorithms, and this is
where research papers come from



Categories of optimization models

 Linear vs. Nonlinear
* Convex vs. Nonconvex
e Continuous vs. Discrete

e Deterministic vs. Stochastic



Some Examples



Shape Deformation




Shape Deformation




Goals

User constraints + global change + local detail preservation




Typical formulation

 Solve for local transformation and deformed surface
simultaneously

V' = argmin (D) = @)+ [[v) — w1
1=1

= \ e \

Laplacian Laplacian User constraints
coordinates of the coordinates of the
deformed mesh original mesh

[Sorkine et al. 04]




Typical formulation

 Solve for local transformation and deformed surface
simultaneously

V! = arg‘;/r{lin (Z ||L(v;) — T@(&‘)‘P -+ Z H’U; — uj||2)
1=1

= \ e \

Laplacian Laplacian User constraints
coordinates of the coordinates of the
deformed mesh original mesh

Non-convex optimization, and people have tried:

Newton Alternating Gradient-based
method minimization method

Open question: when can we find the global optimal solution?



Scan smoothing

[Diebel et al. 06]

Raw data




Scan smoothing [Diebel et al. 06]

X = argmin Z(z,; — )T Qi (z; —xi) | + Z fsqrt(ne —nj)

Data term Prior term

Ohur sgaure-root

Syathetic data
with heave noise Monographs on Statistics and Applied Probability 143 potential

Statistical Learning
with Sparsity

The Lasso and
Generalizations

Trevor Hastie
Robert Tibshirani
Martin Wainwright

atistics (Lasso)



Scan Smoothing [Diebel et al. 06]

X = argmin |:Z(zi — )T Q; (z; — xi)i| + |:Z fsqrt(ne — nj ):|
’ i / kg /

Data term Prior term
Synthetic data Gaussian Gaussian with Our sgaure-root
with heave noise potential heavy tails potential

We will also study optimization algorithms:
ADMM, Coordinate descent....



Computer Vision Applications

building




MRF Inference

N
arg min E U,(w,) + E P W Wi )
Wwi...N

n=1 (m.n)eC

Unary terms Pairwise terms
(compatability of data with label w) (compatability of neighboring labels)

The literature reflects almost all advances in optimization
during the past decade:

Graphcut Coordinate descent
Linear programming relaxation Dual coordinate descent
Quadratic programming relaxation Stochastic gradient descent

Semidefintie programming relaxation Block-coordinate descent



Deep neural networks versus
Deep residual networks



Deep Neural Networks

* Linear model for simplicity

Wq;r,rlligrfligl E(may)wp Hy — (H Wz)CBHQ



Deep neural network training

[He et al. 16]
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Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet 1s presented in Fig. 4.



Deep Residual Networks

* Linear model for simplicity

[ [
min_ By 1y — ([T +Wi))2|? + 2 ([Wil%

W;,1<:<] : :
1=1 1=1



Deep Residual Networks

[He et al. 16]
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.



Other topics to be covered

* |terative closest point method for geometry
registration

* Policy gradient descent
* Simultaneous localization and mapping

* Compressive sensing
* Low-rank matrix recovery
* Phase retrieval



Trends in optimization

Non-linear optimization

ll

Convex optimization

i

Non-convex optimization



Trends in optimization

Second-order methods

i

First-order methods

Il

Distributed optimization



