
The Design of a Distributed Model

Checking Algorithm for Spin

Gerard J. Holzmann

http://eis.jpl.nasa.gov/lars

http://spinroot.com/gerard/

Presented at FMCAD 2006,

San Jose, California

November 14, 2006

FMCAD2006 2

Multi-Core model checking

• Multi-Core has become the dominant trend
– No More Moore

• To leverage this change:
– Extend logic model checking algorithms

• Not targeting special purpose hardware (clusters), but desktops

• This means: multi-core & shared memory

• Should be possible to get automatic scaling of performance with
a growing number of cores

– Support all verification & storage modes in Spin

• Safety & Liveness (including LTL, up to ω-regular properties)

• Bitstate hashing, hashcompact, exhaustive storage, etc.

• Partial order reduction should work the same

• A potential hurdle: distributed model checking algorithms
– Have been studied for many years

• Mostly targeting compute clusters – few target shared memory

• Mostly restricting to Safety properties – no good solutions for
Liveness

• Results often incomparable – few benchmarks

dual-core

Spin verification

FMCAD2006 3

what can we hope to achieve

design tradeoffs

Fast mc: 10

Slow mc: 50

200

CPU-cluster

(Distributed

memory)

1relative time to

transfer a state

to another CPU

Fast mc: 10

Slow mc: 50

relative time to

generate a new

state & check if

it is previously

visited

Multi-Core PC

(Shared

memory)

Model Checker

Performance:

600 µsecRAM to

network port

3 µsecRAM to RAM

(memcpy)

copying

10 Kb

CPU

Performance:

relevant factors

FMCAD2006 4

what can we hope to achieve
speedup with increasing amounts of decoupling

Speedup as function of Independence

Distributed memory

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Ratio Local to Remote Expansion 1..40

Relative Cost to Handoff a State: 200 time units

Cost to Generate a new State:

Fast model checker: 10 time unit

Slow model checker: 50 time units

S
p
e
e
d
u
p
 R
e
a
li
z
e
d
 o
n
 1
0
0
 C
P
U
s

Speedup as function of Independence

Shared memory

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

102.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Ratio Local to Remote Expansion 1..40

Relative Cost to Handoff a State: 1 time unit

Cost to Generate a new State:

Fast model checker: 10 time units

Slow model checker: 50 time units
S
p
e
e
d
u
p
 R
e
a
li
z
e
d
 o
n
 1
0
0
 C
P
U
s

hypothesis 2:

multi-core platforms realize performance gains

more easily than cluster computer systems

(a 10-core PC may realize better performance

than a 100-cpu cluster)

hypothesis 1:

unoptimized implementations will benefit more

than optimized implementations of model

checkers

FMCAD2006 5

basic framework
multi-core model checking, with shared memory

transfer

state

queue

optional:

non-shared

state space

local

data

shared

state space

in RAM

Multiple CPU nodes

• At selected points in the search, a CPU

can hand off a state to another CPU, by

adding it to the target’s work queue

•Using algorithms for locking access to

shared data, and for distributed termination

detection (verifiable with standard Spin.)

•The state space arena can be shared

(default) or non-shared (optional)

• A Spin extension for dual-core

• ~ 900 lines of new code, supporting all

relevant verification modes including LTL,

compatible with partial order reduction – no

increase in computational complexity

• The dual-core algorithm for safety

properties scales to N-core systems –

verification of liveness properties so far

benefits only dual-core (i.e., it is an open
problem to do liveness verification on N-cores

without increase in computational complexity)

all shared work queues are bounded

(they serve to achieve load balancing –

when full, state handoffs can be skipped)

FMCAD2006 6

sample output of a dual-core Spin run
$ spin –a petersonN
$ cc -DNOREDUCE -DDUAL_CORE-o pan pan.c
$./pan –z10000 –w27
states stored cpu1 308054 cpu2 106219 ratio: 2.9
states matched cpu1 90618 cpu2 43409 ratio: 2.1
(Spin Version 4.3.0 -- 8 October 2006)

+ Dual Core Processing
+ Partial Order Reduction

Hash-Compact 4 search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 44 byte, depth reached 10000, errors: 0
414273 states, stored
134027 states, matched
548300 transitions (= stored+matched)

0 atomic steps
hash conflicts: 145 (resolved)

Stats on memory usage (in Megabytes):
23.199 equivalent memory usage for states (stored*(State-vector + overhead))
10.045 actual memory usage for states (compression: 43.30%)

State-vector as stored = 12 byte + 12 byte overhead
1073.742 memory used for hash table (-w27)
1296.000 memory used for DFS stack (-m27000000)
1024.000 memory used for shared work-queues
1073.741 other (proc and chan stacks)
3453.529 total actual memory usage

unreached in proctype user
line 57, state 30, "-end-"
(1 of 30 states)

cpu1: done, 706 Mb of shared state memory left

transfer

state

queues

106,219 states

explored

8,184 states

transferred

from cpu1 to

cpu2

1,973 states

transferred

from cpu2 to

cpu1

shared

state space

cpu2

308,054 states

explored

local

data

cpu1

local

data

poor load balancing

in this case

FMCAD2006 7

state handoff heuristics for liveness properties

• any “irreversible transition” in the
state reachability graph can serve
to split the state space

– separates state space into
disjoint parts

– these transitions can be used to
define state handoff points

• trivial application to Spin’s nested
depth-first search algorithm for
proving liveness:

– the handoff point is the start of
the nested search

– state spaces can be non-shared
(since they are disjoint anyway)

– should give an immediate (nearly)
2-fold speedup on dual-core
systems for all liveness properties

cpu1

cpu2

for an irreversible transition there

are no return edges across the

handoff point: the two parts of the

state reachability graph are disjoint

initial state

FMCAD2006 8

state handoff heuristics for safety properties

• what if there is no suitable irreversible

transition?

• we want to achieve:

– load balancing, but retain the benefits of

depth-first search and change as little as

possible in the search algorithms in Spin

– sufficient decoupling of cpu’s (a cpu should

be able to do at least N steps with a newly

received state, before it hands it off again)

• heuristic used: a handoff depth of modulo

N steps (e.g., N: 10..1000)

– method is intuitively simple

– giving user control over load-balancing

• generalizes to N-core systems

– should give near N-fold speedups on N

cores

cpu1

cpu2

cpu1

cpu1

cpu2

N

2N

3N

4N

using a shared hash-table

each cpu builds a dfs-stack of

N steps and then hands off any

successor at level N+1

FMCAD2006 9

performance of this method

Liveness Property -- without partial order reduction

Leader Election Protocol -- 7 Nodes

69.765

38.53

0

10

20

30

40

50

60

70

80

7

Number of Nodes in Ring

S
e
c
o
n
d
s

single core (cygwin)

dual core (32 Mb segment)

model: leader election in a uni-directional ring (Dolev, Klawe & Rodeh 1982)

problem size: 7 nodes in ring (723K reachable states without p.o. reduction)

comparison of runtime requirements for safety (left) and liveness (right):

single-core standard Spin verification blue

dual-core verification new algorithm green

assertions, freedom of deadlock, etc.

(with a fixed handoff depth)

[]<>oneleader
(never claim and nested dfs increase runtime)

Safety Properties -- without partial order reduction

Leader Election Protocol -- 7 Nodes

11.296

5.983

0

2

4

6

8

10

12

7

Number of Nodes in Ring

s
e
c
o
n
d
s

single core (cygwin)

dual core (32 Mb segment)

53% 55%

safety only liveness

FMCAD2006 10

sensitivity to the chosen handoff depth
the characteristic bathtub curve

Peterson's Algorithm N=4

MaxDepth SearchTree 2,770,018

SV 48

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

si
ng

le
-c
or
e 2 5 8 11

du
al
-c
or
e 17 20
10

01
25

01
40

01
55

01
70

01
85

01
10

00
0

50
00

0
30

00
00

14
00

00
0

26
00

00
0

Handoff depth

ru
n
ti
m
e

(s
e
c
o
n
d
s
)

100%

single-core

best

dual core

FMCAD2006 11

distributed termination detection
/* cf. EWD998 "Shmuel Safra's version of termination detection," 15 Jan. 1987. */

mtype = { Query, Quit, Work };

chan q[2] = [32] of { mtype, byte };

active [2] proctype N()
{ bool done = false;

byte s, r, n;

assert (_pid == 0 || _pid == 1);
q[1 - _pid]!Work,0; s++; /* seed work items */

accept: do /* the algorithm itself: */
:: q[_pid]?Work,0 -> r++;

if
:: (n < 16) -> q[1 - _pid]!Work,0; s++
:: true
fi

:: empty(q[0]) && !done && _pid == 0 -> /* only node 0 can initiate termination */
done = true; /* remember that we sent the Query msg */
q[1]!Query,s

:: q[_pid]?Quit,0 -> /* only node 1 receives this */
assert (_pid == 1);
break /* node 1 can now terminate */

:: q[_pid]?Query,n ->
if
:: _pid == 1 -> q[0]!Query,r /* respond to termination query from 0 */
:: _pid == 0 -> /* process response to our termination query */

if
:: n == s -> q[1]!Quit,0; break /* accepted; node 0 terminates */
:: else -> done = false /* try again */

fi fi
od;
assert (empty(q[_pid]))

}

FMCAD2006 12

Peterson’s mutual exclusion algorithm (1981)

bool turn, flag[2];

byte ncrit;

active [2] proctype user() /* two processes */

{ assert(_pid == 0 || _pid == 1);

do /* do forever */

:: flag[_pid] = 1; turn = _pid;

do /* wait */

:: flag[1 - _pid] != 0 ->

if

:: turn != 1 - _pid

:: else -> break

fi

:: else -> break

od;

ncrit++;

assert(ncrit == 1); /* in critical section */

ncrit--;

flag[_pid] = 0

od

}

Surprise: a straight C implementation does not

necessarily guarantee mutual exclusion.

A reference implementation in C on a 3.2 GHz

dual-core Intel Pentium D – reveals a low

probability of mutex violations… (~ 1 in 106).

It is caused by out of order execution optimization

in the chip itself (not visible in the assembly code).

peterson.c:

#define MB() __asm__ __volatile__ ("mfence" : : : "memory")

MB();

while (*sh_flag1 == 1 && *sh_turn == 1)

{ MB();

}

a fix: add memory barriers

FMCAD2006 13

the alternative….

int

tas(volatile int *s)

{ int r;

__asm__ __volatile__(

"xchgl %0, %1 \n\t"

: "=r"(r), "=m"(*s)

: "0"(1), "m"(*s)

: "memory");

return r;

}

Ugly, but it works, and is fast

Introduces a first platform dependency:

different definition of the test&set

instruction for each CPU-type

(luckily there aren’t many different

CPU types in use today)

FMCAD2006 14

65.47

46.42

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

runtime

(seconds)

single-core dual-core

Peterson's algorithm N=4

handoff depth 8, maxdepth 2.7M

172.85

88.19

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

runtime

(seconds)

single-core dual-core

leader election protocol N=7

handoff depth 26, maxdepth 295

more examples (dual-core – i.e., the maximal reduction is 50%)
data for runs without partial order reduction – to secure identical state space sizes are explored

fixed handoff depth – safety properties only

26.22

18.26

0

5

10

15

20

25

30

runtime

(seconds)

single-core dual-core

dining philosophers N=9

handoff depth 16, maxdepth 27K

39.73

23.17

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

 runtime

(seconds)

single-core dual-core

sliding window protocol W=5

handoff depth 110 steps, maxdepth 2M steps

runtime 42% reduced 47% reduced

31% reduced 30% reduced

FMCAD2006 15

single
110

optimized

unoptimized

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

optimized

unoptimized

hypothesis: the gain for un-optimized code will be

larger than for optimized code

39.73

23.17

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

 runtime

(seconds)

single-core dual-core

sliding window protocol W=5

handoff depth 110 steps, maxdepth 2M steps

42% reduction – standard compilation

22.72

15.14

0.00

5.00

10.00

15.00

20.00

25.00

runtime

(seconds)

single-core dual-core

sliding w indow protocol W=5

handoff depth 110 steps, maxdepth 2M steps

34% reduction – optimized –O2

FMCAD2006 16

adding partial order reduction
the cycle proviso

• to avoid infinite deferral of transitions
(the infamous ignoring problem) the
standard algorithm checks if any
successors are on the dfs stack (the
“cycle proviso”)

• but we don’t have a full dfs stack in
multi-core searches – the stack is split
across two or more cpus

• two modifications of the cycle proviso
are sufficient to restore soundness and
completeness: *)

1. a full expansion of successor states is
done for each ‘border state’ (since we
cannot tell if the handed off states are on
the stack)

2. previously visited states that are
generated by any cpu with a lower pid,
are treated as if they are on the dfs stack

• the cycle proviso works as before
elsewhere in the search

cpu1

cpu2

cpu1

cpu1

cpu2

N

2N

3N

4N

full expansion at all border states

*) formal proof courtesy Dragan Bosnacki

FMCAD2006 17

dining philosphers
with and without partial order reduction

Dining Philosphers N=9

with Partial Order Reduction Enabled

MaxDepth Search Tree 26,294

SV 156

0

5

10

15

20

25

30

si
ng

le
-c
or
e 2 5 8 11 14 17 20 23 26 29 41 71 10
1
10

01
25

01
40

01
55

01
70

01
85

01
10

00
1

Handoff Depth 1..30, 40-100, and 500-10,000

ru
n
ti
m
e
 (
s
e
c
o
n
d
s
)

unoptimized optimized

single-core

dual-core

Dining Philosphers N=9

MaxDepth Search Tree 26,294

SV 156

0

5

10

15

20

25

30

s
in
g
le
-c
o
re 2 5 8

1
1

1
4

1
7

2
0

2
3

2
6

2
9

4
1

7
1

1
0
1

1
0
0
1

2
5
0
1

4
0
0
1

5
5
0
1

7
0
0
1

8
5
0
1

1
0
0
0
1

Handoff Depth 1..101 and 501..10001

ru
n
ti
m
e
 (
s
e
c
o
n
d
s
)

single-core

dual-core

with partial order reduction without

no major differences

(the partial order reduction algorithm is

not very effective on this particular problem)

Handoff Depth Handoff Depth

FMCAD2006 18

another example: Peterson’s algorithm
with and without partial order reduction (logscales)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

1 3 5 7 9 11 13 15 17 19 50
1
15

01
25

01
35

01
45

01
55

01
65

01
75

01
85

01
95

01
20

00
0

50
00

0
20

00
00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

sin
gl
e-
co

re

1 3 5 7 9 11 13 15 17 19

10
01
20

01
30

01
40

01
50

01
60

01
70

01
80

01
90

01
10

00
0

30
00

0
10

00
00

30
00

00
70

00
00

20
00

00
0

26
00

00
0

without partial order reduction with partial order reduction

single-core

single-core

dual-core

dual-core

a surprise: partial order reduction
can make the advantage of

dual-core processing disappear

but why?

FMCAD2006 19

a reference model

#define BranchSize 8

#define StateSize 500

#define TransTime 9 /* 9 = 1 usec ; 13 = 16 usec */

#define NStates 500000

int count;

byte filler[StateSize];

active [BranchSize] proctype test()

{

end: do

:: d_step {

count < NStates ->

c_code {

int xi; /* transition delay */

for (xi = 0; xi < (1<<TransTime); xi++)

{ now.filler[xi%StateSize] += xi%256;

}

memset(now.filler, 0, StateSize*sizeof(char));

};

count++

}

od

}

study effect of:

branch factor

state size

transition time

FMCAD2006 20

Reference Model

(Transition Delay and BranchFactor Affect Speedup)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

t=1 t=3 t=6 t=9 t=11 t=13 t=15 t=18

Transition Delay

(Statesize 200 bytes)

R
a
ti
o
 R
u
n
ti
m
e
s
 D
u
a
l:
S
in
g
le

b=1

b=2

b=8

Reference Model

(For Small Transition Delays, Statesizes affect

Achievable Speedup)

0.00

0.50

1.00

1.50

2.00

2.50

10 100 200 400 800

Statesize

(Transition Delay t=3)

b=1

b=2

b=8

Reference Model

(For Larger Transition Delays, Statesizes do not

affect Achievable Speedup)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10 100 200 400 800

Statesize

(Transition Delay t=13)

b=1

b=2

b=8

Reference Model

(Transition Delay and BranchFactor Affect Speedup)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

t=1 t=3 t=6 t=9 t=11 t=13 t=15 t=18

Transition Delay

(Statesize 10 bytes)

R
a
ti
o
 R
u
n
ti
m
e
s
 D
u
a
l:
S
in
g
le

b=1

b=2

b=8

measurements dual:single ratios (best value is 0.5)

21

3 4

no benefit / penalty for

fully deterministic models

FMCAD2006 21

synopsis

• multi-core algorithms do best for verification
problems with:
– larger state sizes (over 100 bytes)

– larger branch factors (lots of non-determinism)

– long transition delays (e.g., embedded C-code)

• they give no performance improvement for:
– small state sizes (less than 100 bytes)

– small branch factors (less than 2)

– short transition delays (less than 1 µsec)

• there are cases where a multi-core model
checking algorithm cannot compete with a
well-tuned single-core model checker

– e.g., deterministic, models – irrespective of
state space size or number of CPU cores…

– search and compilation optimization can reduce
the benefit of multi-core model checking (i.e.,
they benefit single-core algorithms)

– specifically: partial order reduction methods
reduce the benefit of distributed model checking

• next challenge: is there an efficient (N>2)-core
liveness verification algorithm….?

dual-core

model checking

