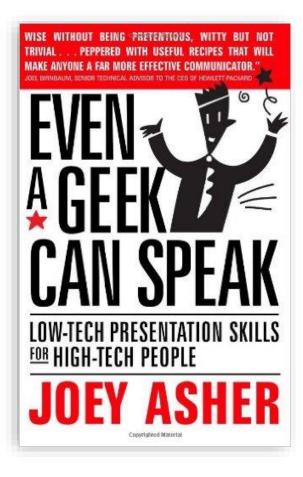
Image Based Reconstruction I

Qixing Huang Jan. 31th 2017

A Couple of Words on Paper Presentations

- Four components:
 - Motivation
 - Technical Merit
 - Results
 - Broader Impact
- Paper Strength/Weakness
- Read relevant papers as well

Making Presentations



The Craft of Scientific Presentations

Critical Steps to Succeed and Critical Errors to Avoid

Second Edition

D Springer

Tools We Will Utilize

Robust Norms

• MRF Inference

Continuous Optimization

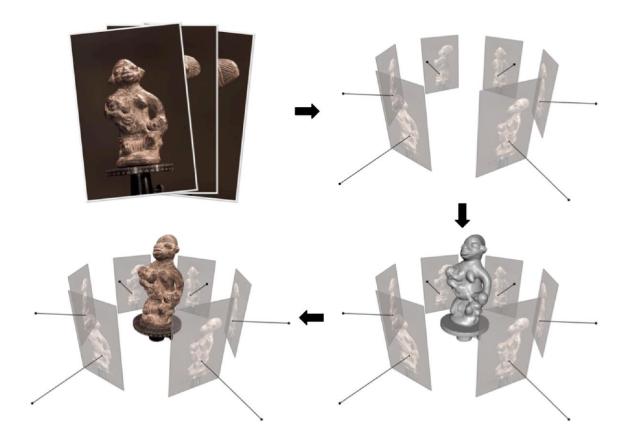
 Newton method

Geometry Reconstruction from Images

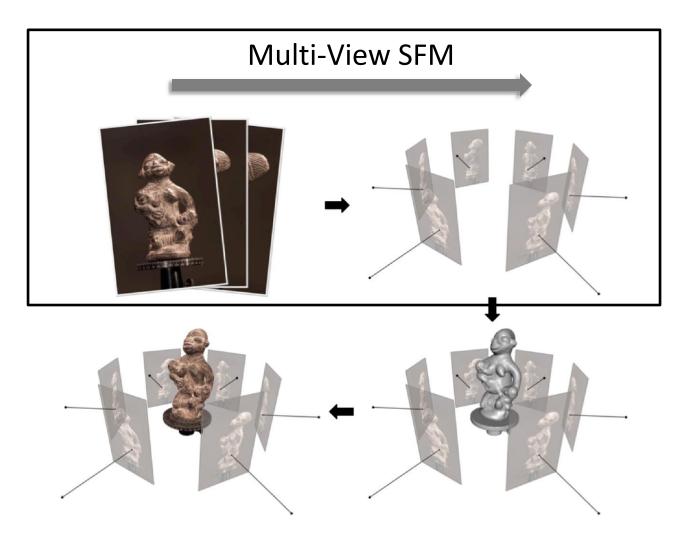
3D Reconstruction of a typical medium-size city

~60,000 images of 50 megapixels Reconstructed fully automatically in 7 days by 12 servers

Image-Based Geometry Reconstruction Pipeline



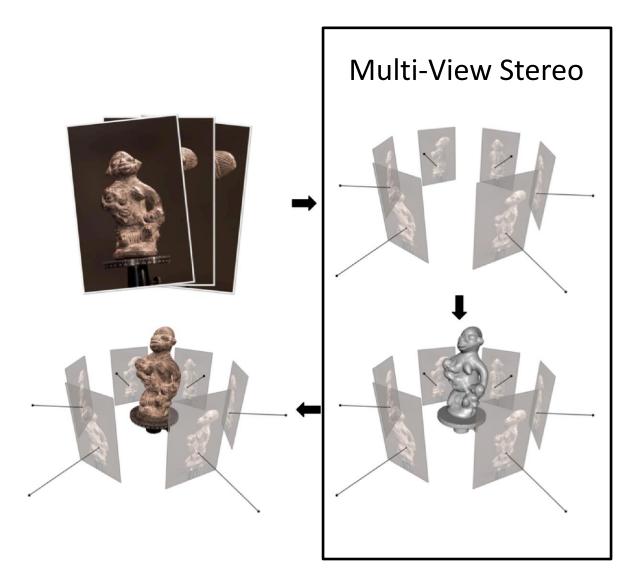
This Lecture: Multi-View SFM



SFM Outputs Cameras + (Sparse) Point clouds

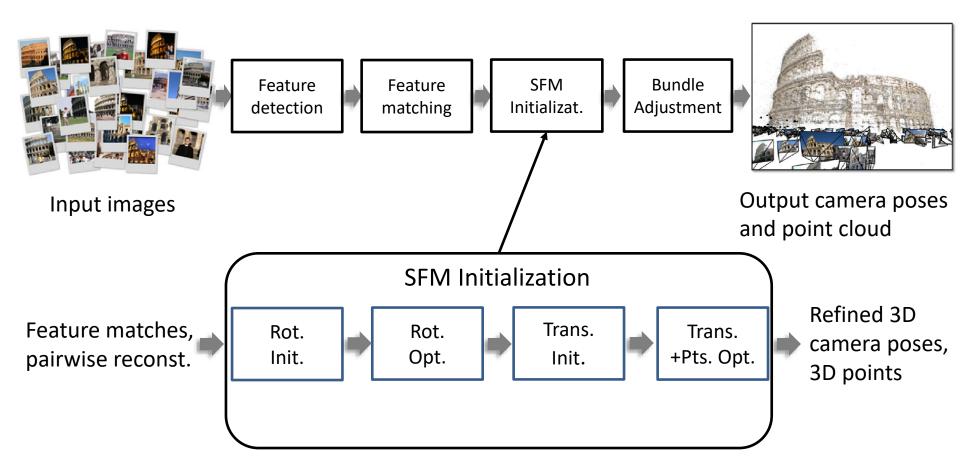
[Crandall et al. 13]

Next Lecture: Multi-View Stereo

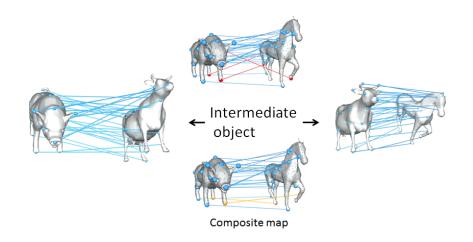


Multi-View SFM Pipeline

[Crandall et al. 13]



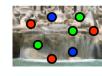
Similar Problems



Scan Alignment [Gelfand et al. 05] Data-Driven Map Computation [Huang et al. 13]

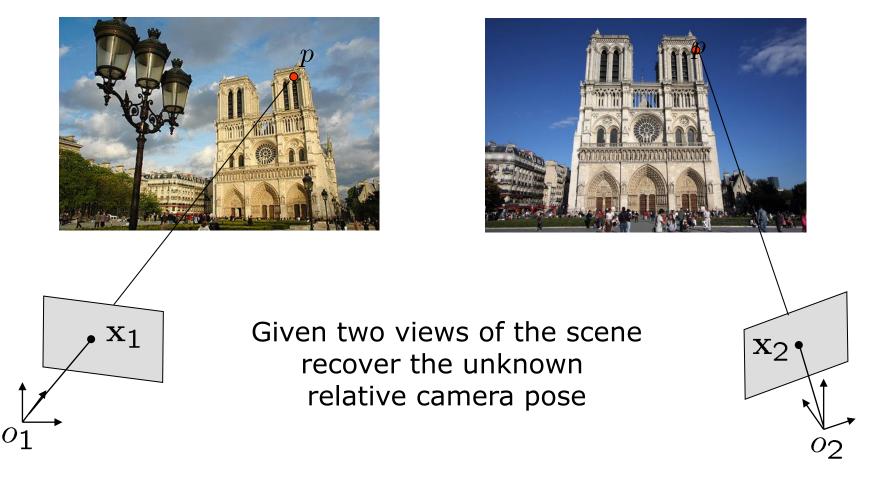
Image Features

SIFT Features [Lowe, IJCV 2004]



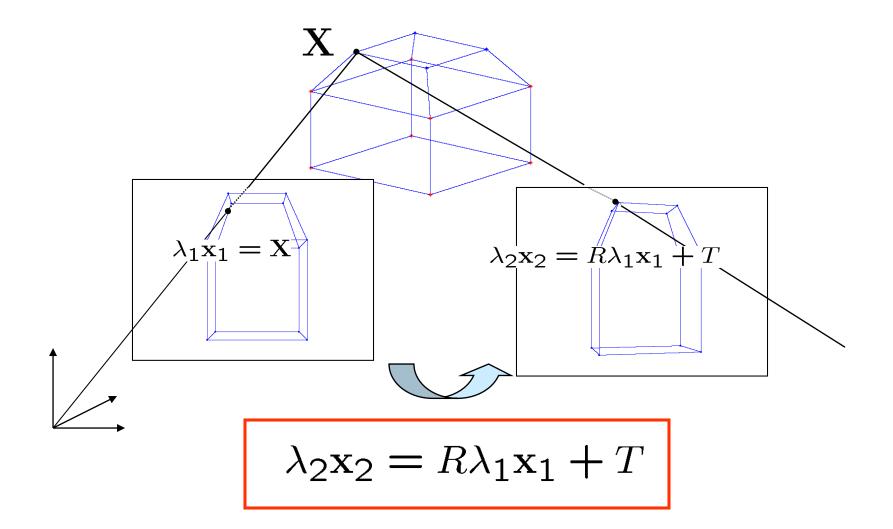
Pairwise Image Matching

Goal

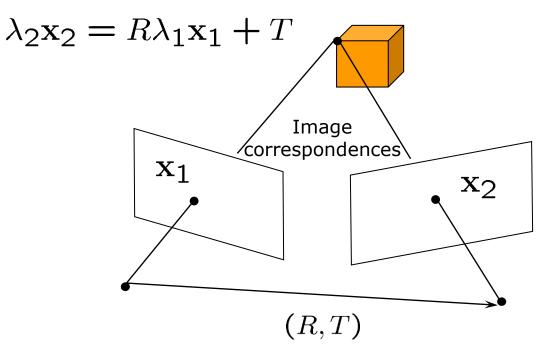


Assume we known the intrinsic camera parameters Five parameters to optimize

Rigid Body Motion --- Two Views



Epipolar Geometry



• Algebraic Elimination of Depth [Longuet-Higgins '81]:

$$\mathbf{x}_2^T \underbrace{\widehat{T}R}_E \mathbf{x}_1 = \mathbf{0}$$

• Essential matrix $E = \hat{T}R$

Nister's Five-Point Method

 $\tilde{q}^{\top}\tilde{E}=0$ $\tilde{q} \equiv \begin{bmatrix} q_1 q_1' & q_2 q_1' & q_3 q_1' & q_1 q_2' & q_2 q_2' & q_3 q_2' & q_1 q_3' & q_2 q_3' & q_3 q_3' \end{bmatrix}^\top$ $\tilde{E} \equiv \begin{bmatrix} E_{11} & E_{12} & E_{13} & E_{21} & E_{22} & E_{23} & E_{31} & E_{32} & E_{33} \end{bmatrix}^{\top}$ E = xX + yY + zZ + wW $EE^{\top}E - \frac{1}{2}trace(EE^{\top})E = 0$ R

RANSAC [Fischler and Bolles' 81]

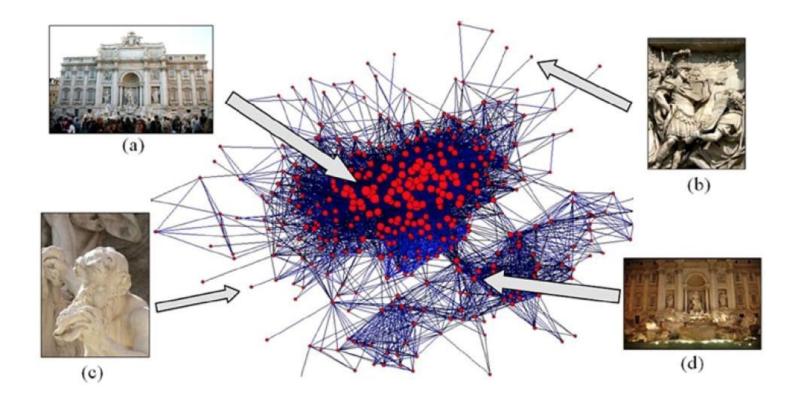
• Pick five feature matches

Estimate the essential matrix and count the matched SIFT features

Return the one with the most matched SIFT features

Which Pairs of Images to Match?

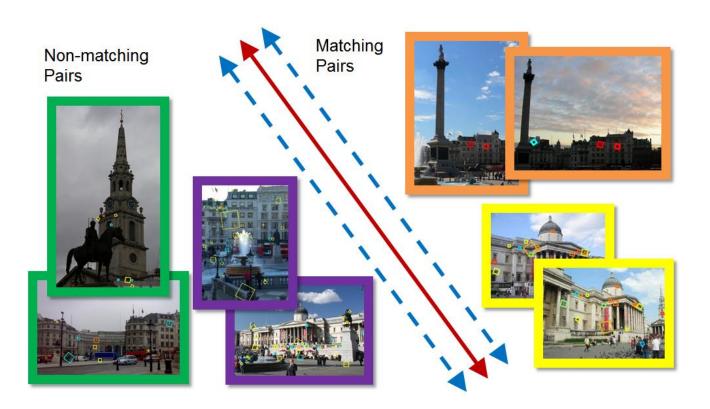
Nearest Neighbors in Image Descriptors (e.g., GIST and HOG)



Only works for images that significantly overlap

Train a Classifier to Differentiate Good/Bad Matches

[Cao and Snavely' 12]



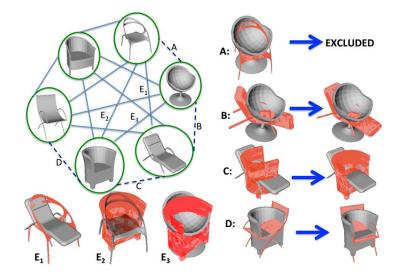
Iterative Matching/Learning

• Start from matching image descriptors

• Verification via image matching

 Train a classifier to find more potential image pairs and iterate

Graph Connectivity Optimization --maximizing $\lambda_2(G)$



Fuzzy correspondences on shapes [Kim et al 12]

Imageweb [Heath et al 10]

Multi-View Pose Estimation

What We Have So Far

• A graph of images

- Along each edge
 - Noisy relative poses
 - Matched SIFT features

Three Approaches of Multi-View Pose Estimation (Goal: Remove Bad Matches)

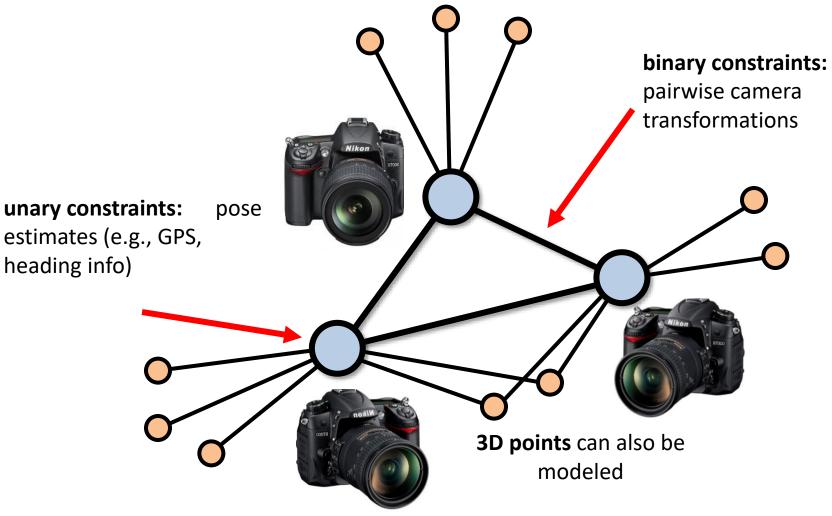
Combinatorial Optimization

Convex/Nonconvex Optimizations

• MRF-Based Formulation

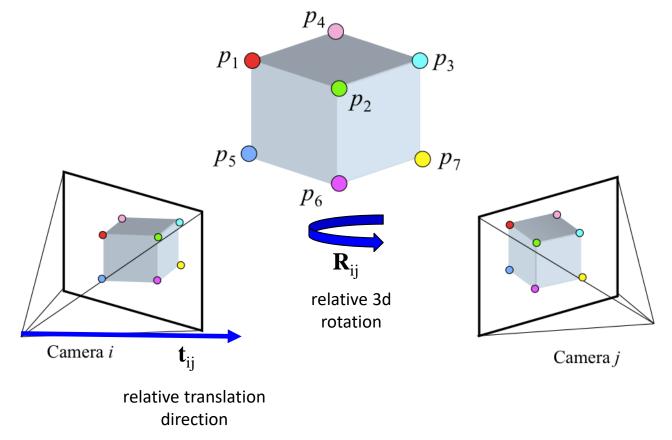
The MRF model

• Input: set of images with correspondence

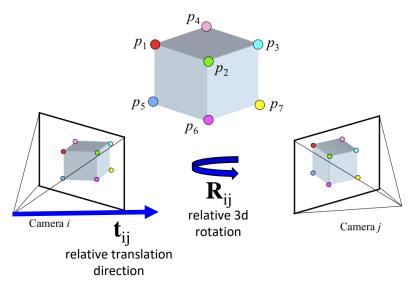


Constraints on camera pairs

 Compute relative pose between camera pairs using 2-frame SfM [Nister04]



Constraints on camera pairs



 Find absolute camera poses (R_i, t_i) and (R_j, t_j) that agree with these pairwise estimates:

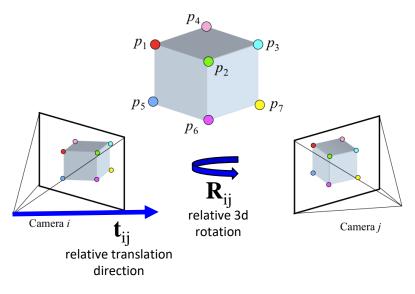
$$\mathbf{R}_{ij}$$
 = $\mathbf{R}_i^ op \mathbf{R}_j$

 $\lambda_{ij} \mathbf{t}_{ij} \;\;=\;\; \mathbf{R}_i^+ \left(\mathbf{t}_j^ight)$

rotation consistency

translation direction consistency

Constraints on camera pairs



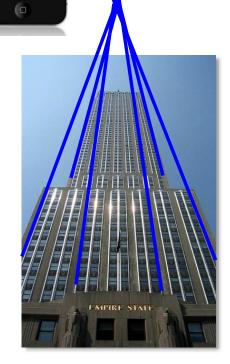
 Define robustified error functions to use as pairwise potentials:

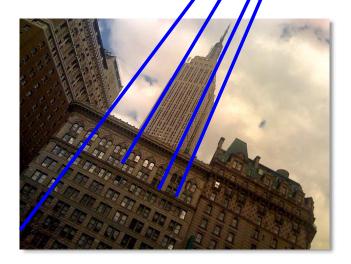
$$egin{aligned} &d^{\mathbf{R}}(\mathbf{R}_{\underline{i}j},\mathbf{R}_{i}^{ op}\mathbf{R}_{j})\ &d^{\mathbf{R}}(\mathbf{R}_{a},\mathbf{R}_{b})=
ho_{R}(||\mathbf{R}_{a}-\mathbf{R}_{b}||) \end{aligned}$$

 $d^{\mathbf{T}}(\mathbf{t}_{j} - \mathbf{t}_{i}, \mathbf{R}_{i}\mathbf{t}_{ij})$ $d^{\mathbf{T}}(\mathbf{t}_{a}, \mathbf{t}_{b}) = \rho(\operatorname{angleof}(\mathbf{t}_{a}, \mathbf{t}_{b}))$

Prior pose information

- Noisy absolute pose info for some cameras
 - 2D positions from geotags (GPS coordinates)
 - Orientations (tilt & twist angles) from vanishing point detection [Sinha10]





Overall optimization problem

 Given pairwise and unary pose constraints, solve for absolute camera poses simultaneously – for *n* cameras, estimate

$$\mathcal{R} = (\mathbf{R_1}, \mathbf{R_2}, ..., \mathbf{R_n})$$
 and $\mathcal{T} = (\mathbf{t_1}, \mathbf{t_2}, ..., \mathbf{t_n})$

so as to minimize total error over the entire graph

$$D^{\mathbf{R}}(\mathcal{R}) = \sum_{e_{ij} \in E_C} d^{\mathbf{R}} \left(\mathbf{R}_{ij}, \mathbf{R}_i^{\top} \mathbf{R}_j \right) + \alpha_1 \sum_{I_i \in \mathcal{I}} d^{\mathbf{O}}_i(\mathbf{R}_i)$$

 $u_i \in \mathcal{I}$ unary rotation consistency $I_i \in \mathcal{I}$ unary rotation consistency $D^{\mathbf{T}}(\mathcal{T}, \mathcal{R}) = \sum_{e_{ij} \in E_C} d^{\mathbf{T}}(\mathbf{t}_j - \mathbf{t}_i, \mathbf{R}_i \mathbf{t}_{ij}) + \alpha_2 \sum_{I_i \in \mathcal{I}} d^{\mathbf{G}}_i(\mathbf{t}_i)$

MRF Inference

 Convert continuous optimization into a labeling problem:

$$E(\mathbf{x}) = \sum_{i} f_i(x_i) + \sum_{(i,j)\in\mathcal{E}} f_{ij}(x_i, x_j)$$

• A well studied problem with efficient solvers

Incorporate Points

- Point tracks --- interest points across multiple images that have similar SIFT descriptors
- Select point tracks that cover each cameracamera edge five times and each image ten times
- Relation between 3D location and image coordinates:

$$\mu_{ik}\mathbf{x}_{ik} = \mathbf{K}_i\mathbf{R}_i(\mathbf{X}_k - \mathbf{t}_i)$$

Intrinsic camera parameters

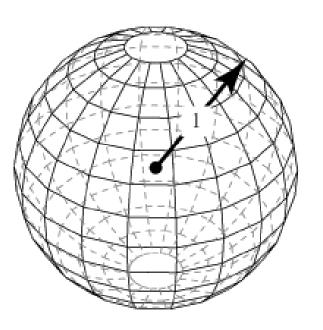
Solving the MRF

- Use discrete loopy belief propagation [Pearl88]
 - Up to 1,000,000 nodes (cameras and points)
 - Up to 5,000,000 edges (constraints between cameras and points)
 - 6-dimensional label space for cameras (3-dimensional for points)

Solving the MRF

- Reduce 6-dimensional label space by...
 - Solving for rotations & translations
 independently[Martinec07], [Sim06], [Sinha08]
 - Assuming camera twist angles are near 0
 - Initially solving for 2D camera positions
- Speed up BP by...
 - Using a parallel implementation on a cluster
 - Using distance transforms (aka min convolutions) to compute BP messages in O(L) time in # of labels (instead of O(L²)) [Felzenszwalb04]

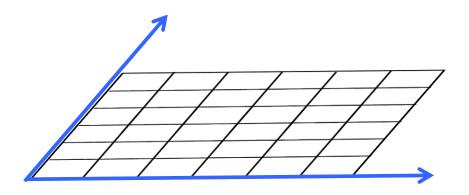
Discrete BP: Rotations



- Parameterize viewing directions as points on unit sphere
 - Discretize into 10x10x10 = 1,000 possible labels
 - Measure rotational errors as robust Euclidean distances on sphere (to allow use of distance transform)

Discrete BP: Translations

- Parameterize positions as 2D points in plane
 - Use approximation to error function
 - (to allow use of distance transforms)
 - Discretize into up to 300 x 300 = 90,000 labels



Bundle Adjustment

Rotation Optimization

$$D^{\mathbf{R}}(\mathcal{R}) = \sum_{e_{ij} \in E_C} d^{\mathbf{R}} \left(\mathbf{R}_{ij}, \mathbf{R}_i^{\top} \mathbf{R}_j \right) \mathbf{x}^2$$
$$d^{\mathbf{R}}(\mathbf{R}_a, \mathbf{R}_b) = \rho_R(||\mathbf{R}_a - \mathbf{R}_b||)$$

Using quadratic loss after removing outlier rotations Fix one image (or use geotags which provide pose priors)

Gauss-Newton Method

 The Gauss–Newton algorithm is a method used to solve non-linear least squares problems

$$\begin{split} \mathsf{f}(\mathsf{x}) &\equiv \frac{1}{2} \bigtriangleup \mathsf{z}(\mathsf{x})^{\mathsf{T}} \mathsf{W} \bigtriangleup \mathsf{z}(\mathsf{x}) \\ \mathsf{g} &\equiv \frac{\mathsf{d}\mathsf{f}}{\mathsf{d}\mathsf{x}} = \bigtriangleup \mathsf{z}^{\mathsf{T}} \mathsf{W} \mathsf{J} \\ \mathsf{H} &\equiv \frac{\mathsf{d}^2 \mathsf{f}}{\mathsf{d}\mathsf{x}^2} = \mathsf{J}^{\mathsf{T}} \mathsf{W} \mathsf{J} + \sum_i (\bigtriangleup \mathsf{z}^{\mathsf{T}} \mathsf{W})_i \frac{\mathsf{d}^2 \mathsf{z}_i}{\mathsf{d}\mathsf{x}^2} \\ &\qquad \mathsf{H} &\approx \mathsf{J}^{\mathsf{T}} \mathsf{W} \mathsf{J}. \\ \end{split}$$

$$(\mathsf{J}^{\mathsf{T}}\mathsf{W}\,\mathsf{J})\,\delta\mathsf{x}\,=\,-\mathsf{J}^{\mathsf{T}}\mathsf{W}\,\triangle\mathsf{z}$$

Linear Convergence for Practical Problems

Levenberg – Marquardt Heuristic

 The LMA interpolates between the Gauss– Newton algorithm (GNA) and the method of gradient descent

• When far from the minimum it acts as a steepest descent and it performs gauss newton iteration when near to the solution

$$(\mathsf{H} + \lambda \, \mathsf{W}) \, \delta \mathsf{x} \; = \; -\mathsf{g}$$

Translation and Point Optimization

Camera-Camera $\lambda_{ij}\mathbf{t}_{ij} = \mathbf{R}_i^{\top}(\mathbf{t}_j - \mathbf{t}_i) \qquad \hat{\mathbf{t}}_{ij} = \mathbf{R}_i\mathbf{t}_{ij}$ Relation:

Camera-Point Relation: $\mu_{ik}\mathbf{x}_{ik} = \mathbf{K}_i\mathbf{R}_i(\mathbf{X}_k - \mathbf{t}_i)$ $\hat{\mathbf{x}}_{ik} = \mathbf{R}_i^{\top}\mathbf{K}_i^{-1}\mathbf{x}_{ik}$

$$D^{\mathbf{T}}(\mathcal{T}) = \alpha_2 \sum_{e_{ij} \in E_C} d^{\mathbf{T}}(\mathbf{t}_j - \mathbf{t}_i, \hat{\mathbf{t}}_{ij}) + d^{\mathbf{T}}(\mathbf{t}_i - \mathbf{t}_j, \hat{\mathbf{t}}_{ji}) + \alpha_3 \sum_{e_{ik} \in E_F} d^{\mathbf{T}}(\mathbf{X}_k - \mathbf{t}_i, \hat{\mathbf{x}}_{ik}) \\ d^{\mathbf{T}}(\mathbf{v}_a, \mathbf{v}_b) = \rho(\operatorname{angleof}(\mathbf{v}_a, \mathbf{v}_b))$$

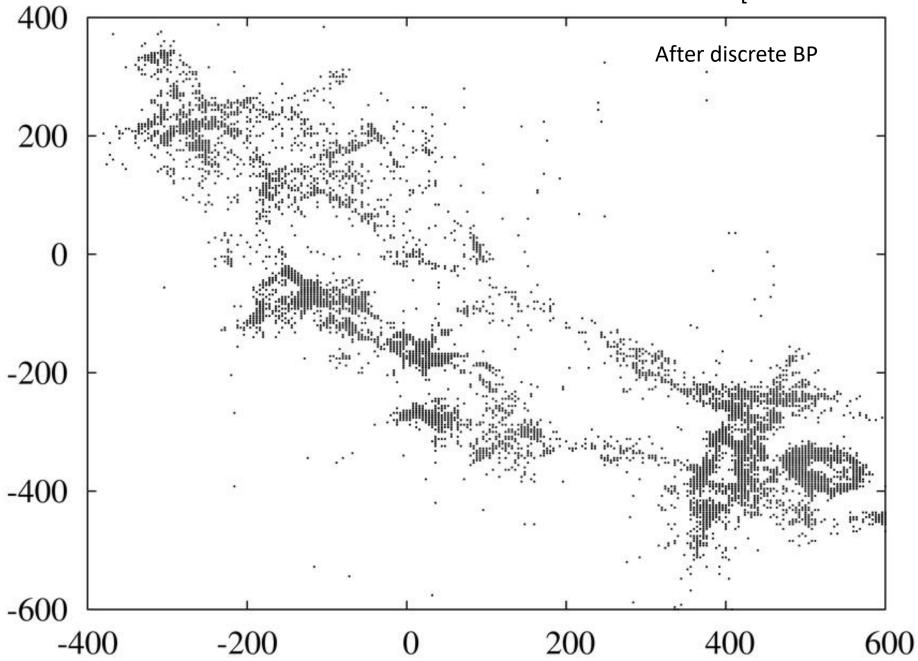
Positional variables are decoupled!

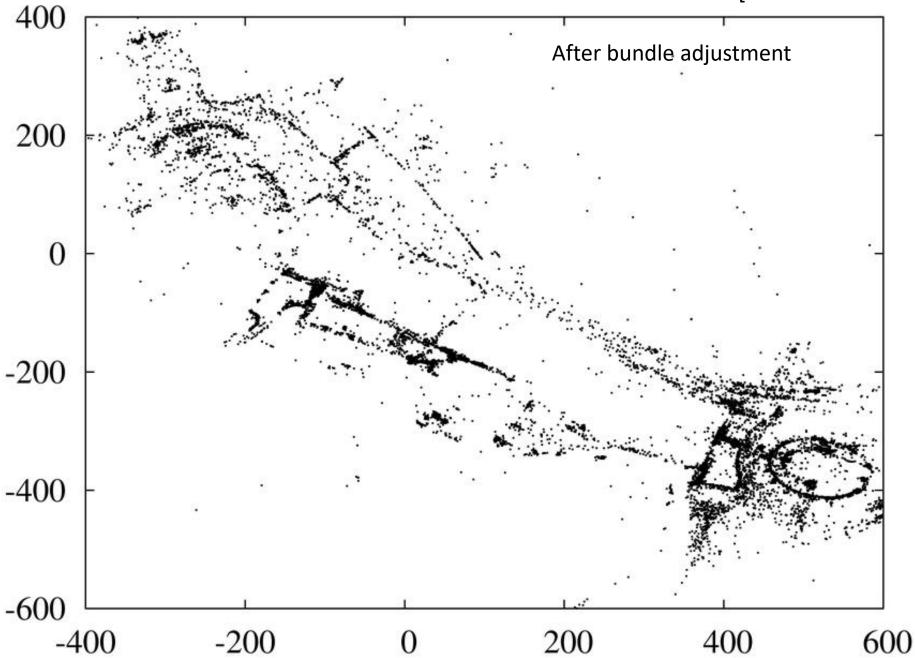
Schur Trick

$$\begin{bmatrix} \operatorname{Trans.} & \operatorname{Poss.} \\ B & E \\ E^{\top} & C \\ \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta z \end{bmatrix} = \begin{bmatrix} v \\ w \end{bmatrix}$$

Block Diagonal Matrix
$$\Delta z = C^{-1} (w - E^{\top} \Delta y)$$
$$\begin{bmatrix} B - EC^{-1}E^{\top} \end{bmatrix} \Delta y = v - EC^{-1}w$$

Small-scale linear system

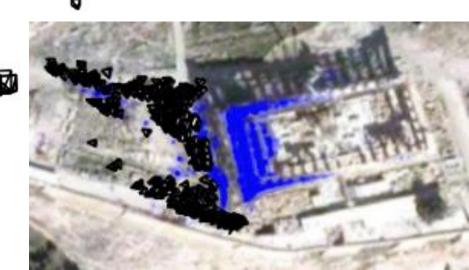


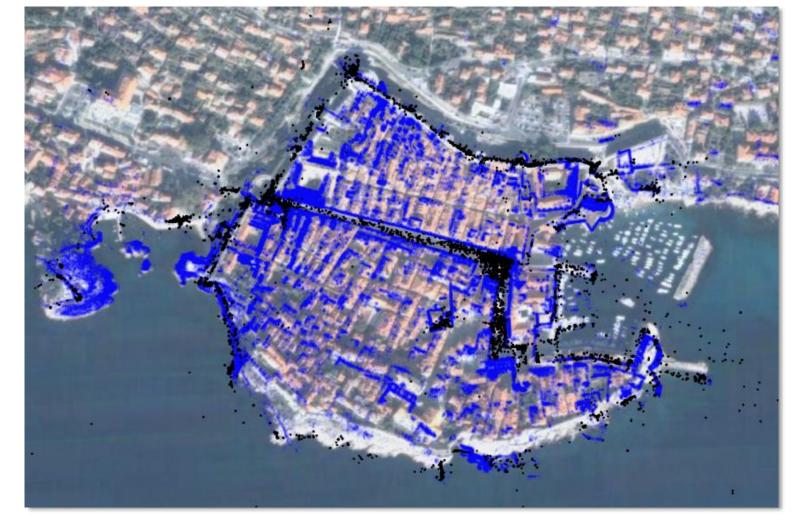


Experimental Results

Acropolis

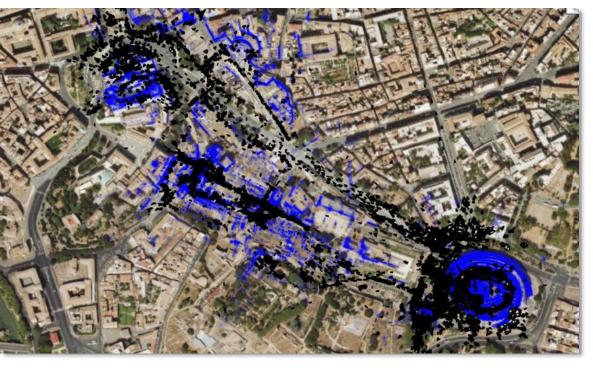
Reconstructed images: 454 Edges in MRF: 65,097 Median camera pose difference wrt IBA: 0.1m





Dubrovnik (Croatia) Reconstructed images: 6,532 Edges in MRF: 1,835,488 Median camera pose difference wrt IBA: 1.0m

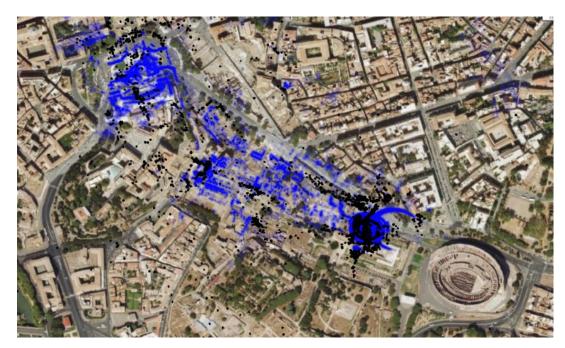
Central Rome Reconstructed images: 14,754 Edges in MRF: 2,258,416



Central Rome

Reconstructed images: 14,754 Edges in MRF: 2,258,416 **Median camera pose difference** wrt IBA: 25.0m

Our result



Incremental Bundle Adjustment [Agarwal09]

How can Deep Learning Help?

Pipeline Steps

• Pairwise matching?

• Graph reconstruction?

• Multi-image matching?