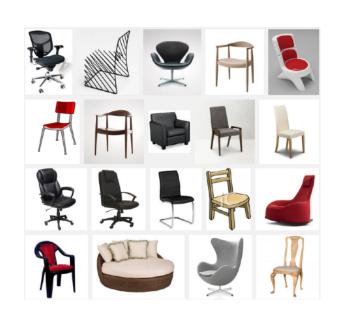
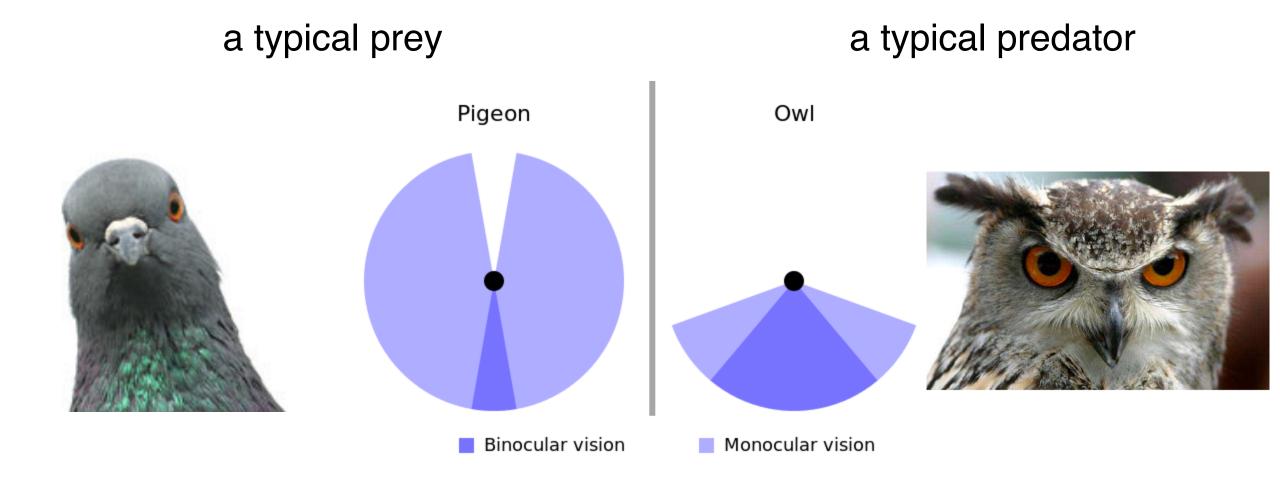
Seeing the unseen

Data-driven 3D Understanding from Single Images

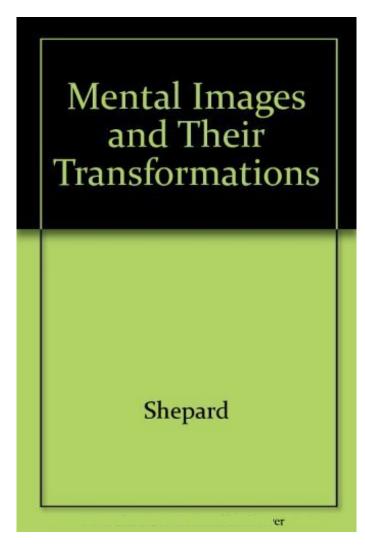


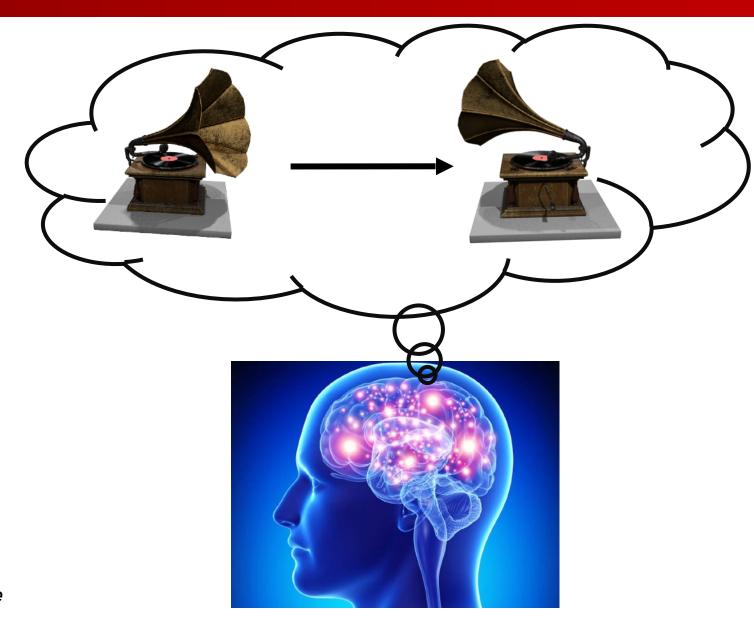
3D perception from a single image

Monocular vision



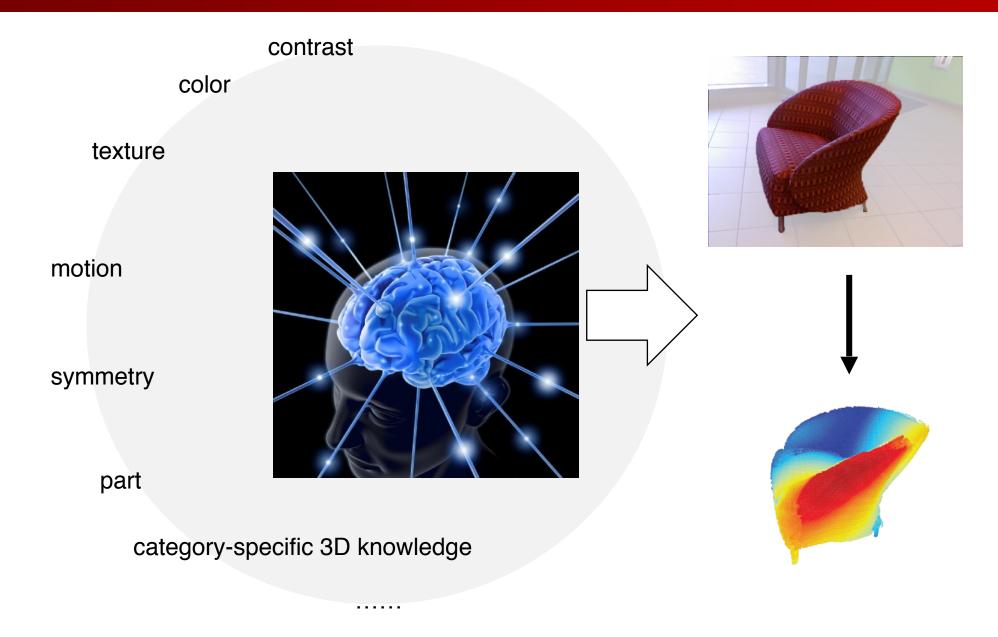
A psychological evidence – mental rotation





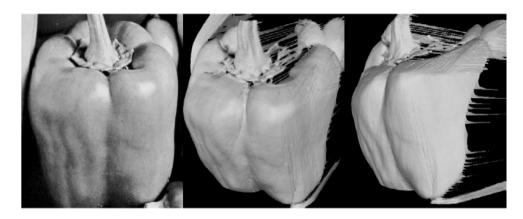
by Roger N. Shepard, National Science Medal Laurate and Lynn Cooper, Professor at Columbia University

Visual cues are complicated

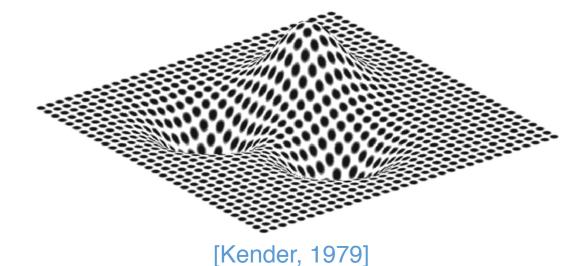


Status review of monocular vision algorithms

Shape from X (texture, shading, ...)

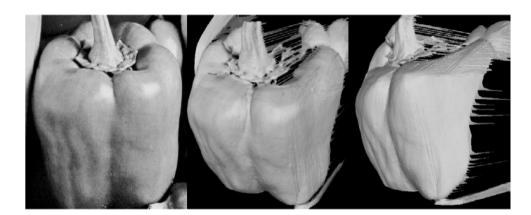


[Horn, 1989]

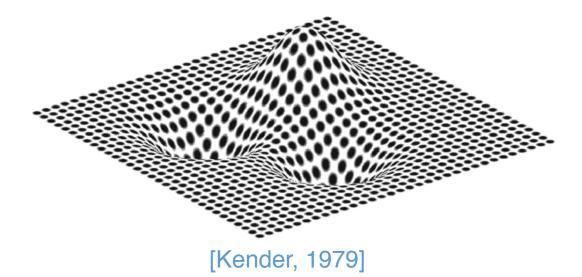


Status review of monocular vision algorithms

Shape from X (texture, shading, ...)



[Horn, 1989]



Learning-based (from small data)

Hoiem et al, ICCV'05 Saxena et al, NIPS'05

- large planes

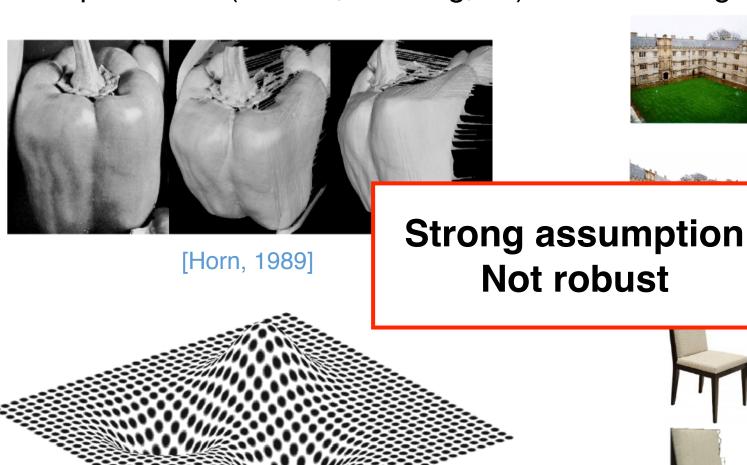
- fine structure
- topological variation
- ..

Status review of monocular vision algorithms

Shape from X (texture, shading, ...)

[Kender, 1979]

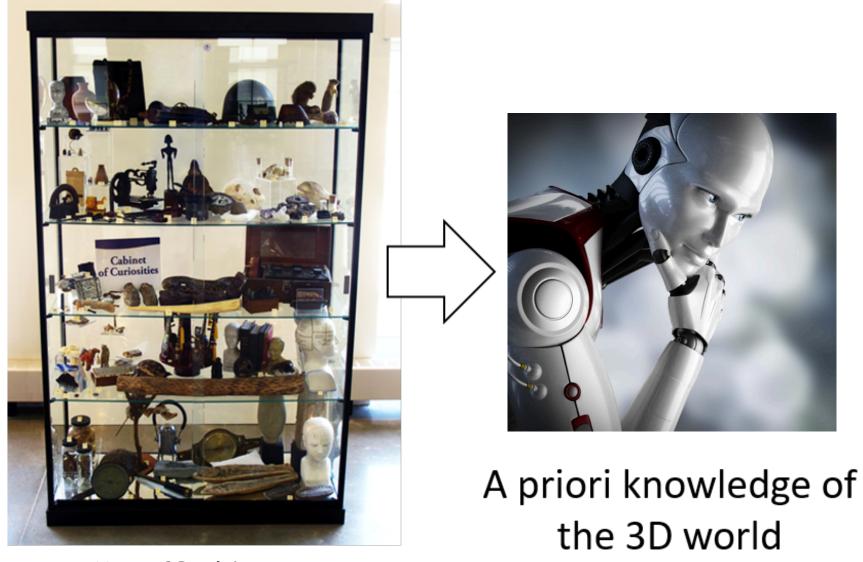
Learning-based (from small data)



- large planes

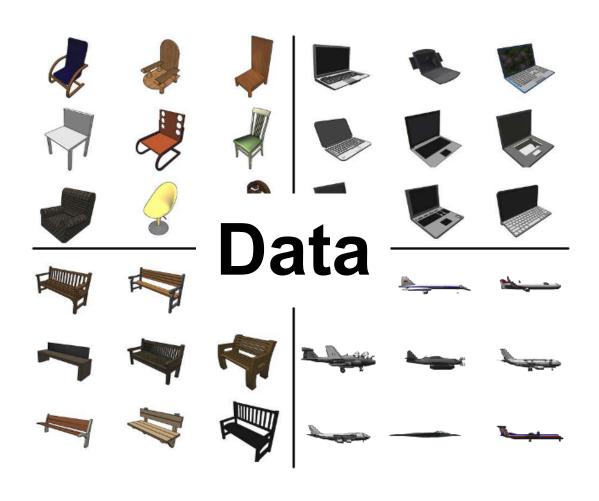
- fine structure
- topological variation
- ...

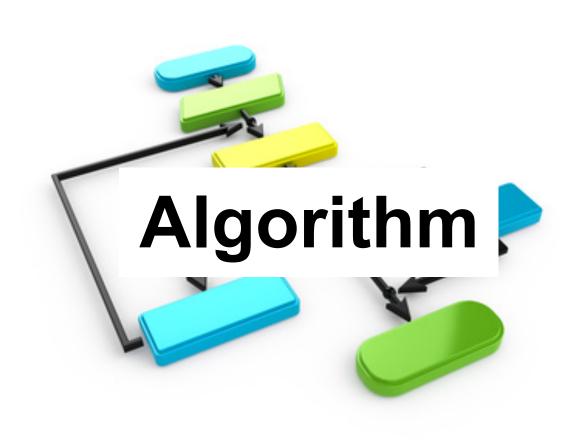
Data-driven 2D-3D lifting



Many 3D objects

Two pillars for learning-based 3D understanding





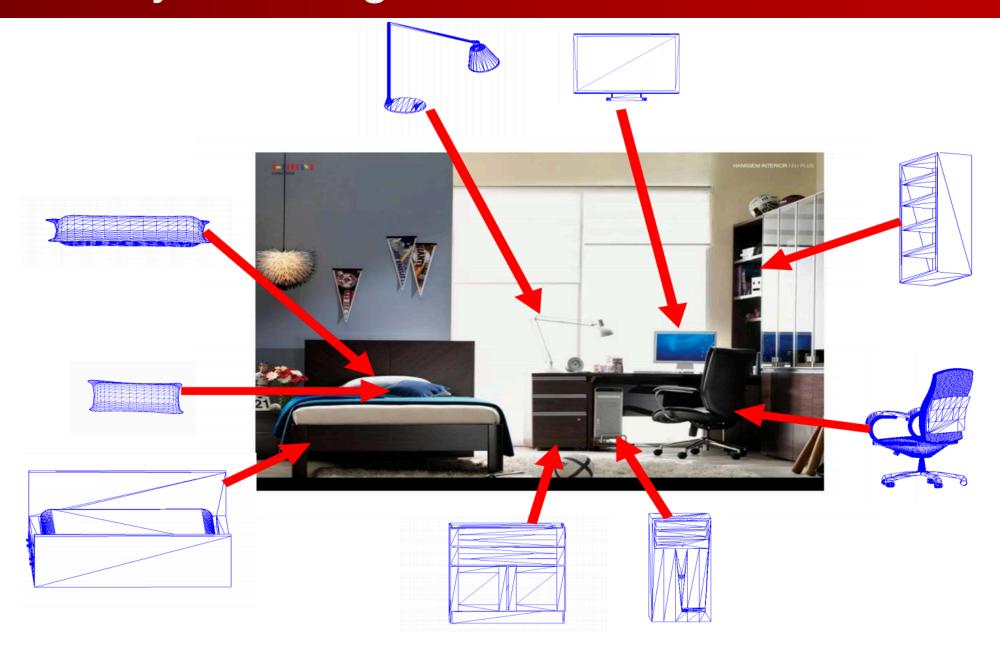
Outline

Motivation

Data

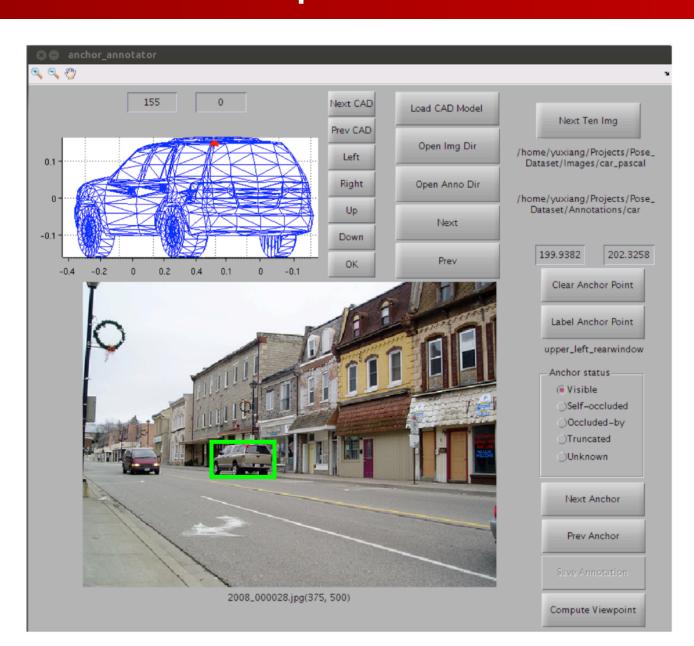
- Algorithms for 2D-3D lifting
- Algorithm for 3D representation learning

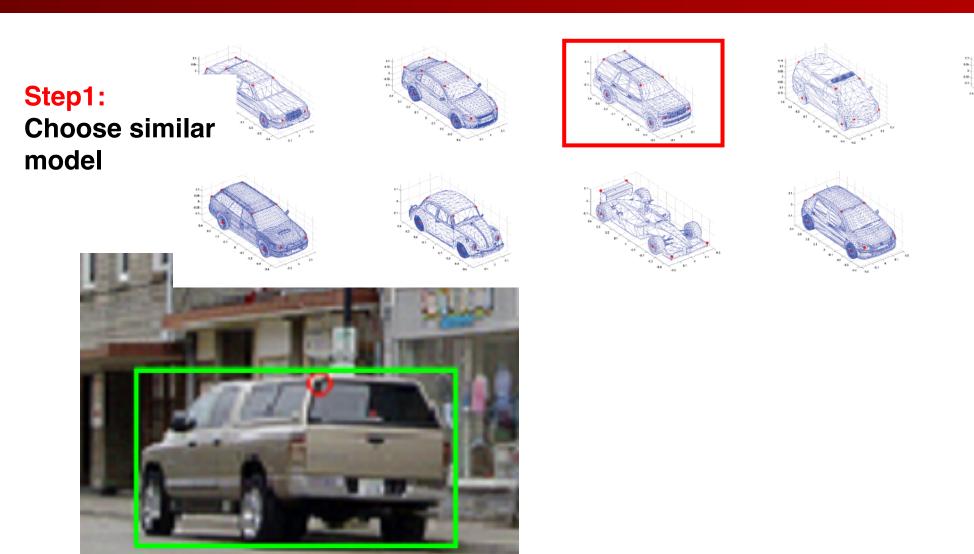
Need many 2D images with 3D labels

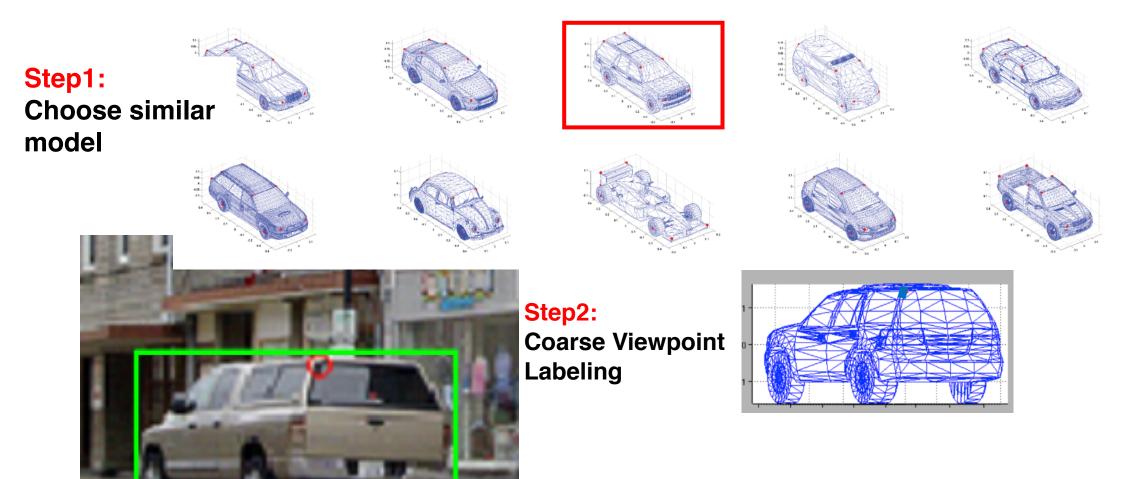


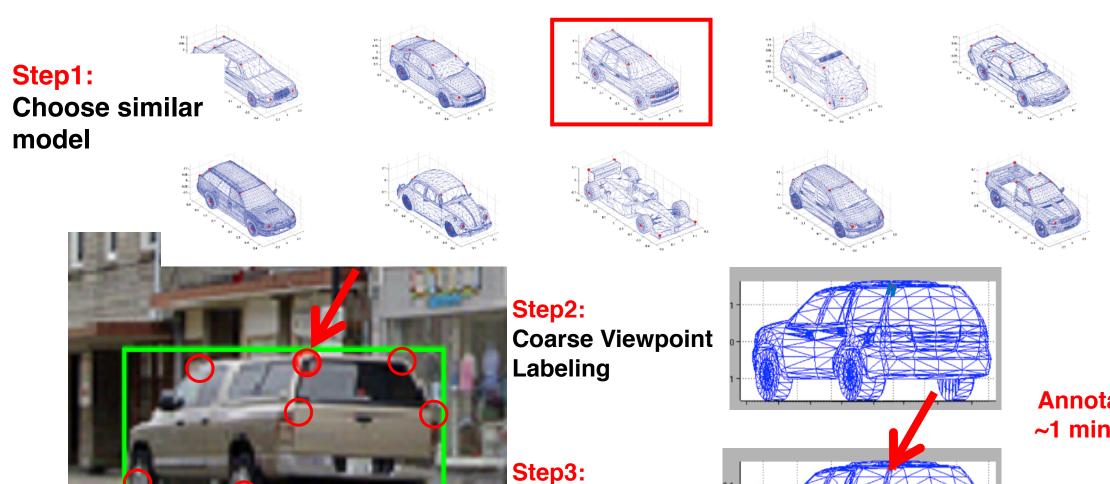
Example: viewpoint estimation

PASCAL3D+ dataset [Xiang et al.]









Label keypoints

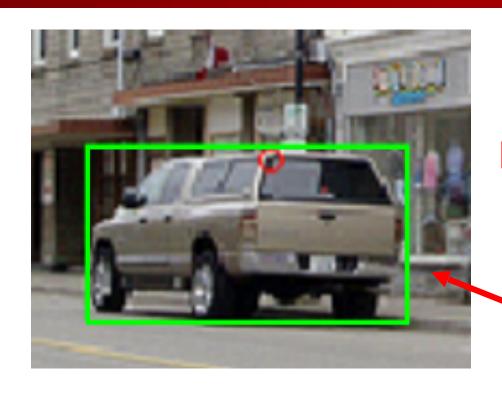
For alignment

Annotation takes ~1 min per object

High-cost Label Acquisitigm at Children High-capacity Model

Needs millions of images to train

How to get MORE images with ACCURATE labels?

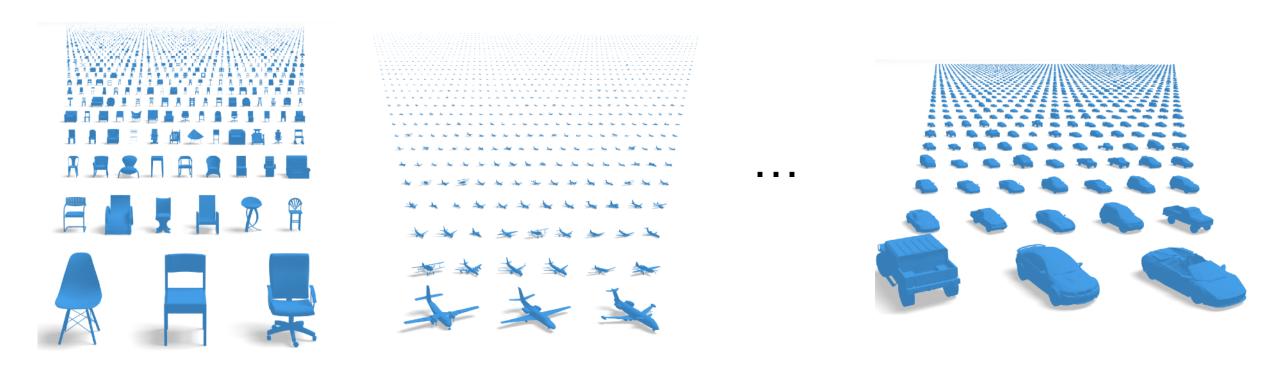


Manual labeling by annotaators

Auto labeling through rendering

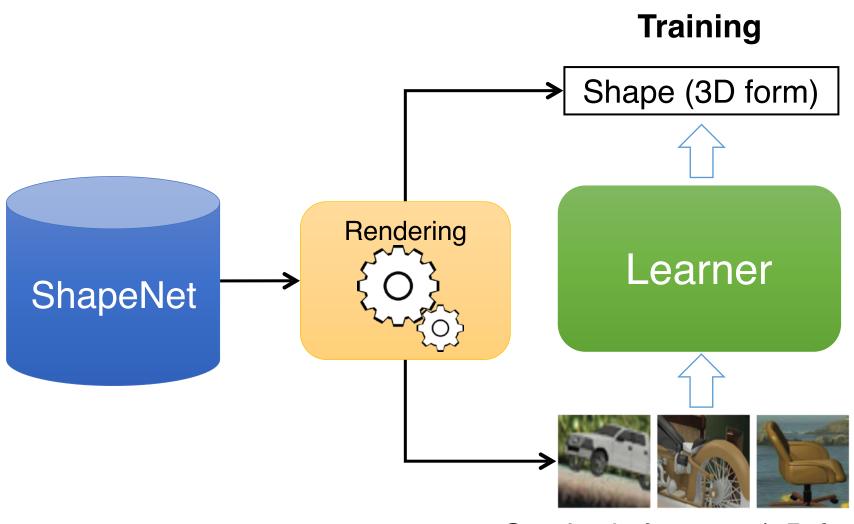
Good News: ShapeNet

http://shapenet.cs.stanford.edu



millions of shapes with **geometric** and **physical** annotations (ongoing efforts)

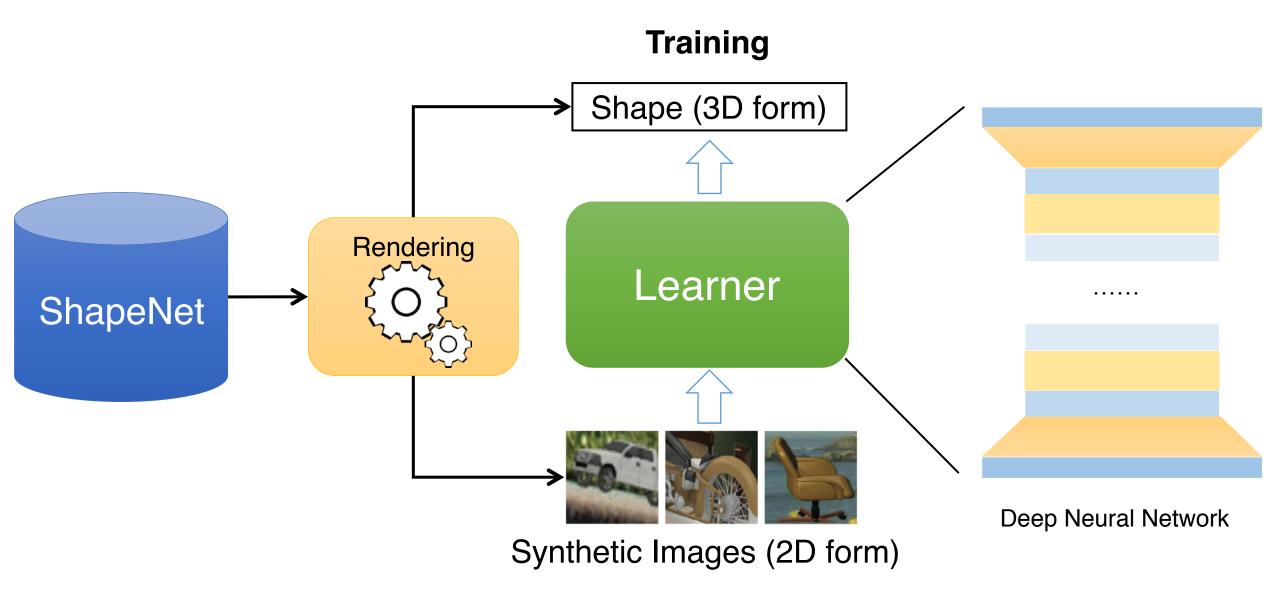
Synthesize for learning



Synthetic Images (2D form)

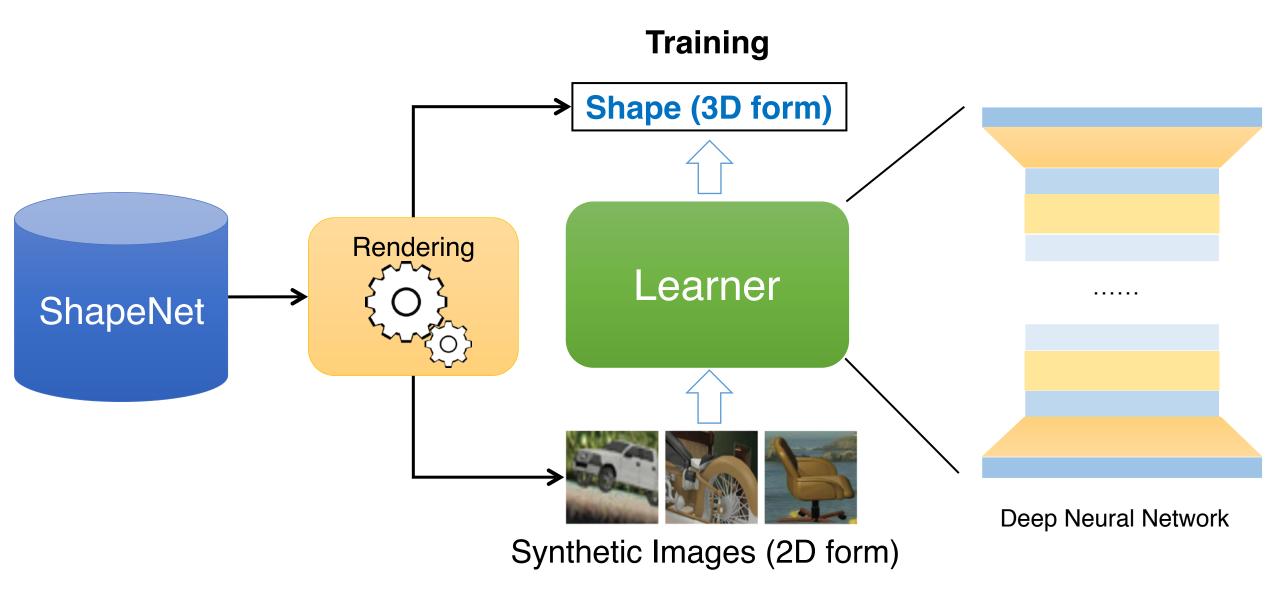
[Su et al., RenderForCNN, ICCV15]

Synthesize for learning



[Su et al., RenderForCNN, ICCV15]

How shall we represent 3D shapes?



[Su et al., RenderForCNN, ICCV15]

Many 3D representations are available

Candidates:

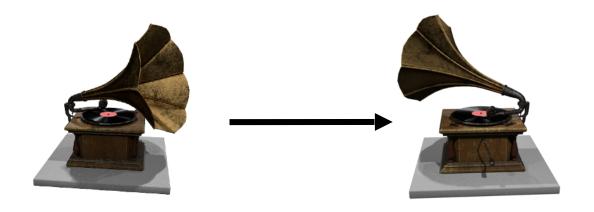
multi-view images

depth map

volumetric

polygonal mesh

point cloud



Novel view image synthesis

[Su et al., ICCV15] [Dosovitskiy et al., ECCV16]

Candidates:

multi-view images

depth map

volumetric

polygonal mesh

point cloud

Candidates:

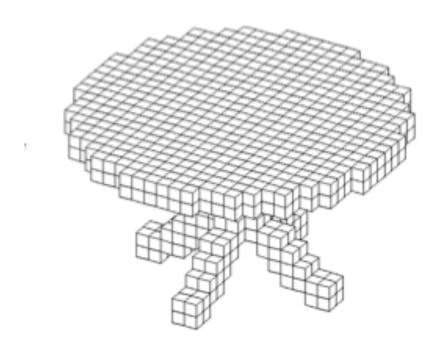
multi-view images

depth map

volumetric

polygonal mesh

point cloud



Candidates:

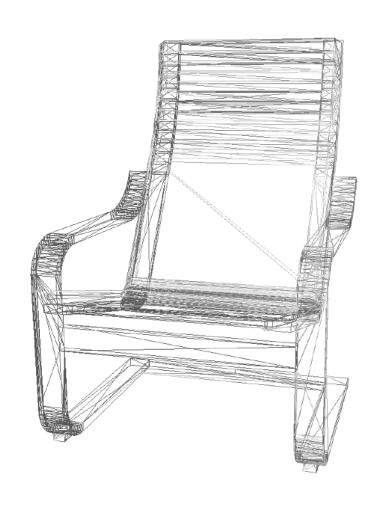
multi-view images

depth map

volumetric

polygonal mesh

point cloud



Candidates:

multi-view images

depth map

volumetric

polygonal mesh

point cloud

Candidates:

multi-view images

depth map

volumetric

polygonal mesh

point cloud

a chair assembled by cuboids

Candidates:

multi-view images

depth map

volumetric

polygonal mesh

point cloud

Two groups of representations

Rasterized form (regular grids)

Geometric form (irregular)

Candidates:

multi-view images

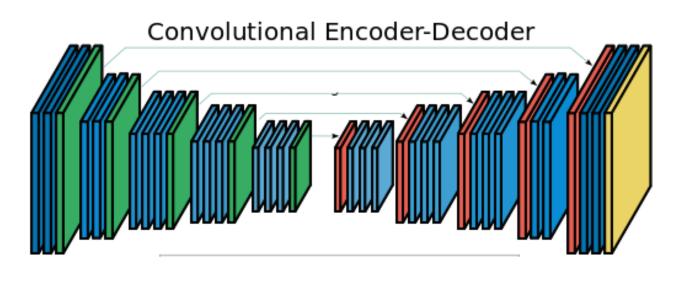
depth map

volumetric

polygonal mesh

point cloud

Extant 3D DNNs work on grid-like representations



Candidates:

multi-view images

depth map

volumetric

polygonal mesh

point cloud

Ideally, a 3D representation should be

Friendly to learning

- easily formulated as the output of a neural network
- fast forward-/backward- propagation
- etc.

Ideally, a 3D representation should be

Friendly to learning

- easily formulated as the output of a neural network
- fast forward-/backward- propagation
- etc.

Flexible

- can precisely model a great variety of shapes
- etc.

Ideally, a 3D representation should be

Friendly to learning

- easily formulated as the output of a neural network
- fast forward-/backward- propagation
- etc.

Flexible

- can precisely model a great variety of shapes
- etc.

Geometrically manipulable

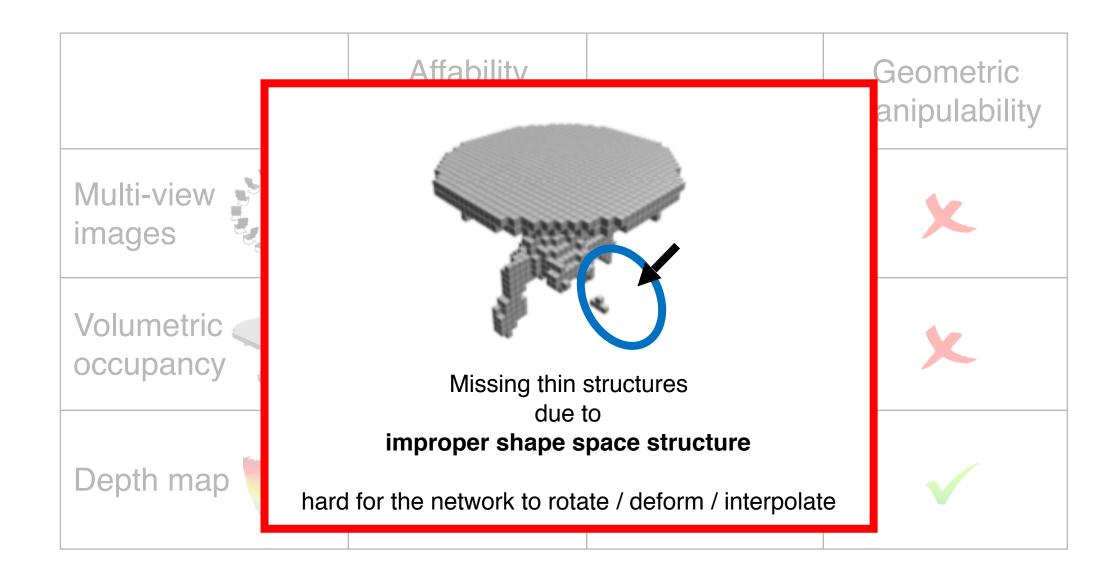
- geometrically deformable, interpolable and extrapolable for networks
- convenient to impose structural constraints
- etc.

Others

The problem of grid representations

	Affability to learning	Flexibility	Geometric manipulability
Multi-view images			X
Volumetric occupancy	Expensive to compute: O(N³)	√	*
Depth map		Cannot model "back side"	

Typical artifacts of volumetric reconstruction



How about learning to predict geometric forms?

Rasterized form (regular grids)

Geometric form (irregular)

Candidates:

multi-view images

depth map

volumetric

polygonal mesh

point cloud

primitive-based CAD models

Outline

Motivation

Data

Algorithms for 2D-3D lifting

Shape abstraction by volumetric primitives

Our result: 3D reconstruction from real Images

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single Image

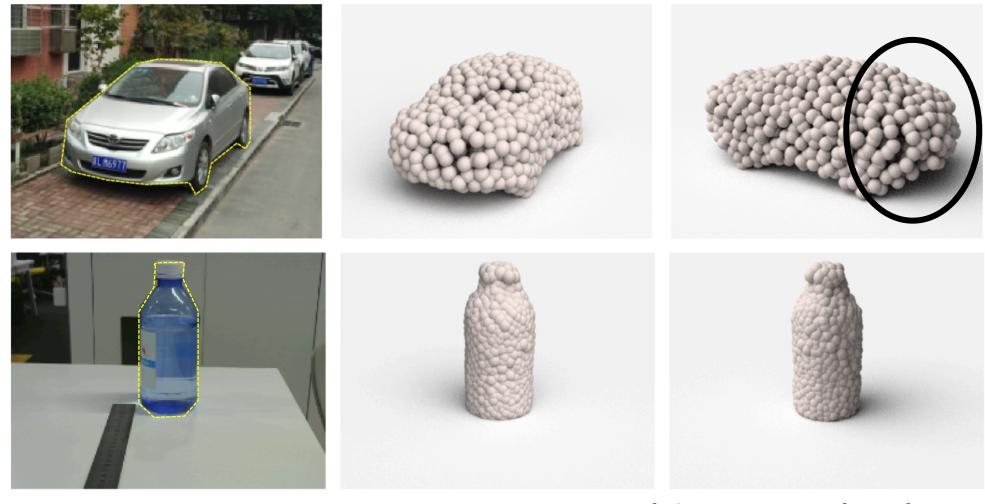
Input

Reconstructed 3D point cloud

CVPR '17, Point Set Generation

Our result: 3D reconstruction from real Images

CVPR 2017, A Point Set Generation Network for 3D Object Reconstruction from a Single Image



Input

Reconstructed 3D point cloud

3D point clouds

 a few thousands of points can precisely model a great variety of shapes

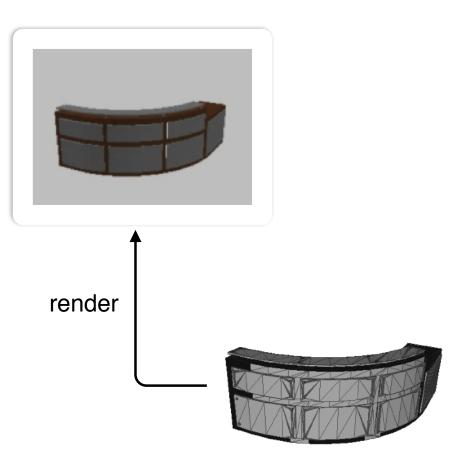
CVPR '17, Point Set Generation

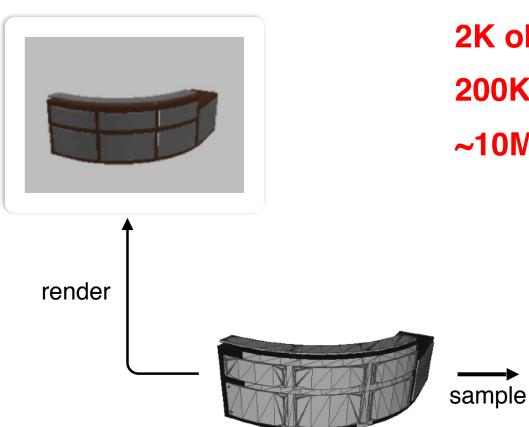
3D point clouds

 a few thousands of points can precisely model a great variety of shapes

- deformable
- interpolable, extrapolable
- convenient to impose structural constraints

CVPR '17, Point Set Generation





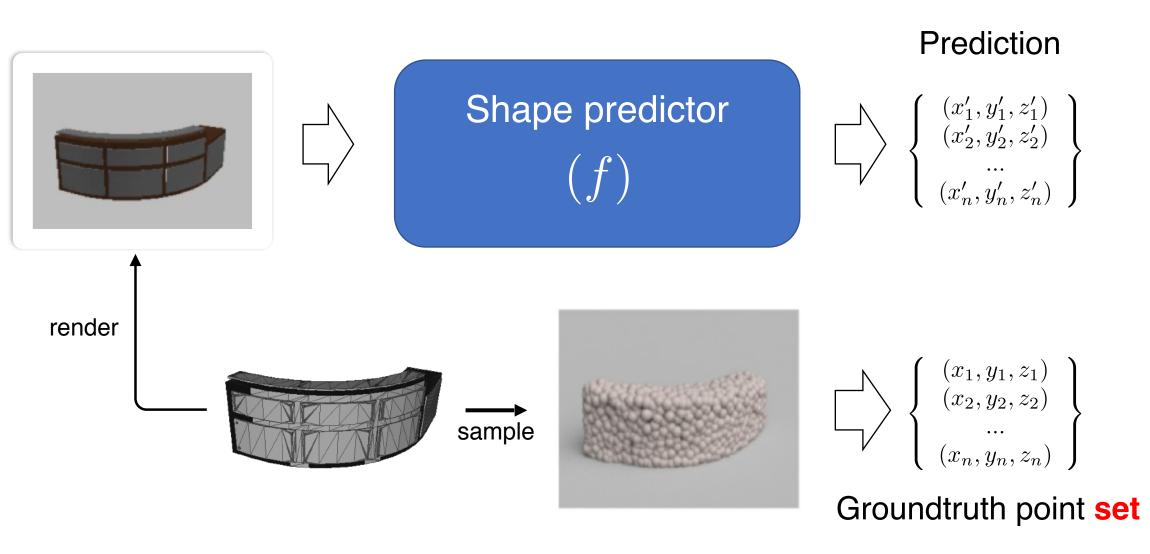
2K object categories

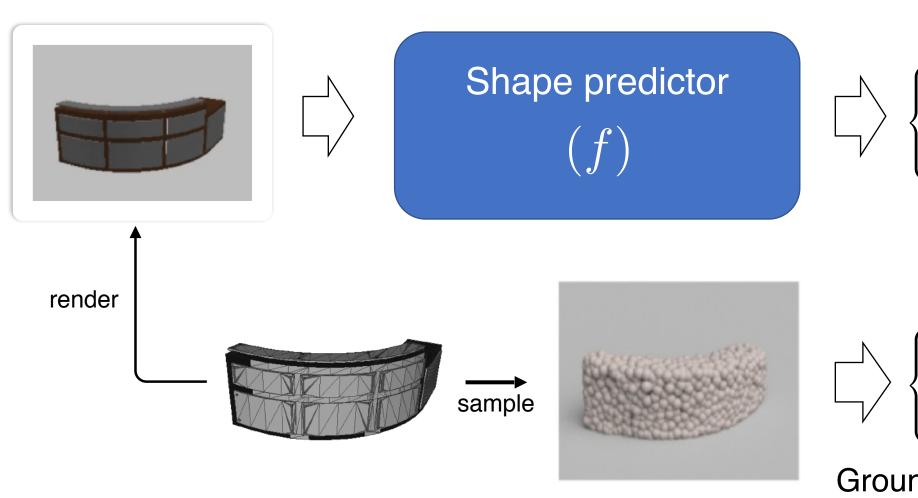
200K shapes

~10M image/point set pairs

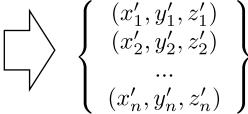
$$\left\{\begin{array}{c} (x_1, y_1, z_1) \\ (x_2, y_2, z_2) \\ \dots \\ (x_n, y_n, z_n) \end{array}\right\}$$

Groundtruth point set





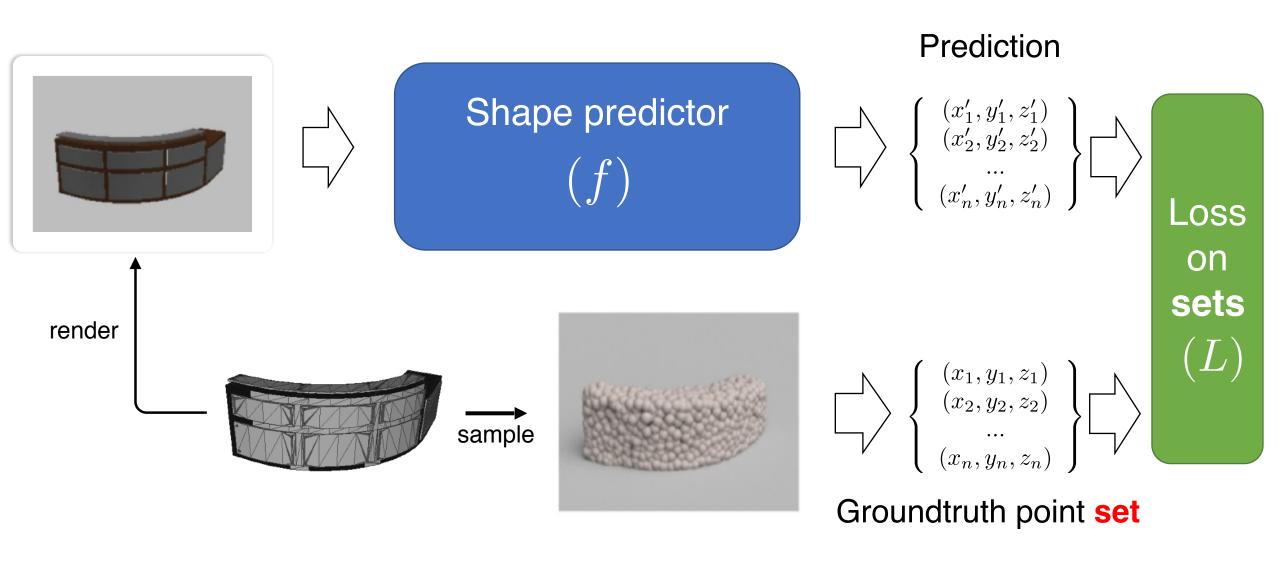
Prediction



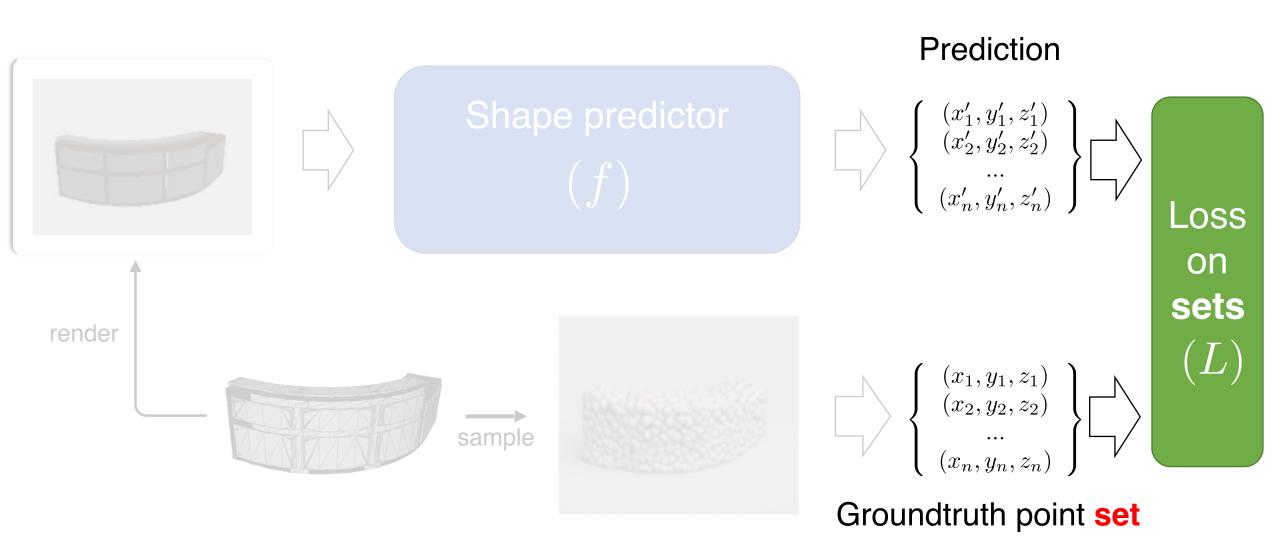
A set is invariant up to permutation

$$\begin{cases}
(x_1, y_1, z_1) \\
(x_2, y_2, z_2) \\
\dots \\
(x_n, y_n, z_n)
\end{cases}$$

Groundtruth point set



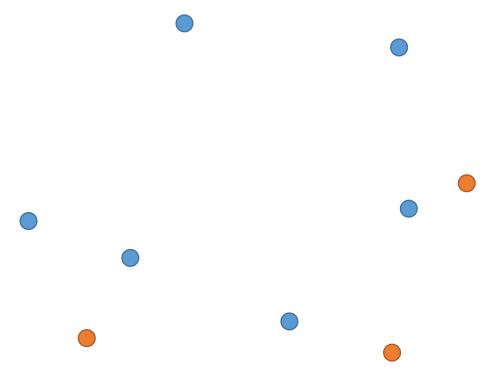
CVPR '17, Point Set Generation



CVPR '17, Point Set Generation

Set comparison

Given two sets of points, measure their discrepancy

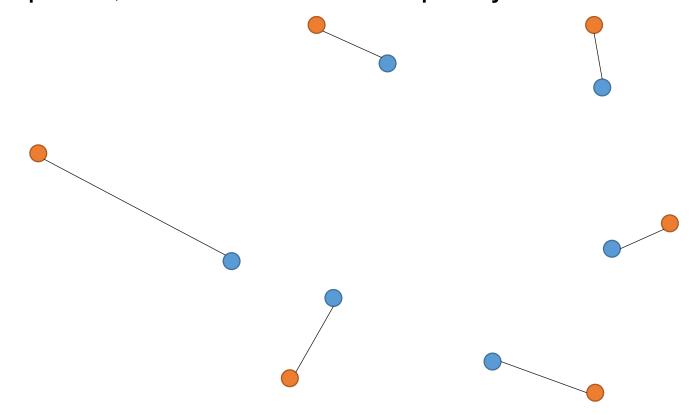


Set comparison

Given two sets of points, measure their discrepancy **Key challenge:** correspondence problem

Correspondence (I): optimal assignment

Given two sets of points, measure their discrepancy



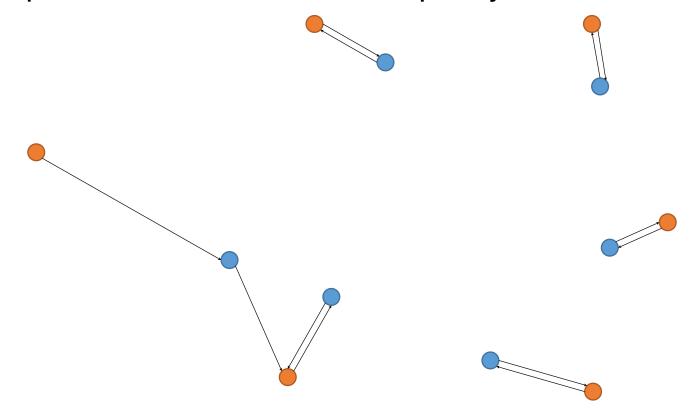
a.k.a Earth Mover's distance (EMD)

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$
 where $\phi: S_1 \to S_2$ is a bijection.

CVPR '17, Point Set Generation

Correspondence (II): closest point

Given two sets of points, measure their discrepancy



a.k.a Chamfer distance (CD)

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

CVPR '17, Point Set Generation

Required properties of distance metrics

Geometric requirement

Computational requirement

Required properties of distance metrics

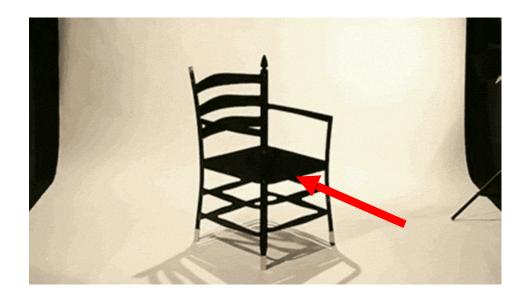
Geometric requirement

- Reflects natural shape differences
- Induce a nice space for shape interpolations

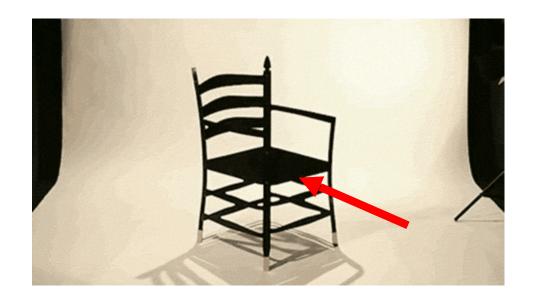
Computational requirement

A fundamental issue: inherent ambiguity in 2D-3D dimension lifting

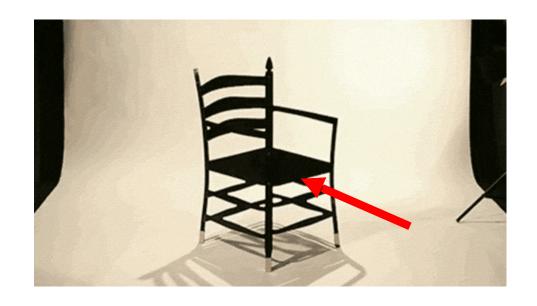
A fundamental issue: inherent ambiguity in 2D-3D dimension lifting



A fundamental issue: inherent ambiguity in 2D-3D dimension lifting



A fundamental issue: inherent ambiguity in 2D-3D dimension lifting



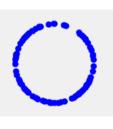
By loss minimization, the network tends to predict a "mean shape"
 that averages out uncertainty

Distance metrics affect mean shapes

The mean shape carries characteristics of the distance metric

$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

continuous hidden variable (radius)



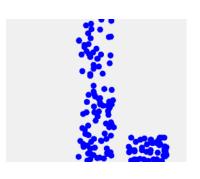
Mean shapes from distance metrics

The mean shape carries characteristics of the distance metric

$$\bar{x} = \underset{x}{\operatorname{argmin}} \mathbb{E}_{s \sim \mathbb{S}}[d(x, s)]$$

continuous hidden variable (radius)

discrete hidden variable (add-on location)



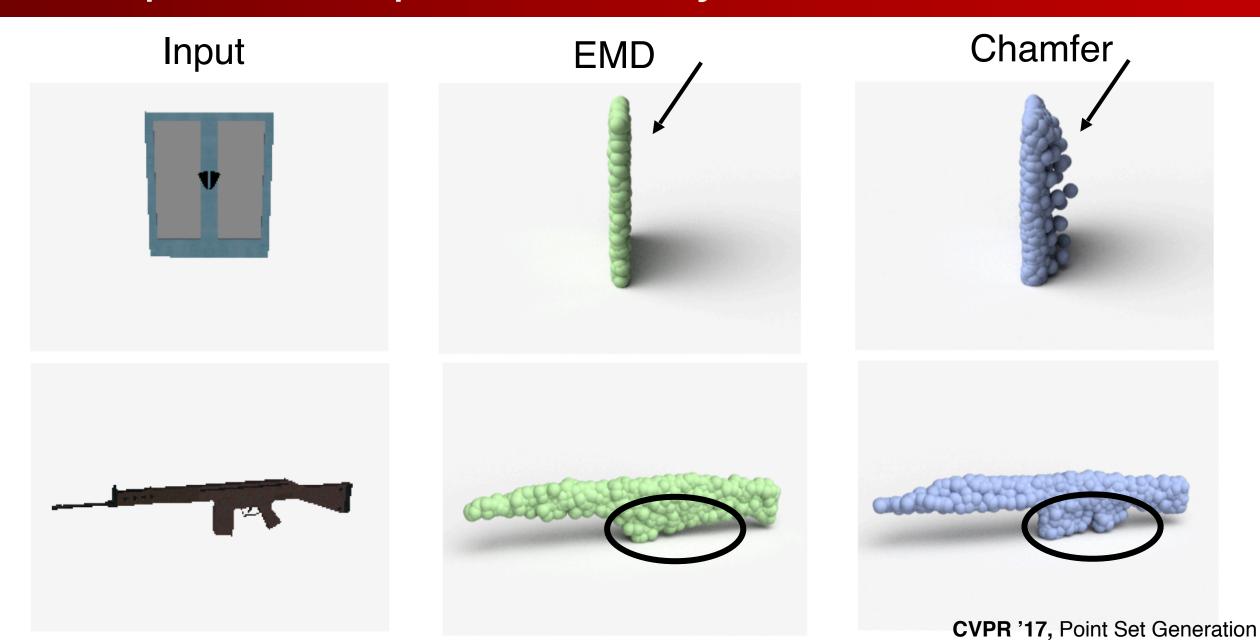
Input

EMD mean

Chamfer mean

CVPR '17, Point Set Generation

Comparison of predictions by EMD versus CD



Required properties of distance metrics

Geometric requirement

- Reflects natural shape differences
- Induce a nice space for shape interpolations

Computational requirement

• Defines a loss function that is numerically easy to optimize

To be used as a loss function, the metric has to be

Differentiable with respect to point locations

Efficient to compute

Differentiable with respect to point location

Chamfer distance

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Earth Mover's distance

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} \|x - \phi(x)\|_2$$
 where $\phi: S_1 \to S_2$ is a bijection.

- Simple function of coordinates
- In general positions, the correspondence is unique
- With infinitesimal movement, the correspondence does not change

Conclusion: differentiable almost everywhere

Differentiable with respect to point location

- For many algorithms (sorting, shortest path, network flow, ...),
- an infinitesimal change to model parameters (almost) does not change solution structure,

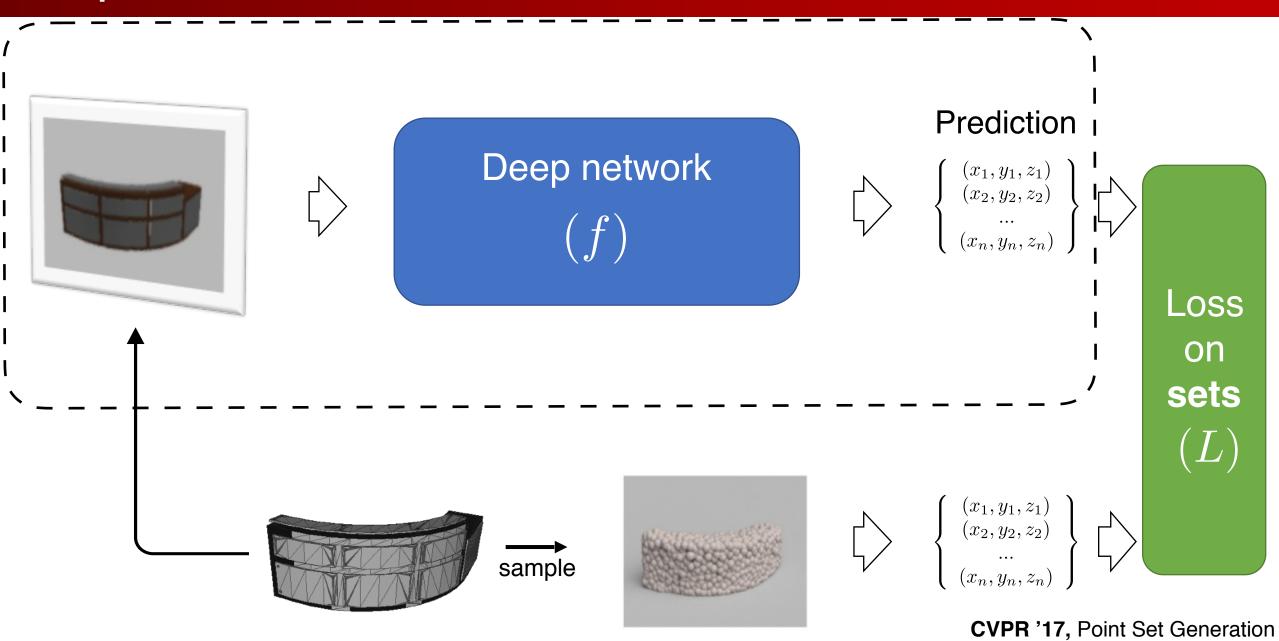
leads to differentiable a.e.!

Efficient to compute

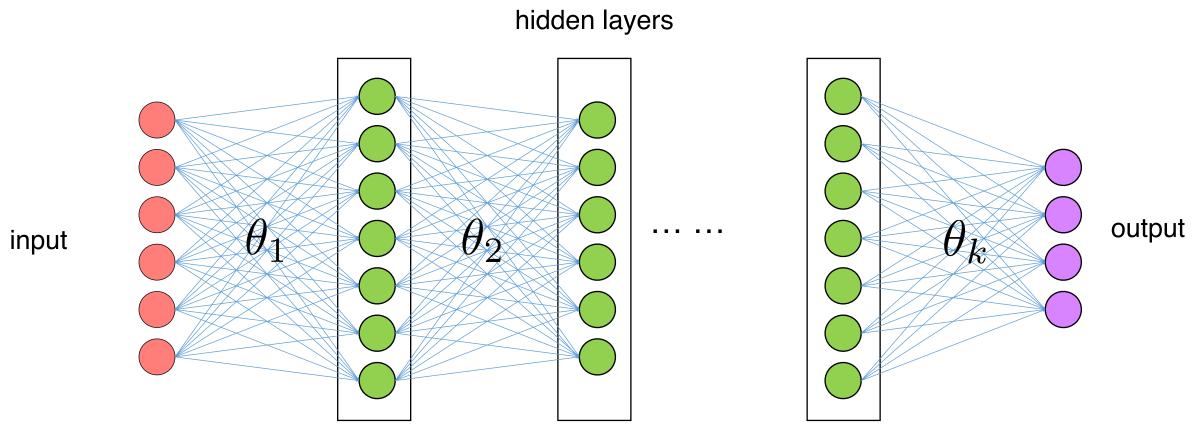
Chamfer distance: trivially parallelizable on CUDA

Earth Mover's distance (optimal assignment):

- We implement a distributed approximation algorithm on CUDA
- Based upon [Bertsekas, 1985], $(1 + \epsilon)$ -approximation



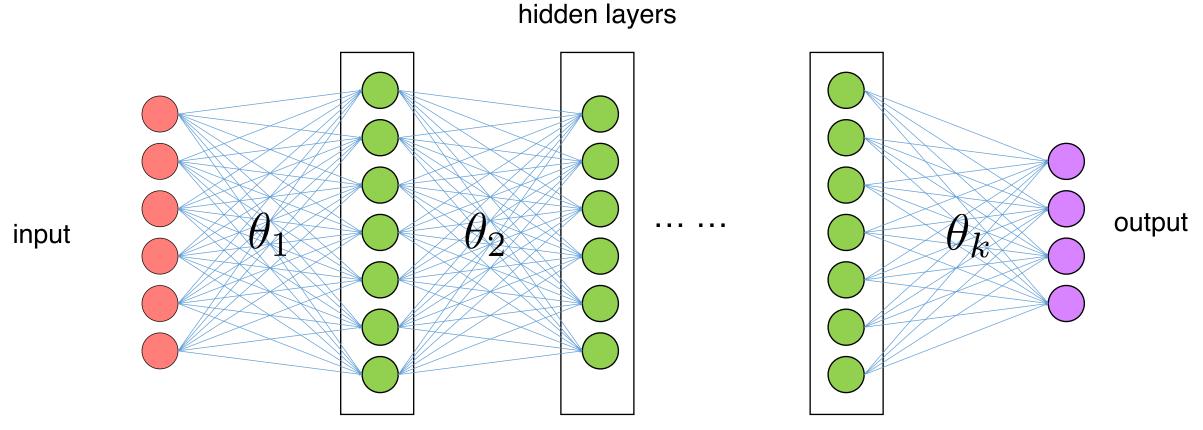
Deep neural network



Universal function approximator

A cascade of layers

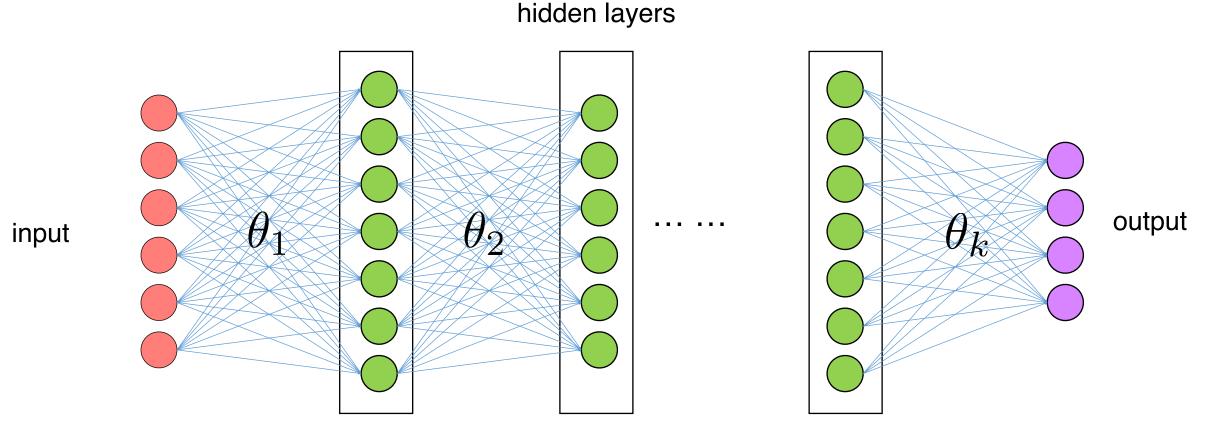
Deep neural network



Universal function approximator

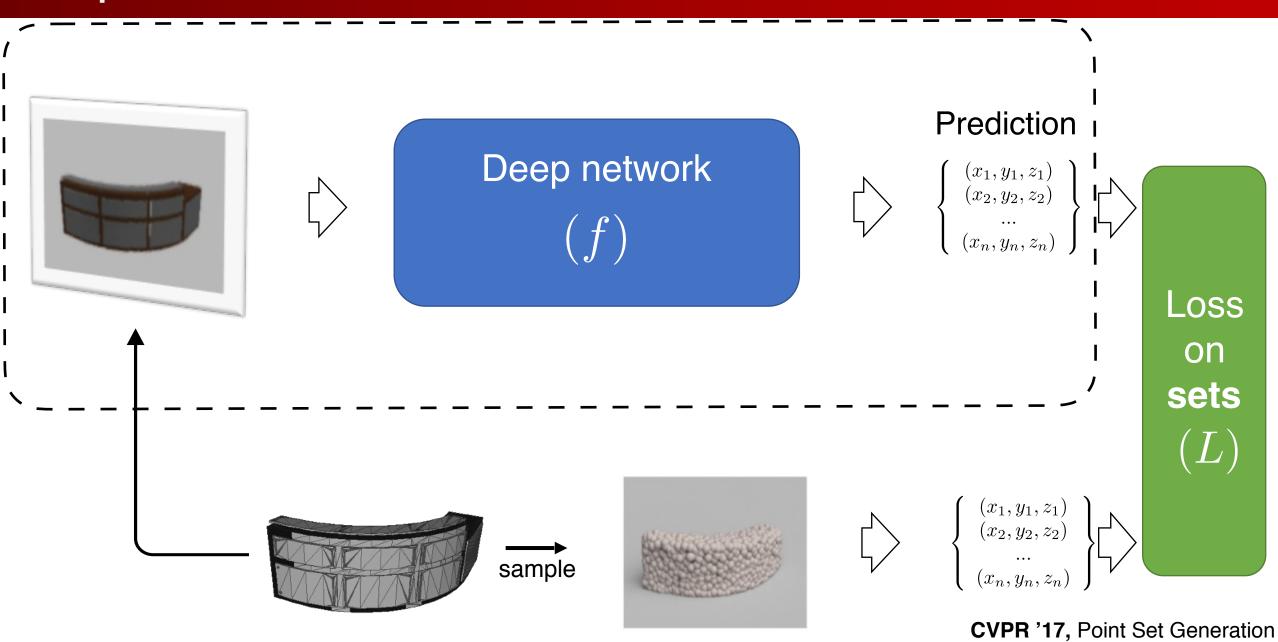
- A cascade of layers
- Each layer conducts a simple transformation (parameterized)

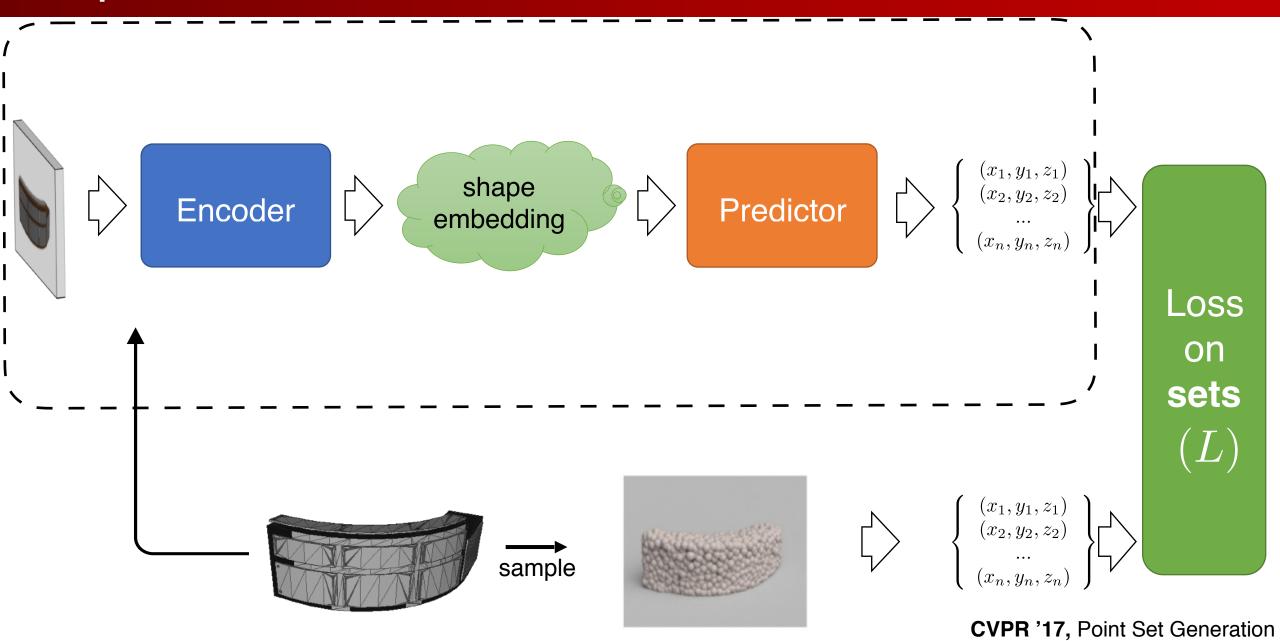
Deep neural network

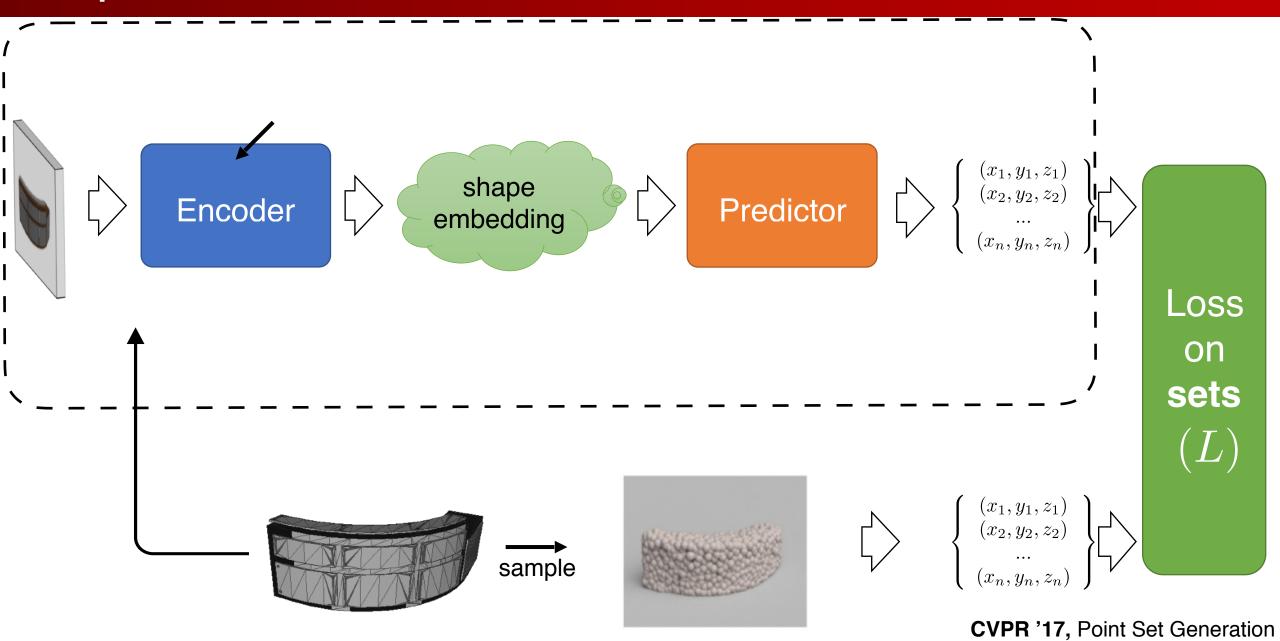


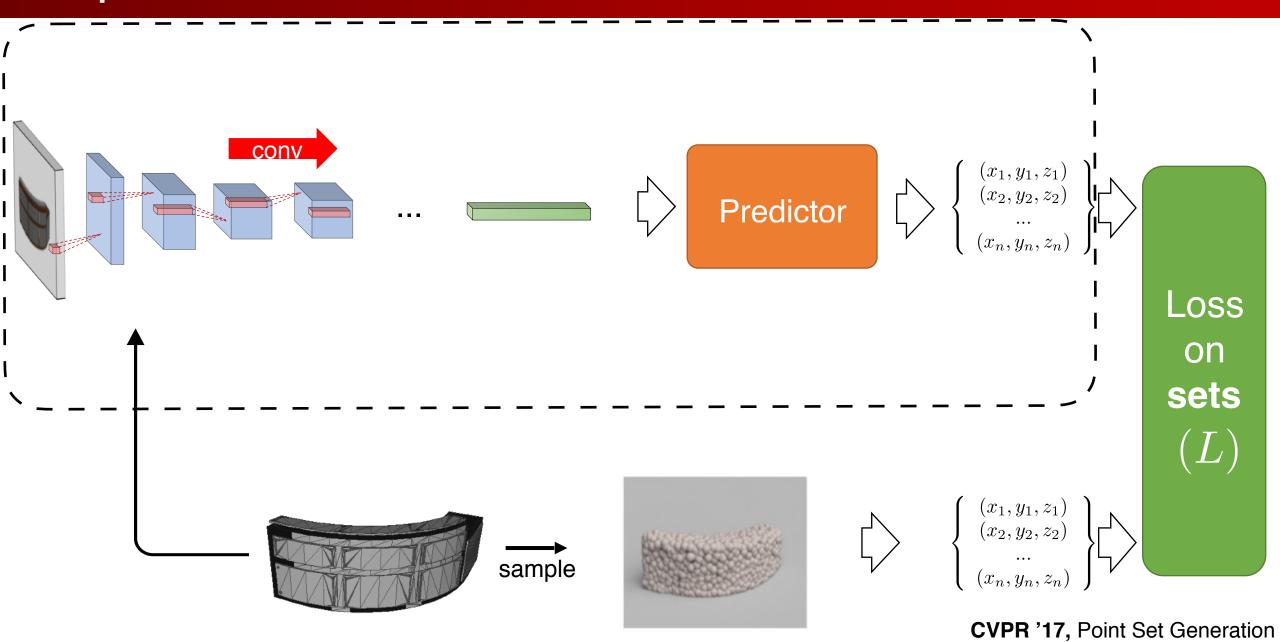
Universal function approximator

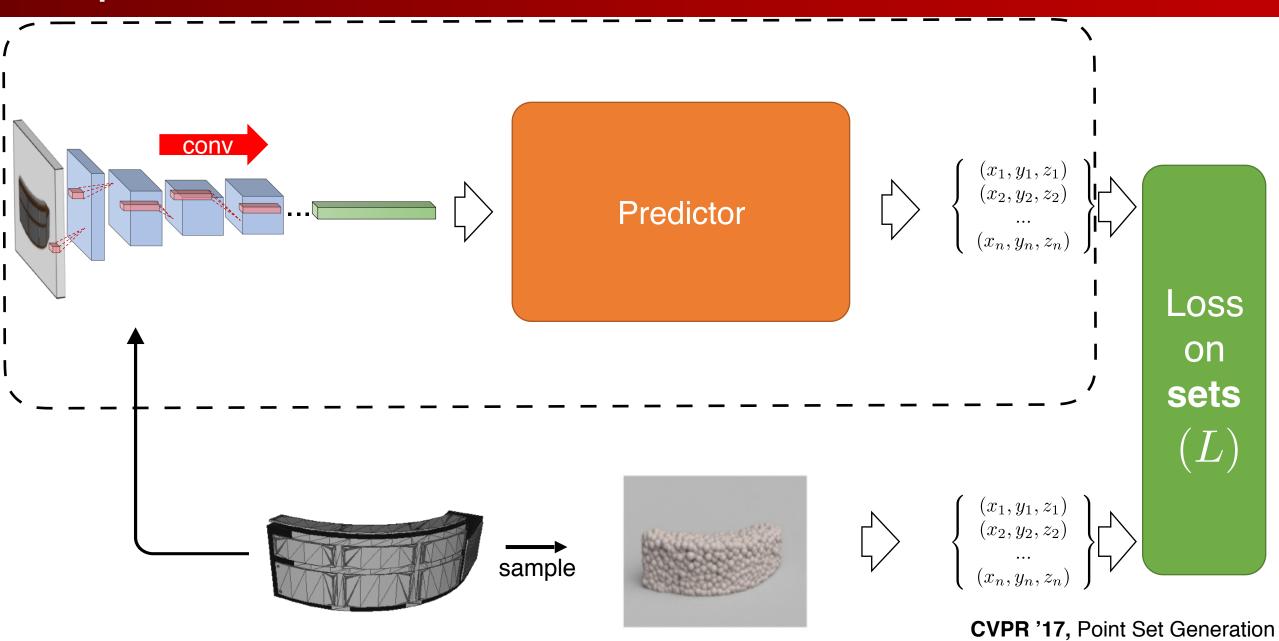
- A cascade of layers
- Each layer conducts a simple transformation (parameterized)
- Millions of parameters, has to be fitted by many data



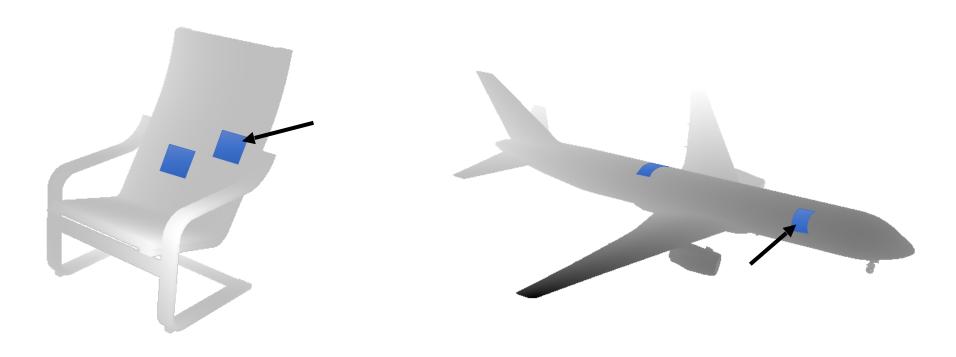






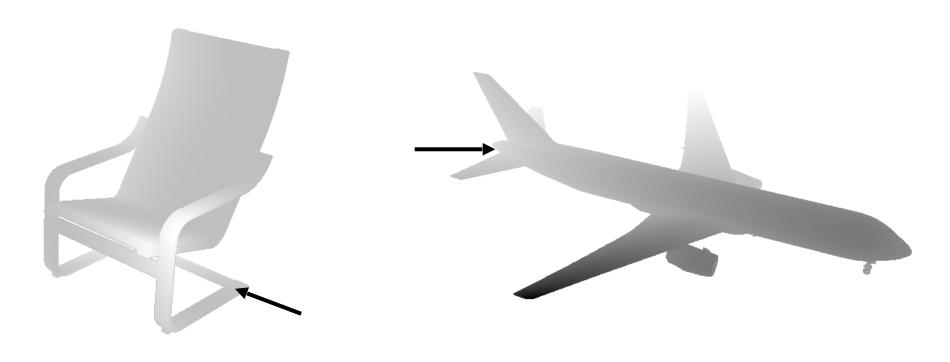


Natural statistics of geometry

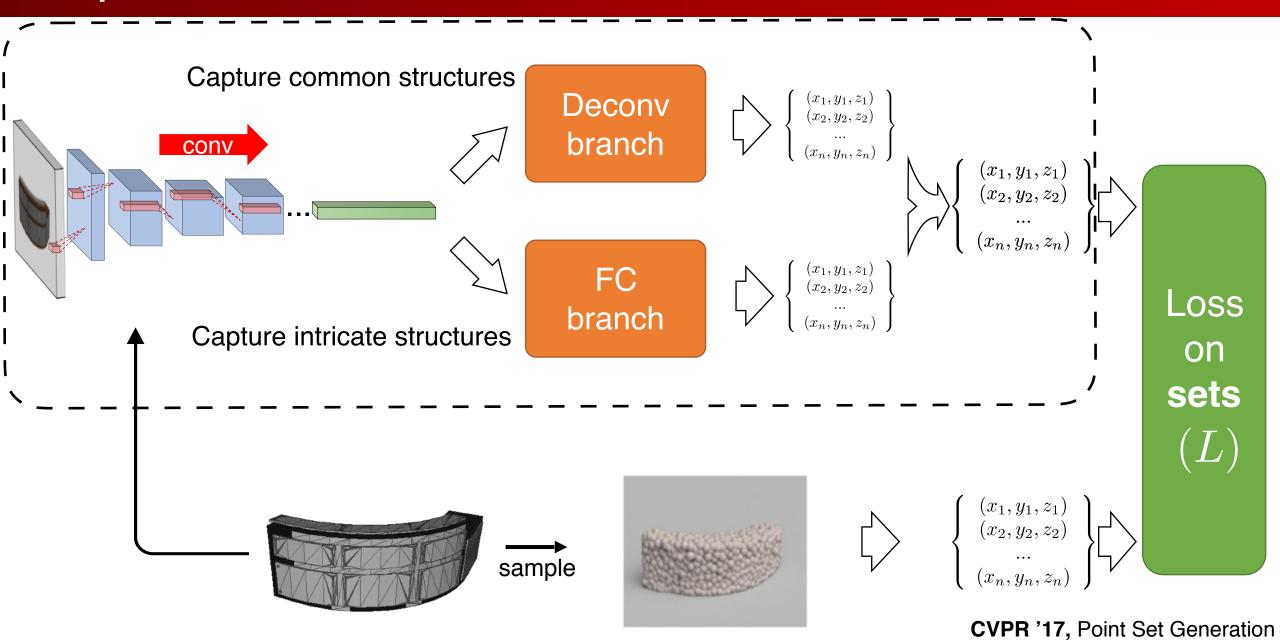


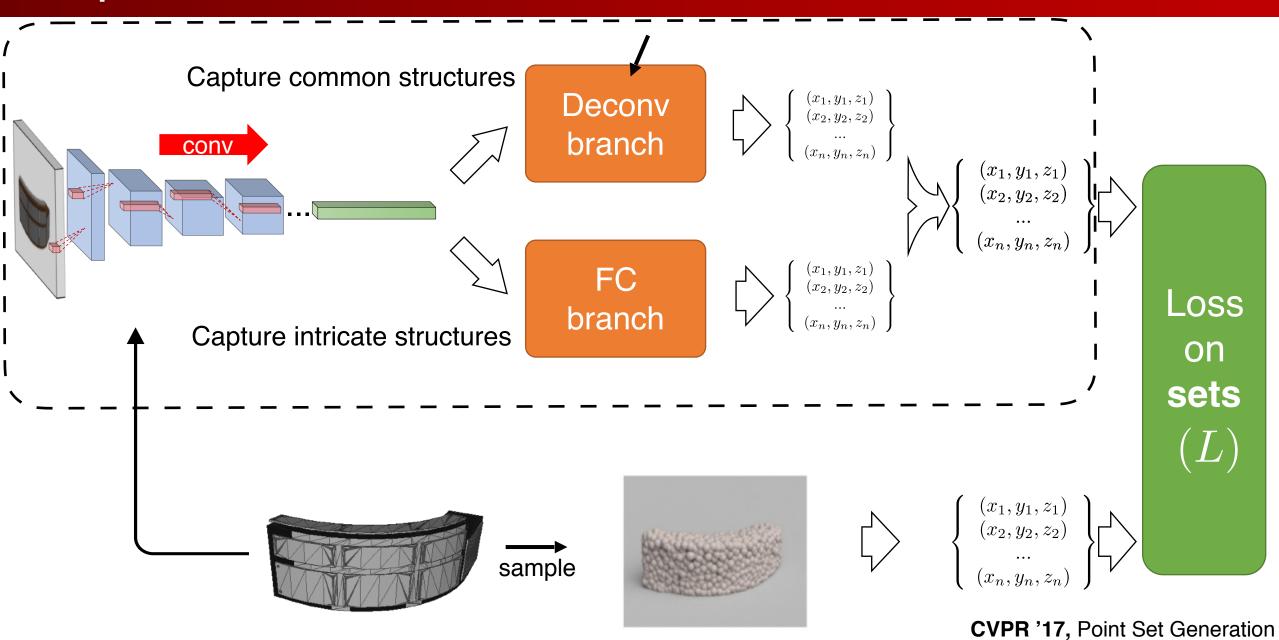
- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates

Natural statistics of geometry



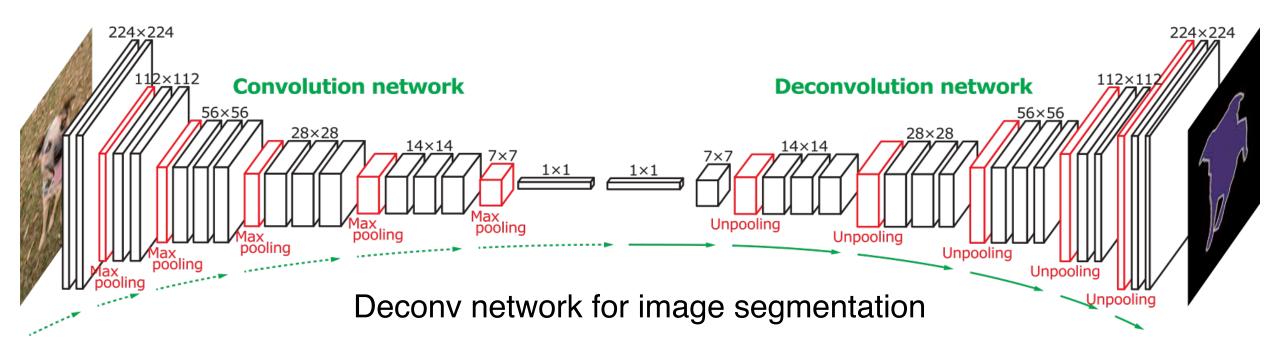
- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- Also some intricate structures
 - points have high local variation





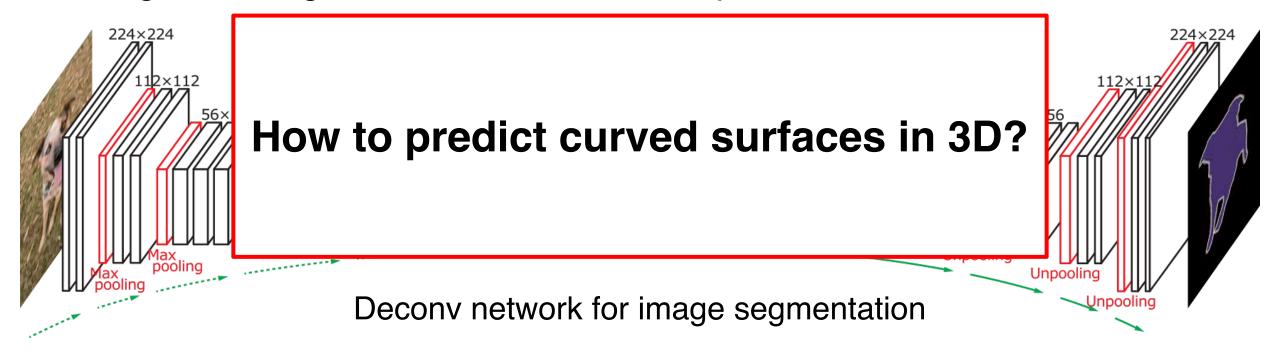
Review: deconv network

- Output nD arrays, e.g., 2D segmentation map
- Common local patterns are learned from data
- Predict locally correlated data well
- Weight sharing reduces the number of params



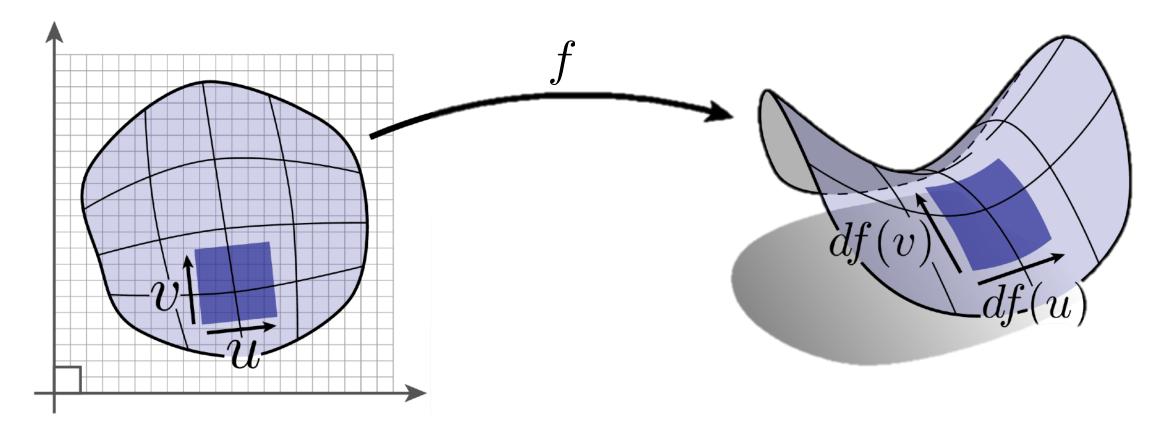
Review: deconv network

- Output nD arrays, e.g., 2D segmentation map
- Common local patterns are learned from data
- Predict locally correlated data well
- Weight sharing reduces the number of params



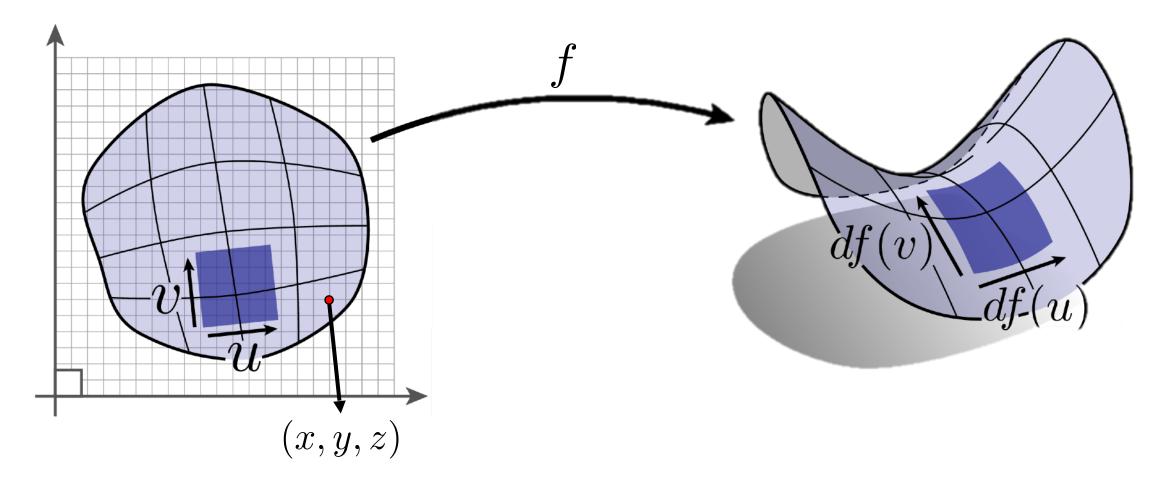
Prediction of curved 2D surfaces in 3D

Surface parametrization (2D ↔ 3D mapping)



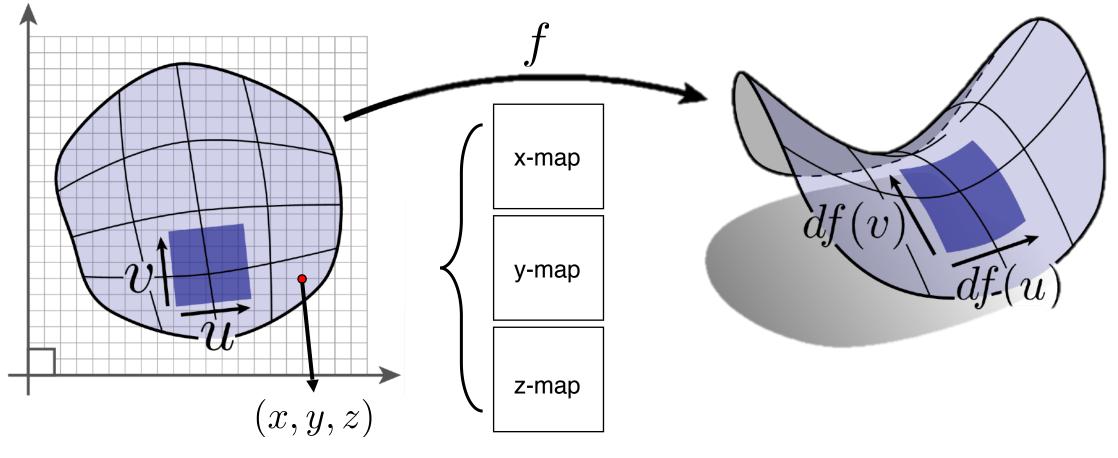
Prediction of curved 2D surfaces in 3D

Surface parametrization (2D ↔ 3D mapping)



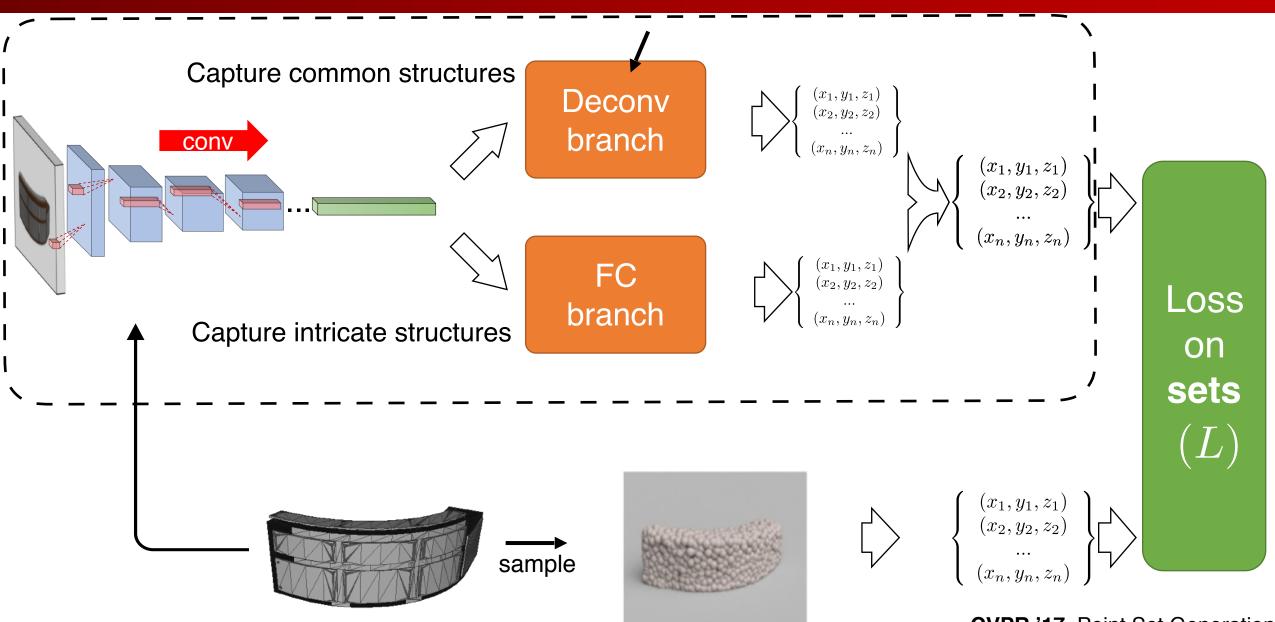
Prediction of curved 2D surfaces in 3D

Surface parametrization (2D ↔ 3D mapping)



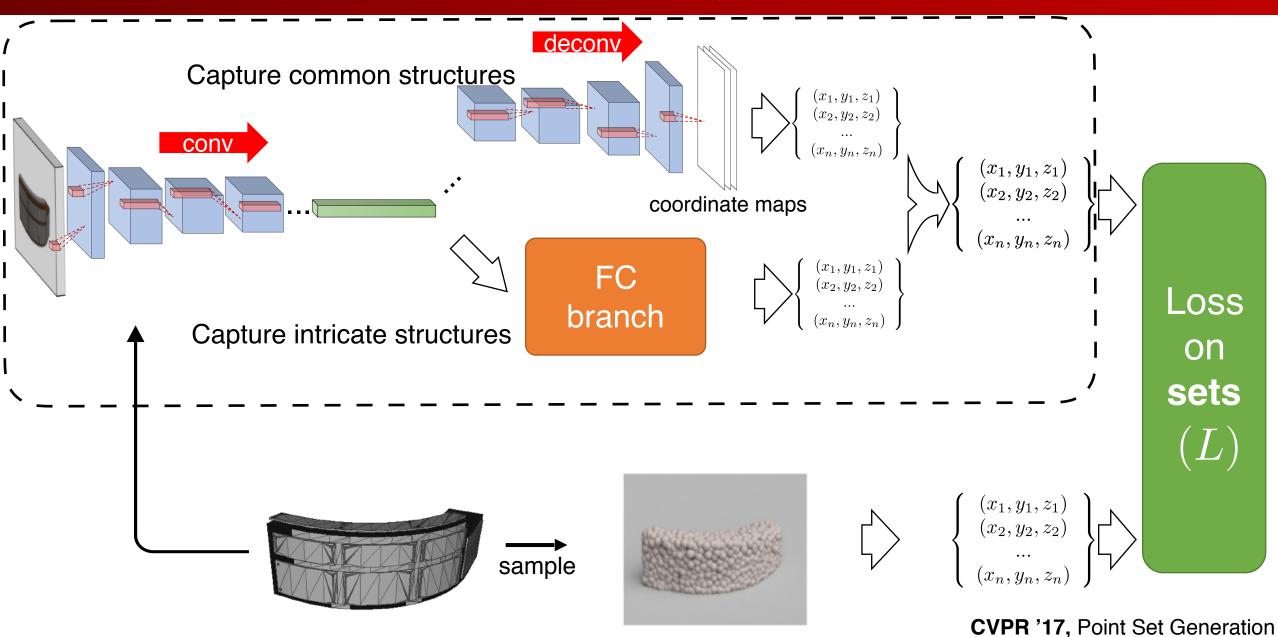
coordinate maps

Parametrization prediction by deconv network

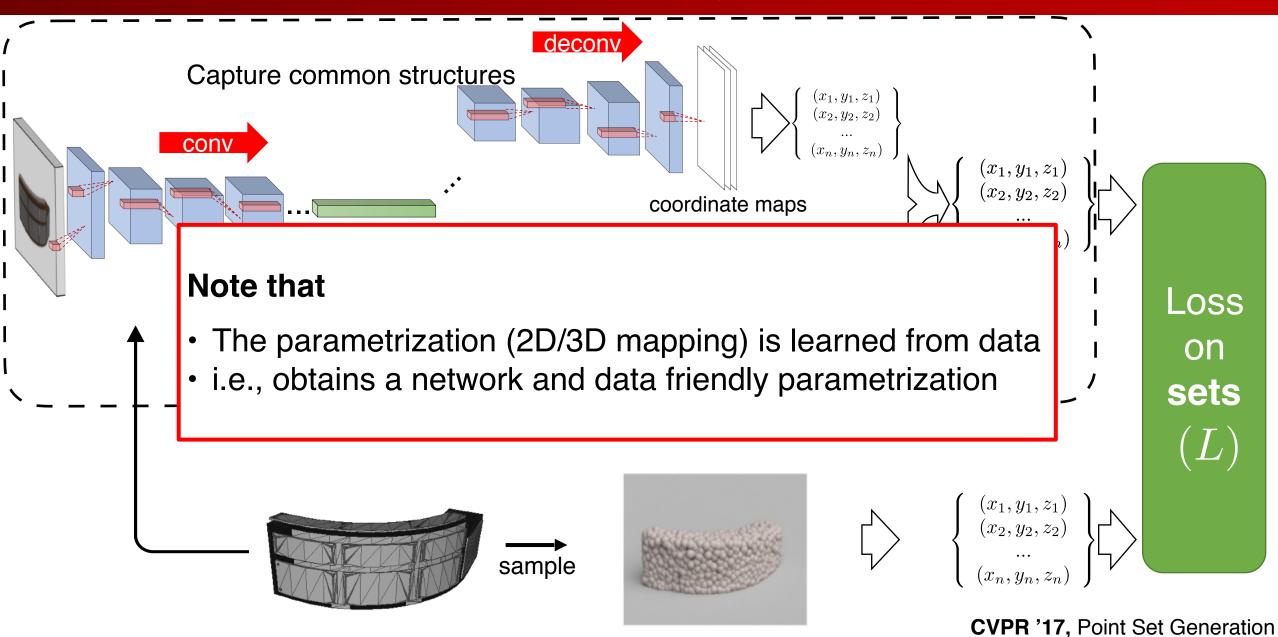


CVPR '17, Point Set Generation

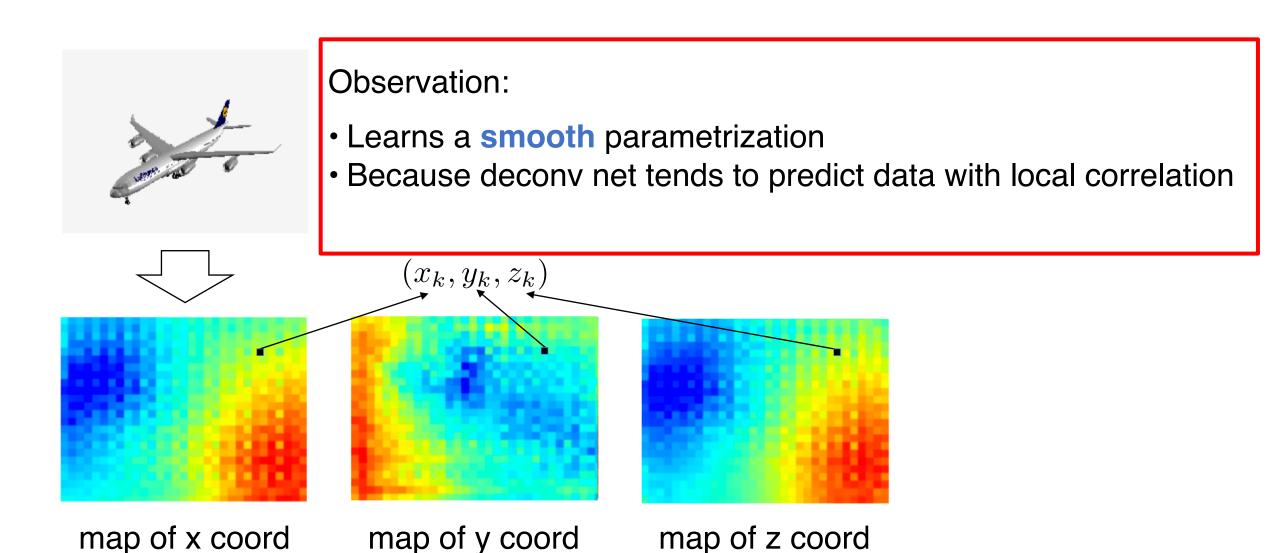
Parametrization prediction by deconv network



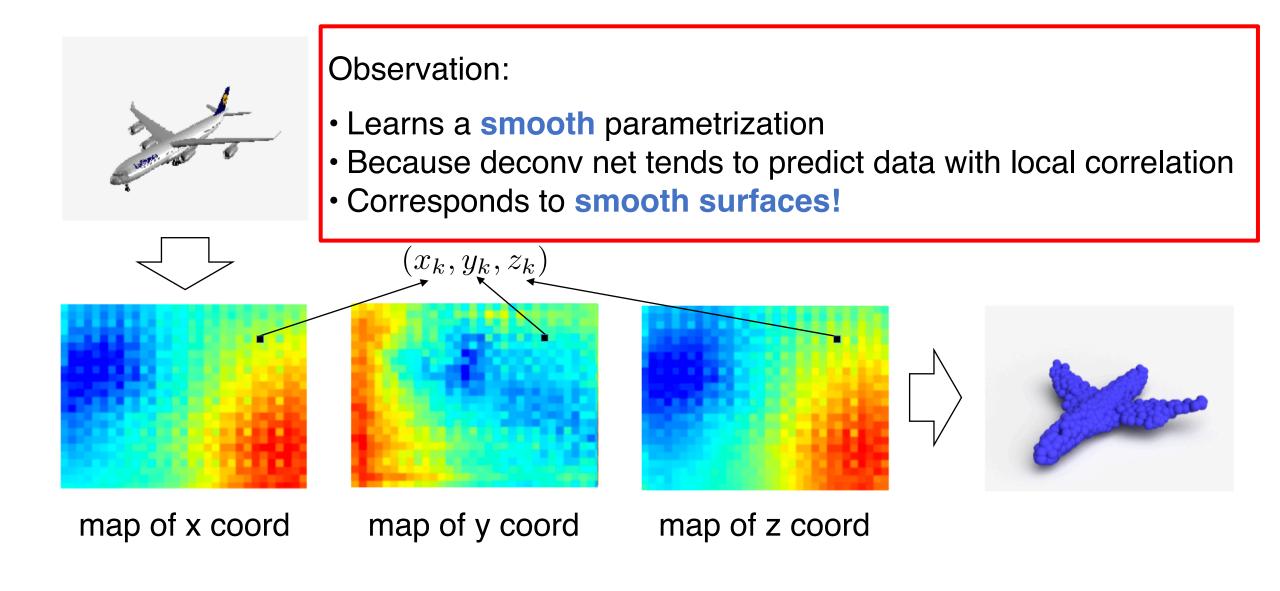
Parametrization prediction by deconv network

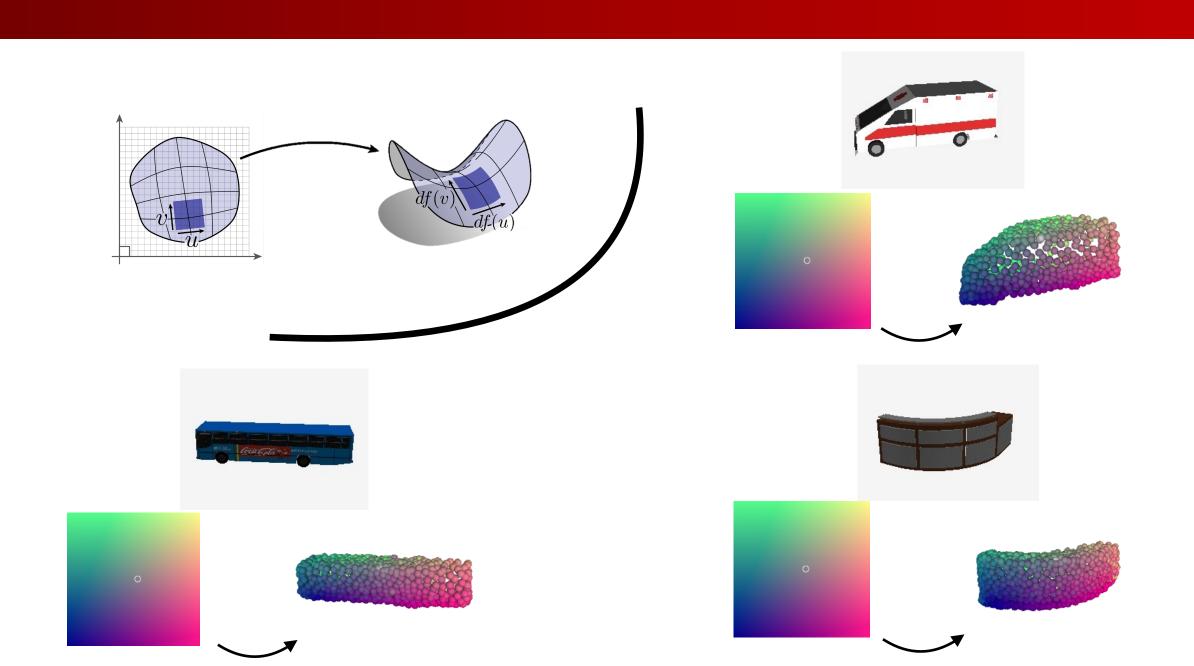


Visualization of the learned parameterization

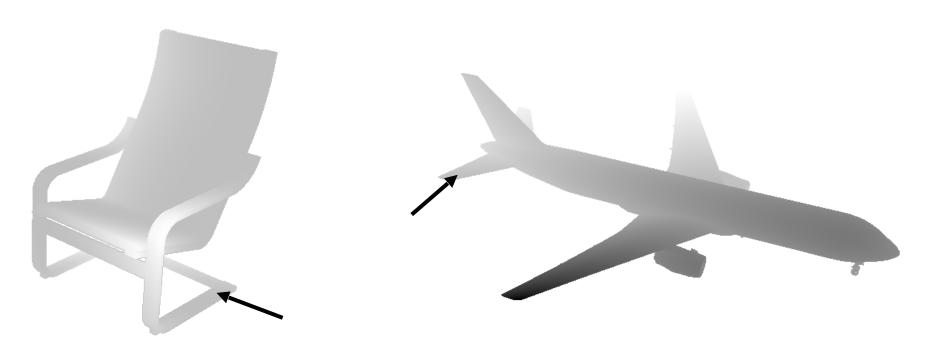


Visualization of the learned parameterization

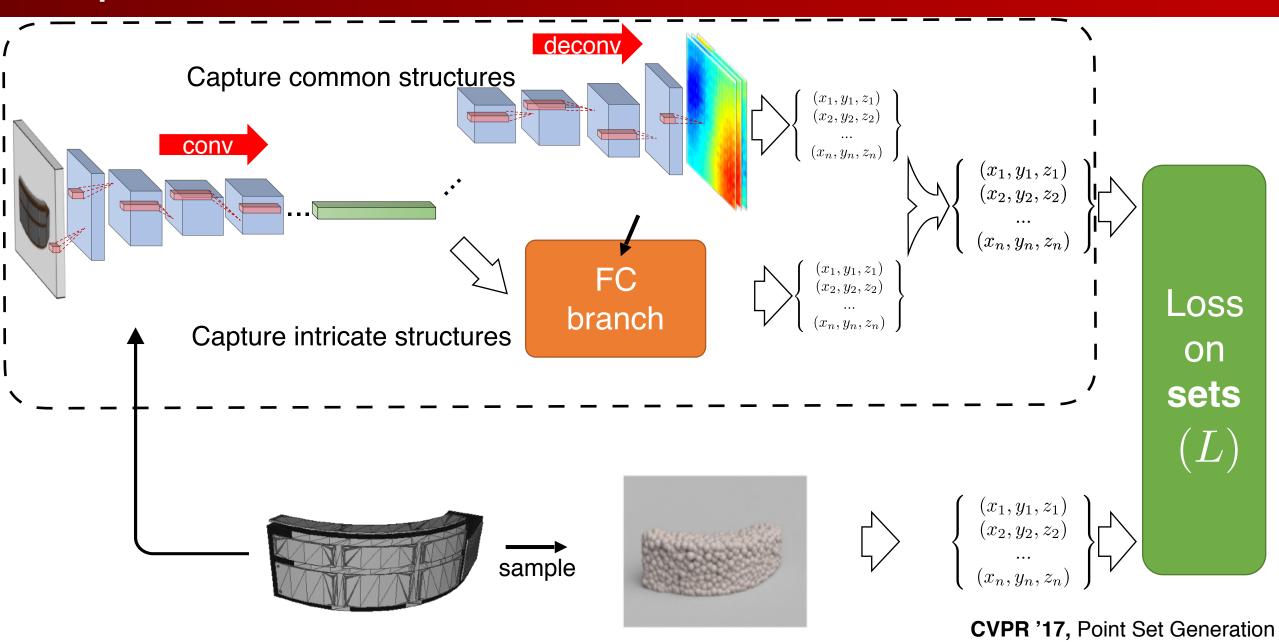


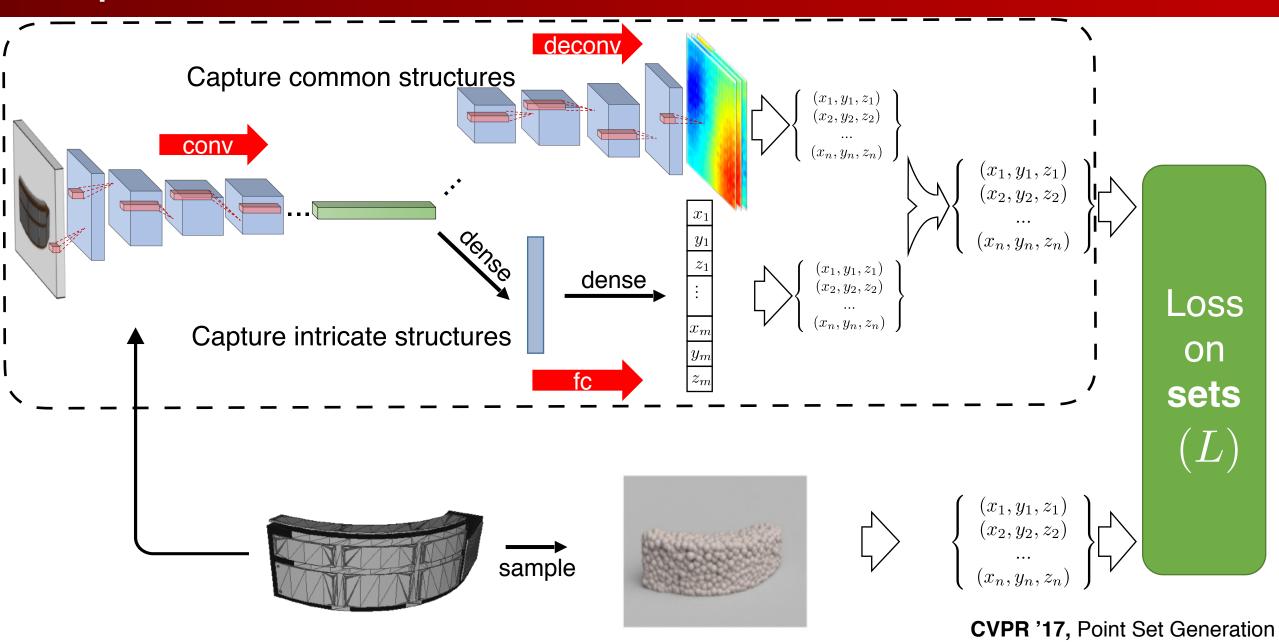


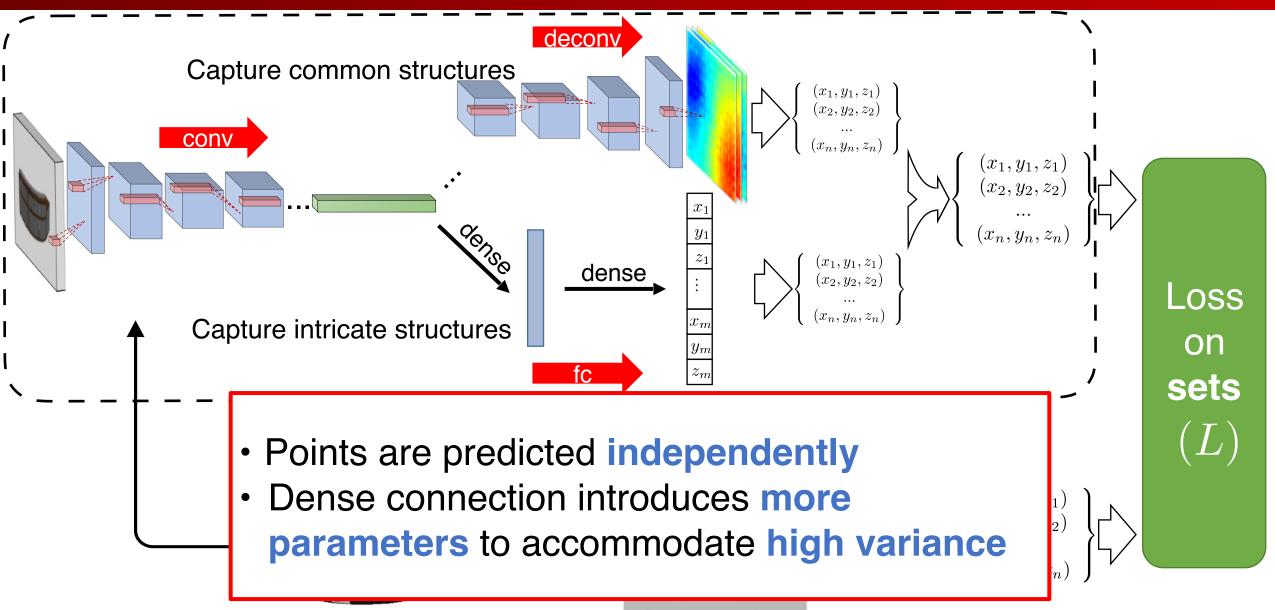
Natural statistics of geometry



- Many local structures are common
 - e.g., planar patches, cylindrical patches
 - strong local correlation among point coordinates
- Also some intricate structures
 - points have high local variation



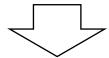


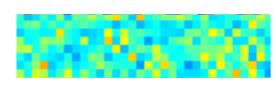


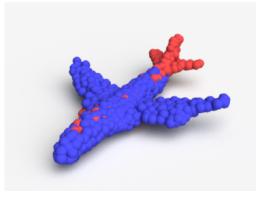
Visualization of the effect of FC branch

Observation:

The arrangement of predicted points are uncorrelated







x-coord

y-coord

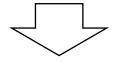
z-coord

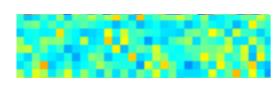
red

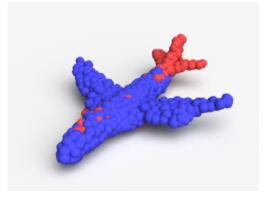
Visualization of the effect of FC branch

Observation:

- The arrangement of predicted points are uncorrelated
- Located at fine structures







x-coord

y-coord

z-coord

red

Q: Which color corresponds to the deconv branch? FC branch?

CVPR '17, Point Set Generation

Q: Which color corresponds to the deconv branch? FC branch?

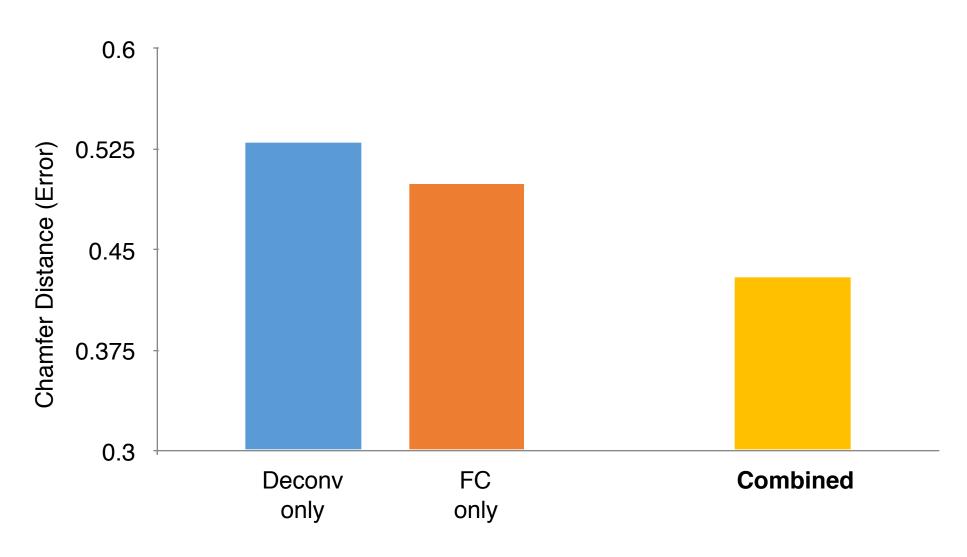
blue: deconv branch – **large**, **smooth** structures

red: FC branch – **intricate** structures

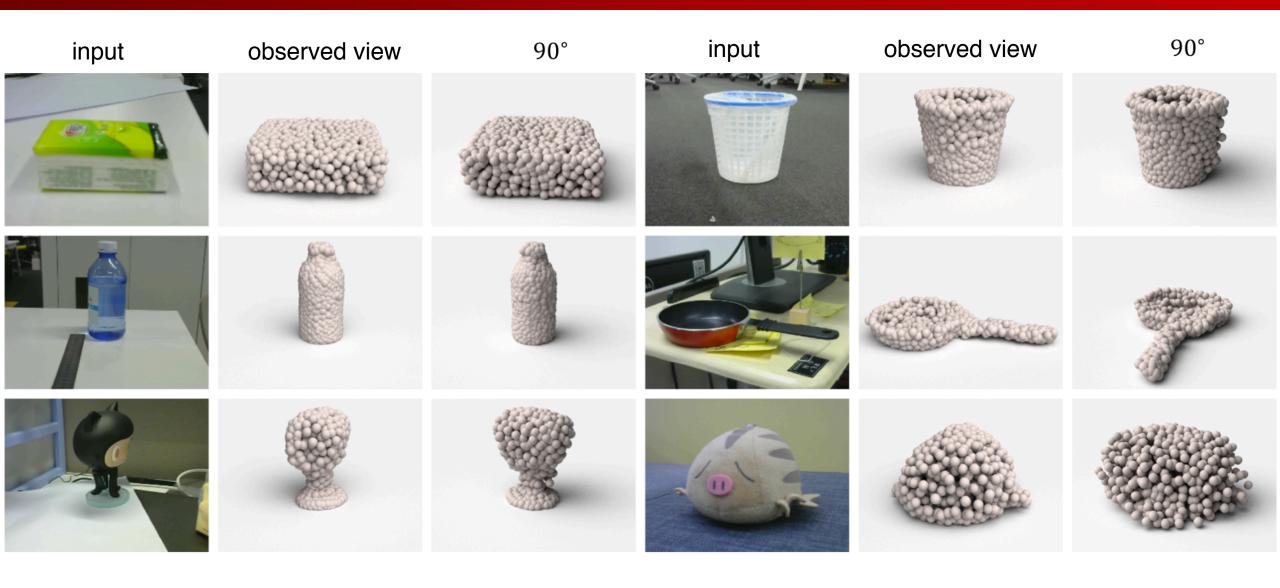
CVPR '17, Point Set Generation

Effect of combining two branches

Train/tested on 2K object categories

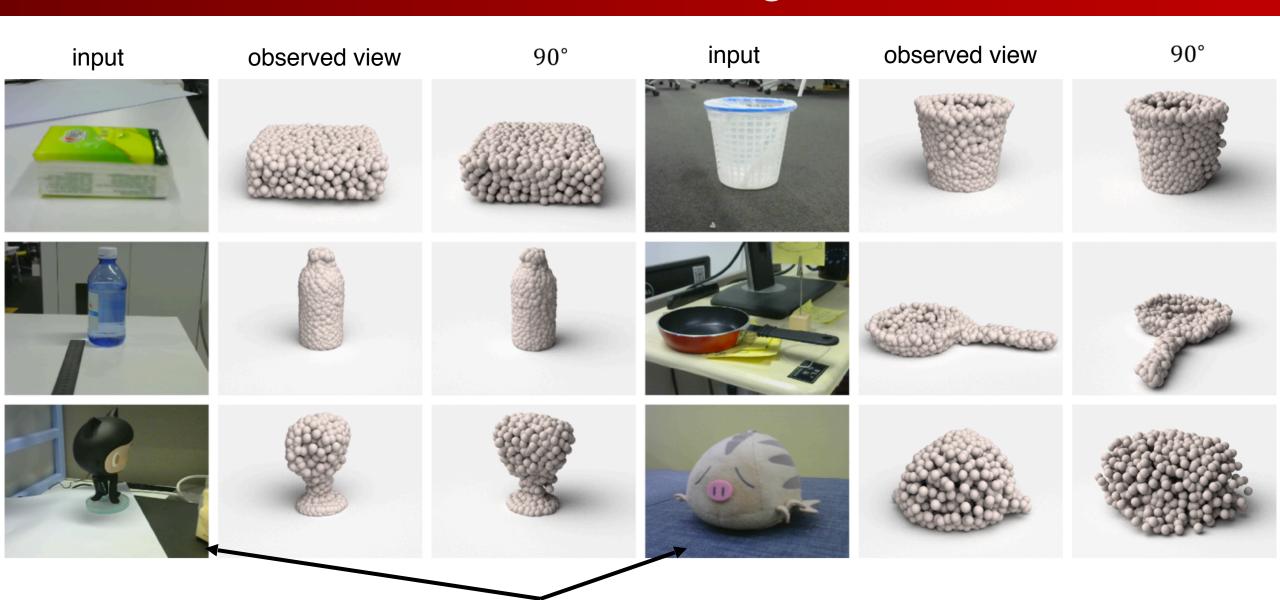


Real-world results



CVPR '17, Point Set Generation

Generalization to unseen categories

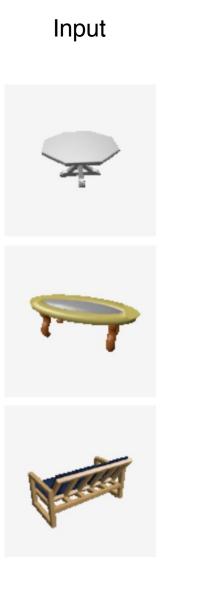


Out of training categories

CVPR '17, Point Set Generation

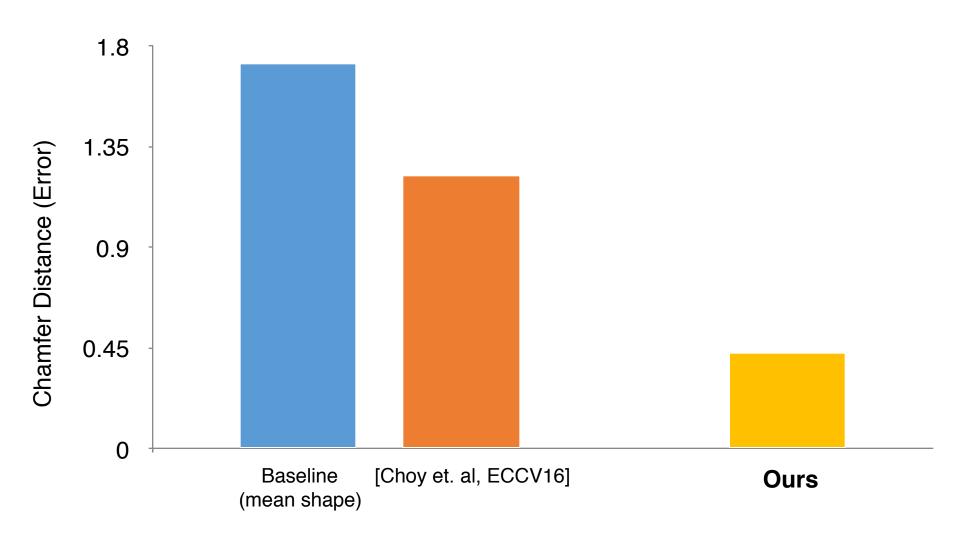
Comparison to state-of-the-art

- Better global structure
- Better details

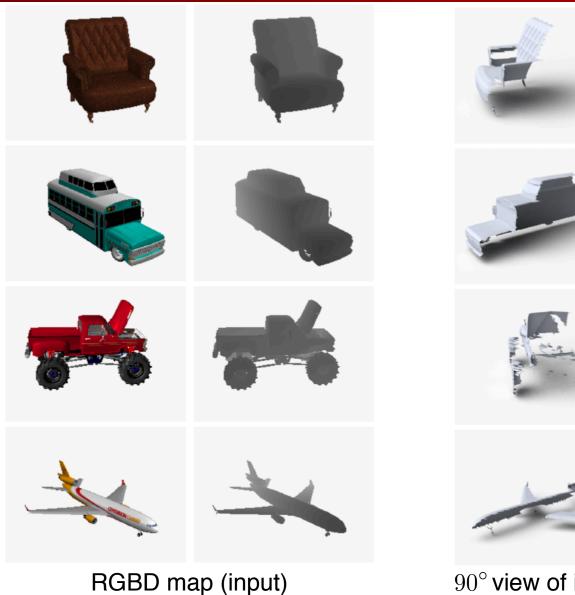


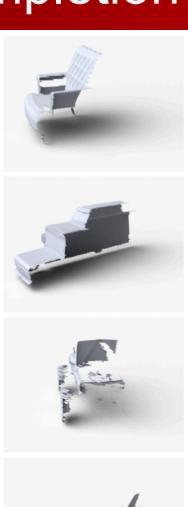
Comparison to state-of-the-art

Trained/tested on 2K object categories



Extension: shape completion for RGBD data





 90° view of input

output: completed point cloud CVPR '17, Point Set Generation

Open problems

A better metric that takes the best of Chamfer and EMD?

How to add further structure constraints?

How to extend the pipeline to scene level?

How generalizable the method is?

In principle, what is the generalizability of a geometry estimator? To what extend is 3D perception ability innate or learned?

Outline

Motivation

Data

Algorithms for 2D-3D lifting

Shape abstraction by volumetric primitives

How about learning to predict geometric forms?

Rasterized form (regular grids)

Geometric form (irregular)

Candidates:

multi-view images

depth map

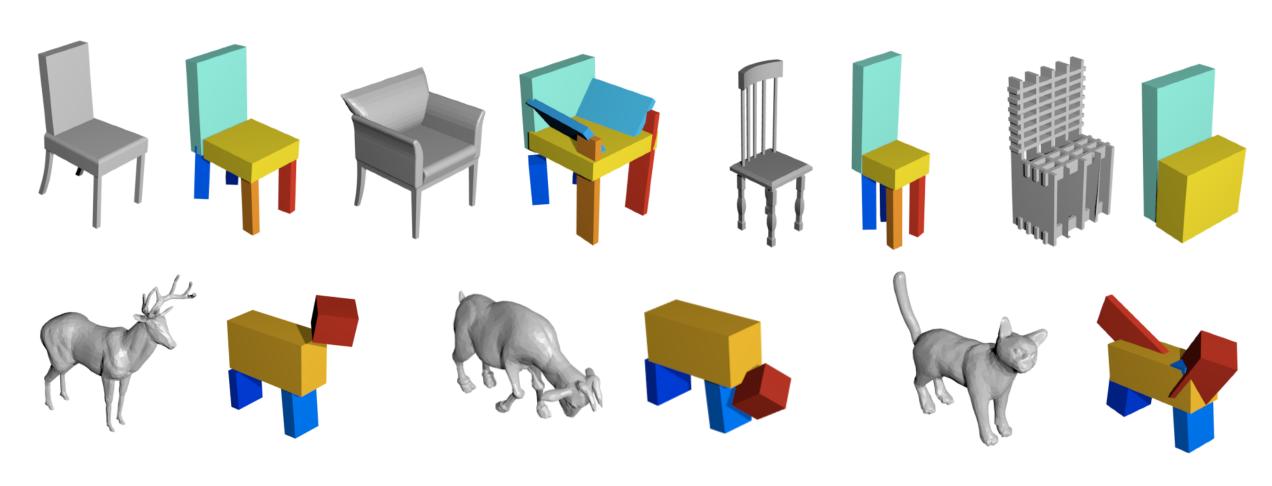
volumetric

polygonal mesh

point cloud

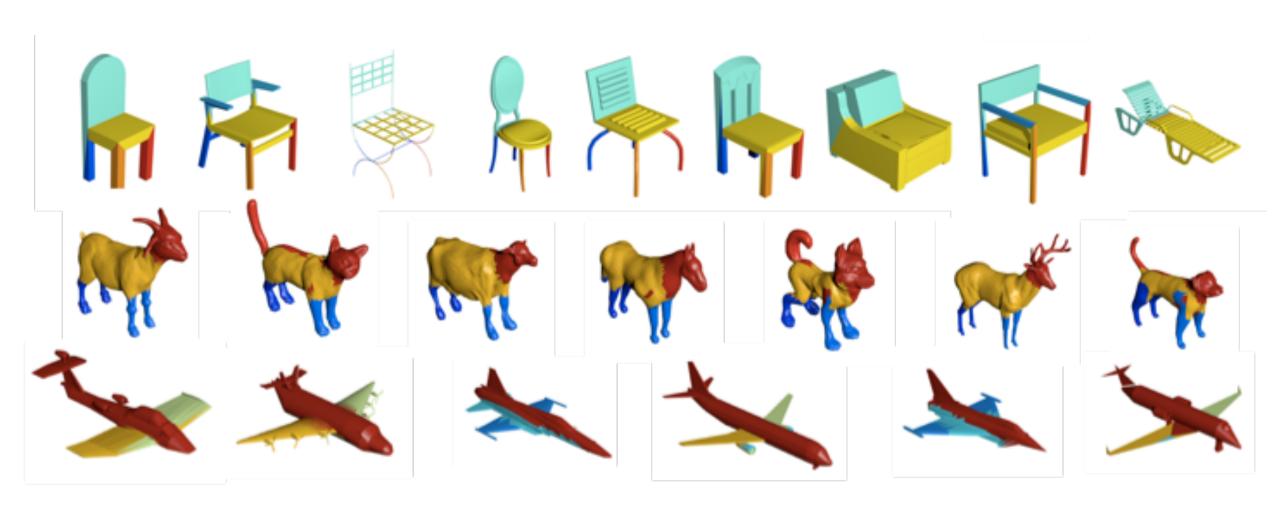
primitive-based CAD models

Primitive-based assembly



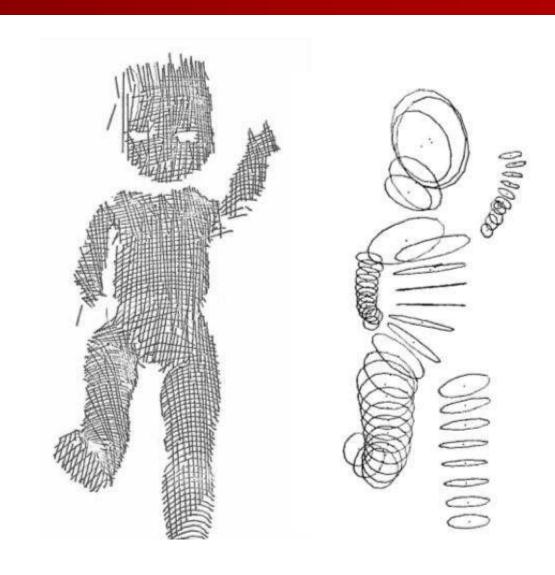
We **learn** to predict a corresponding shape composed by primitives. It allows us to predict **consistent** compositions across objects.

Unsupervised parsing



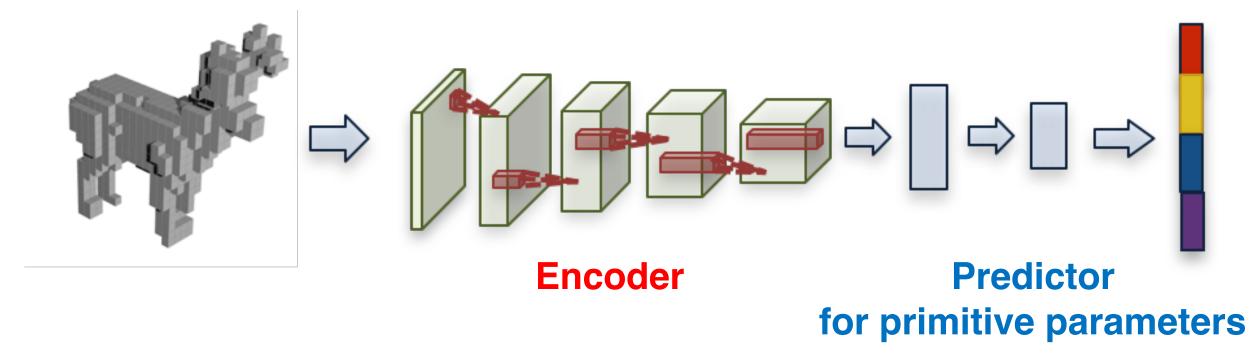
Each point is colored according to the assigned primitive

A historical overview



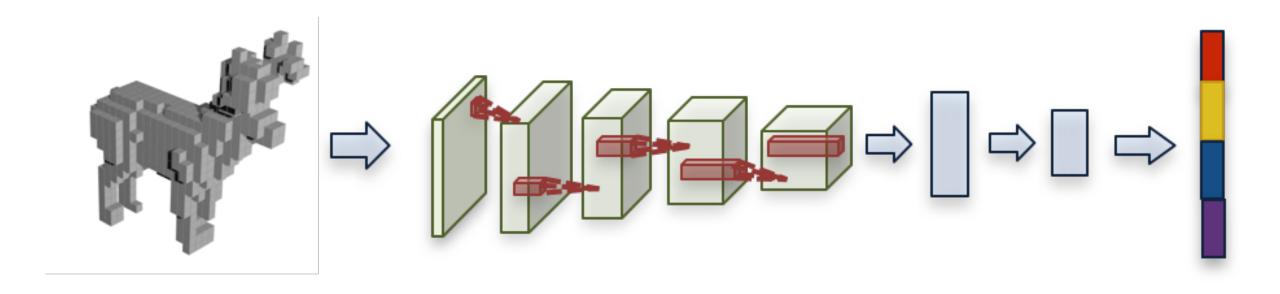
Generalized Cylinders, Binford (1971)

Approach



We predict primitive parameters: size, rotation, translation of M cuboids.

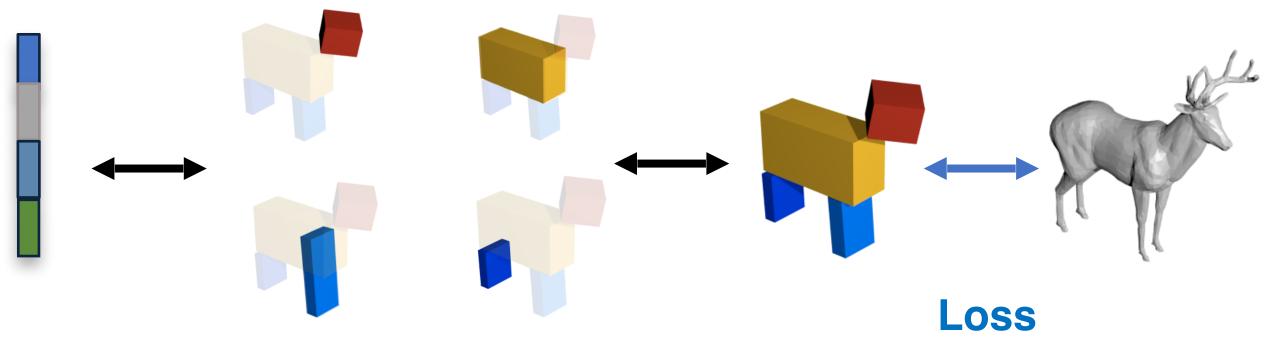
Approach



We predict primitive parameters: size, rotation, translation of M cuboids.

Variable number of parts? We predict "primitive existence probability"

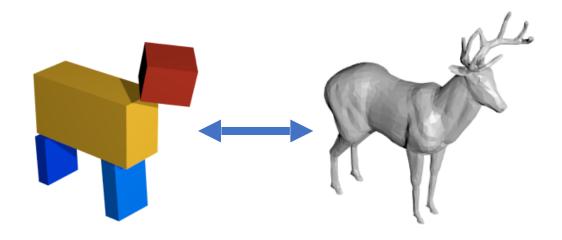
Loss function



Loss function construction

Basic idea: Chamfer distance!

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$



Loss function construction

Sample points on the groundtruth mesh and predicted assembly

$$\Delta(|\bullet,|\bullet|) + \Delta(|\bullet,|\bullet|) + \Delta(|\bullet,|\bullet|) \dots + \Delta(|\bullet,|\bullet|)$$

Each point is a linear function of mesh/primitive vertex coordinates

Differentiable!

Loss function construction

Sample points on the groundtruth mesh and predicted assembly

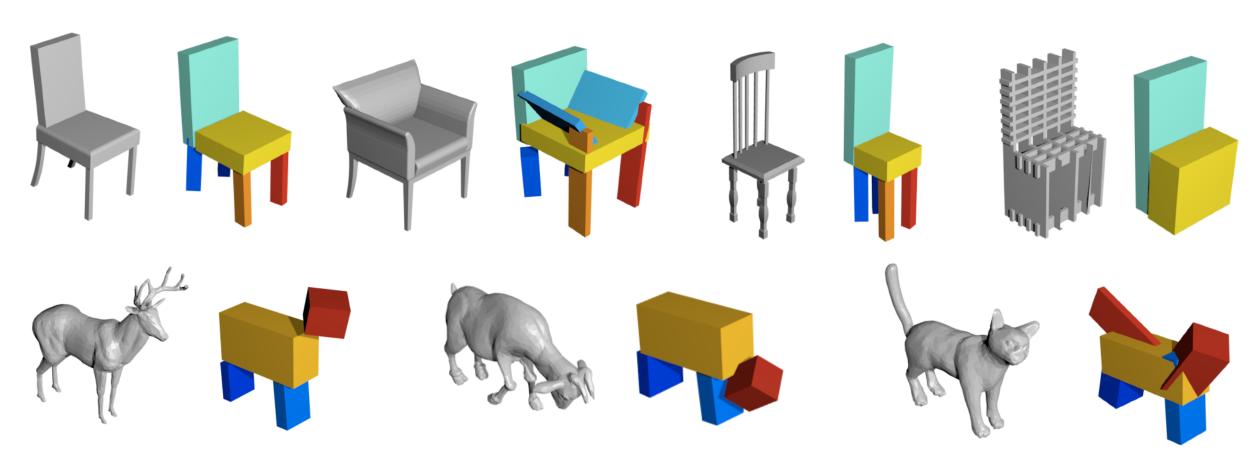
$$\Delta(|\bullet,|\bullet|) + \Delta(|\bullet,|\bullet|) + \Delta(|\bullet,|\bullet|) \dots + \Delta(|\bullet,|\bullet|)$$

Each point is a linear function of mesh/primitive vertex coordinates

Differentiable!

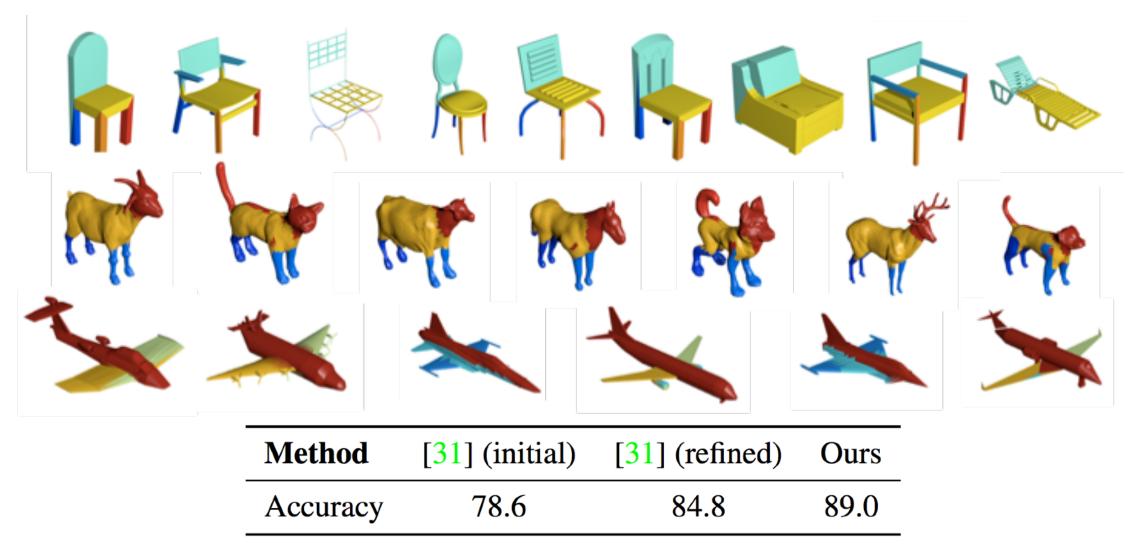
Speed up the computation leveraging parameterization of primitives

Consistent primitive configurations



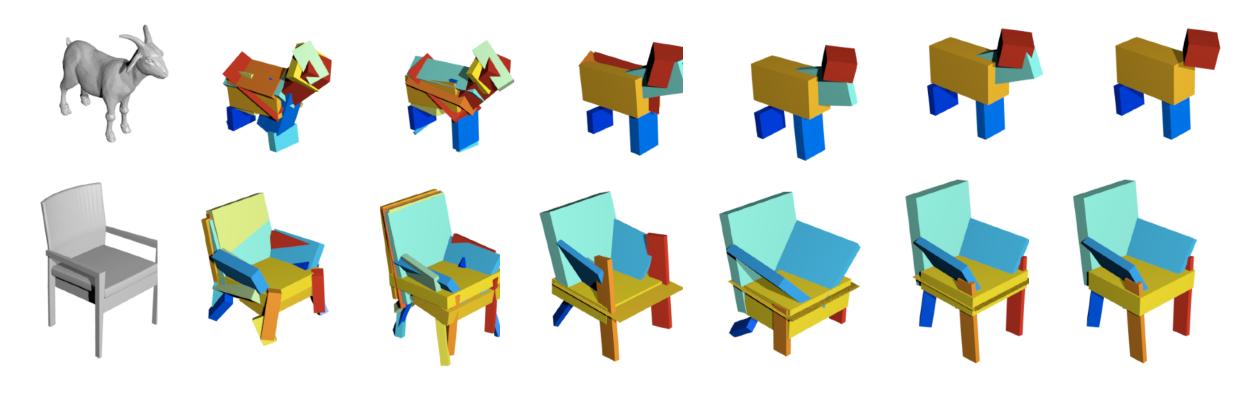
Primitive locations are **consistent** due to the **smoothness** of primitive prediction network

Unsupervised parsing



Mean accuracy (face area) on Shape COSEG chairs.

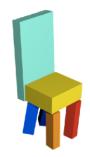
Analysis



Shapes become more parsimonious as training progresses (due to our parsimony reward)

Image-based modeling





Open problems

How to introduce other primitives types?

Towards image based modeling, how to add more operations to edit those primitives?

e.g., Deform? Extrude? Loop cut?

How to use it for design purposes? For example, with certain structural and functional constraints.

Ultimately, we expect to automate the modeling process from images, as artists do.

Resources

For both works, paper and source codes are available.

- Haoqiang Fan*, Hao Su*, Leonidas Guibas, A Point Set Generation Network for 3D Object Reconstruction from a Single Image, CVPR2017 (oral)
- Shubham Tulsiani, Hao Su, Leonidas Guibas, Alexei Efros, Jitendra Malik, Learning Shape Abstractions by Assembling Volumetric Primitives, CVPR2017 (oral)

To sum up

We explore to generate geometric representations by neural networks

Point cloud based reconstruction has better quality than state-of-the-art volumetric shape generators

Primitive-based CAD models can be generated to abstract polygonal meshes in an unsupervised manner

Keys:

network structure leveraging geometric natural statistics loss function design