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Motivation

Hardware designs have symmetry.

For circuit designs that have symmetry, we aim to exploit
reduction techniques that can make use of the symmetry
property, to reduce the size of STE verification task needed for
complete verification of that circuit design.
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What we want to achieve?

Forte

FSM ² STE

Forte

FSM' ² STE'

Symmetry 
Data Abstraction

Parametric Representation

Conclude
Symbolic Indexing
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Structural symmetry

We are interested in the symmetry amongst groups of wires.
Wires are kept together in a group. Every wire in the group is
treated in exactly the same way.

If such is the case then the input-output behaviour of the circuit
remains independent under permutations of its input and output
groups of wires. This kind of symmetry is what we refer to as
structural symmetry.
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How to find them?

We want to capture symmetry in the structure of a circuit in its
description right at the level of design, which means structured
high-level design via a structured data type.

Symmetry discovery then reduces to type checking. This idea by
itself is not new — it has been around for a while in the model
checking community. But for STE this is the very first time.

We propose a structured data type of models, a type system for
designing symmetric circuits and prove a type soundness
theorem that says that if a circuit is well-behaved with respect to
the typing rules then it has structural symmetry.
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Relation of Symmetry with STE

Symmetric models and STE
Symmetry in circuit models is mirrored by symmetry in STE
properties. We formalise this by a theorem that articulates this
connection.
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Going from FSM∗ to FSM′

Structured
   Models

Netlist term

Exlif FSM

STE models
    in HOL

    Simulatable 
        models
         in HOL

Equivalent

ML program

nexlif2exe

HOL
function

HOL
function

HOL
function

 
Equivalent

FSM*

Equivalent

ML program
+

Equivalent
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Property Reduction – I

Two key issues
We need to figure out the path from STE to STE′

Verifying STE′ and deducing that STE has been done

We present a novel set of inference rules that will help achieve
both the above targets. Inference rules can help decompose STE
to STE′, if used like tactics, and help compose the overall
correctness statement when used in the forward direction.
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Property Reduction – II

Symmetry in circuit models lets us partition the decomposed
STE properties into equivalence classes.

We verify only the representatives and conclude that the other
members of the same equivalence classes have been verified as
well by way of deduction rather than explicit STE verification.
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Proposed solution revisited

FSM* ² STE

Forte

FSM' ² STE'

	 Symmetry 
	 +
 	 Inference Rules 

Conclude
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FSM∗ – Type of structured models

type of structured models

c : bool list list → bool list list → bool list list

want to model a collection of bit (Boolean) values
treat them in a special way
model the collection of values at wires by lists of Boolean value
if there are several such bundles then we employ a list of
Boolean lists modelling the inputs and outputs of circuits
first argument acts as a placeholder for non-symmetric input
bundles and the second argument of the circuit type denotes the
symmetric input bundles. The third argument denotes the output
bundles.
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FSM∗ – Some useful functions I

` hd (h :: t) = h

` tl (h :: t) = t

` el 0 l = hd l
∧ el (n + 1) l = el n (tl l)

` append [ ] l = l
∧ append (x :: l1) l2 = (x :: (append l1 l2))
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FSM∗ – Some useful functions II

` map2 f [ ] [ ] = [ ]
∧ map2 f (h1 :: t1) (h2 :: t2) = f h1 h2 :: map2 f t1 t2

` foldr f e [ ] = e
∧ foldr f e (x :: l) = f x (foldr f e l)

Ashish Darbari Symmetry Reduction



In a nutshell
FSM*

STE Theory
Symmetry and STE

Reduction methodology
Examples and Case Studies

Related and Future Work

Issues
Structured Models
Symmetry and Type Safety

FSM∗ – Some useful functions III

` (drop 0 l = tl l)
∧ (drop (i + 1) l = drop i (tl l))

` (take 0 l = tl l)
∧ (take (i + 1) (x :: xs) = (x :: (take i xs)))

` (insert elem i lst =
append(take i lst)(elem :: (drop i lst)))
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FSM∗ – Level 0 functional blocks

` id = λinp : bool list. inp

` f ◦ g = (λx. f (g x))

` (map f [ ] = [ ])
∧ (map f (h :: t) = f h :: map f t)

` fold f (c : bool list → bool list) =
λinp. [ foldr f (hd (c inp)) (tl (c inp)) ]
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FSM∗ – Safe functional blocks

safe id

f : bool → bool
safe (map f )

safe c f : bool → bool → bool
safe (fold f c)

safe c1 safe c2

safe (c1 ◦ c2)
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FSM∗ – The Function Swap

` swap (i, j) lst =
if (length lst > i) ∧ (length lst > j))

then (insert (el j lst) i (insert (el i lst) j lst))
else lst
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FSM∗ – Symmetric Functional Blocks

` sym c = ∀inp i j. (c (swap (i, j) inp) = swap (i, j) (c inp))

Level 0 safety lemma

` ∀c. safe c ⊃ sym c
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FSM∗ – Helper functions

Buses of equal length

` CheckLength inp =
∀l. l ∈ inp ⊃ ∀m. m ∈ inp

⊃ ∃k. (length l = k) ∧ (length m = k)

Associativity and Commutativity

` comm f = ∀xy. f x y = f y x

` assoc f = ∀xyz. f x (f y z) = f (f x y) z
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Constructing symmetric circuits – Level I

` Null = λinp. [ ]

` Id = λinp : (bool list) list. inp

` (c1 || c2) = λsym. if CheckLength (append (c1 sym)(c2 sym))
then append (c1 sym)(c2 sym) else [ ]

` Fork c = λsym. append (c sym) (c sym)
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Constructing symmetric circuits – Level I

` Select n c = λsym. if (length(c sym) > n)
then [el n (c sym)] else [ ]

` Tail c = λsym. if (length(c sym)) > 1
then tl (c sym) else [ ]

` Bitwise f c = λsym. if (length(c sym) > 0)
then [ foldr (map2 f )(hd (c sym))(tl (c sym)) ]
else [ ]
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Typing rules for symmetric circuits – I

SS Null

SS Id

SS c
SS (map c)

SS c1 SS c2

SS (c1 ◦ c2)
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Typing rules for symmetric circuits – II
SS c1 SS c2

SS (c1 ‖ c2)

SS c
SS (Fork c)

SS c n : num
SS (Select n c)

SS c
SS (Tail c)

SS c assoc f comm f f : bool → bool → bool
SS (Bitwise f c)
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Definition of symmetry

Symmetry

Sym c 4= ∀inp. CheckLength inp ⊃
∀i j. map(swap(i, j))(c inp)

=
c (map(swap(i, j)) inp)
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Type Soundness Theorem

Structurally safe implies symmetry

` ∀c. SS c ⊃ Sym c
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Validating circuits

` Validate (c : bool list list → bool list list → bool list list)
= ∀nsym. SS (c nsym)

Validated circuits have symmetry

` ∀c. Validate c ⊃ ∀nsym. Sym (c nsym)
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Adding time to combinational layer

Abstractions of delay elements

rising edge latch

DEL (clk : bool) 4= λinp : bool. inp

active high latch

AH (clk : bool) 4= λinp : bool. inp

Note that structurally they are equivalent, the behaviours are different
and these get interpreted for simulation in HOL, by semantic
functions.
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States and sequences

States and sequences

s : string → bool× bool
σ : num → string→ bool× bool

Suffix of a sequence

σi
4= λ t n. σ (t + i) n
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STE Models
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Information Ordering

⊥

1 0

X

Information ordering on states

s1
.
v s2

4= ∀n : string. s1 n v s2 n

Information ordering on sequences

σ1
..
v σ2

4= ∀t : num.∀n : string. σ1 t n v σ2 t n
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Circuit models

STE Models – Implemented as FSM in Forte

M : (string → bool× bool) → (string → bool× bool)

Monotonicity

Monotonic M 4= ∀s s′. (s
.
v s′) ⊃ ((M s)

.
v (M s′))
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Syntax of STE formulas

f 4= n is 0
| n is 1
| f and g
| f when P
| N f
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Semantics of STE

(φ, σ) |= n is 0 4= 0 v σ 0 n
(φ, σ) |= n is 1 4= 1 v σ 0 n
(φ, σ) |= f1 and f2

4= (φ, σ) |= f1 ∧ (φ, σ) |= f2
(φ, σ) |= f when P 4= (φ |= P) ⊃ (φ, σ) |= f
(φ, σ) |= N f 4= (φ, σ1) |= f

where φ |= P means the assignment of truth-values given by φ
satisfies the formula P. The formal definition of φ |= P is the usual
definition for the semantics of propositional formulas.
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Defining Sequence

[m is 0]φ t n 4= 0 if m=n and t=0, otherwise X
[m is 1]φ t n 4= 1 if m=n and t=0, otherwise X
[f1 and f2]φ t n 4= ([f1]φ t n) t ([f2]φ t n)
[f when P]φ t n 4= [f ]φ t n if φ |= P, otherwise X
[N f ]φ t n 4= [f ]φ (t−1) n if t 6=0, otherwise X
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Defining Trajectory

[[ f ]] φ M 0 n 4= [f ]φ 0 n
[[ f ]] φ M t n 4= [f ]φ t n t M ( [[ f ]] φ M (t−1)) n
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STE Implementation

` M |= A ⇒ C ≡ ∀t n. [C]φ t n v [[ A ]] φ M t n
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Symmetry Theory for STE

Permutation on states

applys π s 4= λ n. s(π n)

Permutation on sequences

applyσ π σ
4= λ t n. σ t (π n)

Property of swap

is swap π
4= ∀ a b. (π(a) = b) ⊃ (π (b) = a)
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Symmetry Theory for STE
Symmetry Soundness Theorem
Relating Symmetries

Symmetry of STE models

Symχ M π
4= ∀s. applys π (M s) = M (applys π s)
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Permutation and Sequences

` ∀π. is swap π ⊃
∀σ1 σ2. (σ1

..
v σ2 ≡ (applyσ π σ1)

..
v (applyσ π σ2))
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Relating Symmetries

Permutation on Trajectory Formulas

applyf π f 4= (π n) is 0

| (π n) is 1

| (π f ) and (π g)
| (π f ) when P

| N (π f )
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Two Important Lemmas

Defining Sequence Lemma

∀π. is swap π ⊃ ∀φ f t n. (applyσ π [f ]φ t n = [applyf π f ]φ t n)

Defining Trajectory Lemma

∀π. is swap π ⊃
∀M. Symχ Mπ ⊃

∀φ f t n. (applyσ π [[ f ]] φM t n = [[ applyf π f ]] φM t n)
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Symmetry Soundness Theorem

Symmetry Soundness Theorem

∀ ` Mπ A C. is swap π ⊃ SymχMπ
⊃

(M |= A ⇒ C ≡ M |= (applyf π A) ⇒ (applyf π C))
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FSM∗ to FSM′

Structured
   Models

Netlist term

Exlif FSM

STE Models

    Simulatable 
        Models

Equivalent

Intermediate
       term

hol2exlif

nexlif2exe

HOL
function

 
Equivalent

FSM*

Equivalent

flat ABS

ckt2netlist
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flat

` flat c nsym sym (sb : string → bool)
= c (map (map sb) nsym)(map(map sb) sym)
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ckt2netlist

` ckt2netlist c nsym sym outp (sb : string → bool)
(sb

′ : string → bool)
= let auxflat c nsym sym outp sb sb

′

=
(map(map sb

′) outp) = flat c nsym sym sb
in

auxflat c nsym sym outp sb sb
′
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Drop

Dropping Boolean Values

` drop F = 0
∧ drop T = 1

` (dropb [ ] [ ] (s : string → bool× bool) n = X)
∧ (dropb [ ] s n = X)
∧ (dropb [ ] s n = X)
∧ (dropb ((a : string) :: alist) (b :: blist) s n =

(if (n = a)
then (drop b)
else dropb alist blist s n))
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bool2STE

` (bool2STE [ ] [ ] s n = X)
∧ (bool2STE [ ] s n = X)
∧ (bool2STE [ ] s n = X)
∧ (bool2STE (a :: alist) (b :: blist) s n =

(dropb a b s n) t (bool2STE alist blist s n))
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ABS

Generating three-valued models from FSM∗

` ABS c nsym sym outp (sb : string → bool) =
λs : string → bool× bool. λn.

(let outp1 = flat c nsym sym sb
in

(bool2STE outp outp1 s n))
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ABS generates monotonic models

Three valued model is monotonic

` ∀c nsym sym outp sb. Monotonic (ABS c nsym sym outp sb)
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Relating swap and π

` (pi (i, j) x = λn. if (n = el i x) then (el j x)
else if (n = el j x)
then (el i x) else n)

` (perm (i, j) [x] = pi (i, j) x)
∧ (perm (i, j) (x :: xs) = (pi (i, j) x) ◦ perm (i, j) xs)
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Relating Sym and Symχ

` ∀c. ∀sb nsym. Sym (c (map(map sb) nsym)) ⊃
∀sym. CheckLength (map(map sb) sym) ⊃
∀i j. ∀outp.

Symχ (ABS c nsym sym outp sb)
(perm (i, j) (append sym outp))
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Reduction Philosophy

We present a novel set of inference rules that will help
decompose STE to STE′, if used like tactics, and help compose
the overall correctness statement STE from STE′, when used in
the forward direction.

Symmetry in circuit models lets us partition the decomposed
STE properties into equivalence classes.

We verify only the representatives and conclude that the other
members of the same equivalence classes have been verified as
well by way of deduction rather than explicit STE verification.
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Inference Rules I

Reflexivity

M|= A ⇒ A

Conjunction

M|= A1 ⇒ B1 M|= A2 ⇒ B2

M|= (A1 and A2) ⇒ (B1 and B2)

Transitivity

M|= A ⇒ B M|= B ⇒ C
M|= A ⇒ C
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Inference Rules II

Constraint Implication 1

M |= A ⇒ (C when G)
G ⊃ (M|= A ⇒ C)

Constraint Implication 2

G ⊃ (M |= A ⇒ C)
M |= A ⇒ (C when G)

Ashish Darbari Symmetry Reduction



In a nutshell
FSM*

STE Theory
Symmetry and STE

Reduction methodology
Examples and Case Studies

Related and Future Work

Philosophy
Inference Rules

Inference Rules III

Cut

G1 ⊃ (M|= A1 ⇒ B1) G2 ⊃ (M|= (B1 and A2) ⇒ C)
(G1 ∧ G2) ⊃ (M|= (A1 and A2) ⇒ C)

Specialised Cut

G1 ⊃ (M|= (A ⇒ B)) G2 ⊃ (M|= (B ⇒ C))
(G1 ∧ G2) ⊃ (M|= (A ⇒ C))
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Inference Rules IV

Guard Conjunction

G1 ⊃ (M|= A ⇒ C) G2 ⊃ (M|= B ⇒ D)
G1 ∧ G2 ⊃ (M|= (A and B) ⇒ C and D)

Guard Disjunction

G1 ⊃ (M|= A ⇒ C) G2 ⊃ (M|= B ⇒ C)
G1 ∨ G2 ⊃ (M|= (A and B) ⇒ C)
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Inference Rules V

Antecedent Strengthening 1

M |= A′ ⇒ C [A′]φ v [A]φ

M |= A ⇒ C

Antecedent Strengthening 2

G ⊃ (M |= A′ ⇒ C) [A′]φ v [A]φ

G ⊃ (M |= A ⇒ C)
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Inference Rules VI

Consequent Weakening 1

M |= A ⇒ C′ [C]φ v [C′]φ

M |= A ⇒ C

Consequent Weakening 2

G ⊃ M |= A ⇒ C′ [C]φ v [C′]φ

G ⊃ M |= A ⇒ C
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Examples

Gates - And, Or, Nand, Xor, Xnor etc.

Comparator

Mux

Steering Circuit

Random Access Memory (RAM)

Content Addressable Memory (CAM)

Other circuits with CAMs
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Basic gates

Safe functional blocks
` inv = map (∼)
` and = fold (∧) id
` or = fold (∨) id
` nand = inv ◦ and

Basic circuit blocks
` Inv = map inv
` And = map and
` Or = map or
` Nand = map nand
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Bitwise operations

` bAND = Bitwise (∧) Id
` bOR = Bitwise (∨) Id
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2-to-1 Multiplexer – FSM∗

` ctrl and inp = map (∧ (hd inp))
` not ctrl and inp = map (∧ (∼(hd inp)))

` M1 inp = (map(ctrl and inp)) ◦ Select 0 Id
` M2 inp = (map(not ctrl and inp)) ◦ Select 1 Id

` Auxmux inp = ((M1 inp) || (M2 inp))

` Mux [clk; ctrl] = (map(map (DEL (hd clk))) ◦
Bitwise (∨) (Auxmux ctrl))
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2-to-1 Multiplexer – Netlist Term
- ckt2netlist Mux [["clk"];["ctrl"]][["a0";"a1"];["b0";"b1"]][["out0";"out1"]] sb sb’

val mux thm = ` ckt2netlist Mux [["clk"];["ctrl"]]
[["a0";"a1"];["b0";"b1"]]

[["out0";"out1"]] sb sb’ =
(sb’ "out0" = DEL (sb "clk")(∼ sb "ctrl" ∧ sb "b0" ∨ sb "ctrl" ∧ sb "a0"))
∧
(sb’ "out1" = DEL (sb "clk") ( sb "ctrl" ∧ sb "b1" ∨ sb "ctrl" ∧ sb "a1")) : thm

2-to-1 Multiplexer – hol2exlif
- hol2exlif [mux thm] "mux" "clock"

exlif2exe
[ashish@clpc1 ashish] nexlif2exe2 mux.exlif
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Exlif for Mux

.model testmux .inputs a0 a1 b0 b1

.outputs out0

.expr n18 = ctrl ‘

.expr n16 = a0 ‘

.expr n15 = ctrl ‘

.expr n13 = b0 ‘

.expr n12 = n18 ’

.expr n10 = n15 & n16

.expr n9 = n12 & n13

.expr n5 = n9 + n10

.expr n4 = clk ‘

.latch n5 out0 re clock

.inputs a0 a1 b0 b1

.outputs out1

.expr n42 = ctrl ‘

.expr n40 = a1 ‘

.expr n39 = ctrl ‘

.expr n37 = b1 ‘

.expr n36 = n42 ’

.expr n34 = n39 & n40

.expr n33 = n36 & n37

.expr n29 = n33 + n34

.expr n28 = clk ‘

.latch n29 out1 re clock .end
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2-to-1 Multiplexer – STE Model
‘‘ABS Mux [["clk"];["c"]][["a0";"a1"];["b0";"b1"]] [["out0";"out1"]] s‘‘;

MUX ABS CONV it;

- val it = ` ABS Mux [["clk"]; ["c"]] [["a0";"a1"];["b0";"b1"]] [["out0";"out1"]] s
= (λ s’ n. (if n = "out0" then

(if ∼s "c" ∧ s "b0" ∨ s "c" ∧ s "a0"
then One else Zero)

else (if n = "out1" then
(if ∼s "c" ∧ s "b1" ∨ s "c" ∧ s "a1"

then One else Zero) else X)) lub X) : thm
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Property verification

Mux |= (′′a′′
0 is a0) and (′′a′′

1 is a1) and (′′a′′
2 is a2)

and (′′b′′
0 is b0) and (′′b′′

1 is b1) and (′′b′′
2 is b2)

and (′′ctrl′′ is c) ⇒
((′′out′′0 is a0) and (′′out′′1 is a1) and (′′out′′2 is a2)) when c
and
((′′out′′0 is b0) and (′′out′′1 is b1) and (′′out′′2 is b2)) when c̄)

We shall use STE inference rules to decompose this property into
several smaller properties.
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Verification in the presence of symmetry – I

Using Conjunction on the antecedent and consequent, we get the
following goals

(1) Mux |= (′′a′′
0 is a0) and (′′b′′

0 is b0) and (′′ctrl′′ is c)
⇒ ((′′out′′0 is a0) when c) and ((′′out′′0 is b0) when c̄)

(2) Mux |= (′′a′′
1 is a1) and (′′b′′

1 is b1) and (′′ctrl′′ is c)
⇒ ((′′out′′1 is a1) when c) and ((′′out′′1 is b1) when c̄)

(3) Mux |= (′′a′′
2 is a2) and (′′b′′

2 is b2) and (′′ctrl′′ is c)
⇒ ((′′out′′2 is a2) when c) and ((′′out′′2 is b2) when c̄)
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Verification in the presence of symmetry – II

We do an STE run to verify (1). Mux exhibits symmetry - exchange the first
line with the second, and the first with the third, and Symχ Mux π holds,
therefore by using Symmetry Soundness Theorem we can conclude that (2)
and (3) are verified as well.

Gist
Thus verifying an n-bit 2-to-1 mux entails verifying a 1-bit mux using only
two symbolic variables, and by way of using symmetry arguments, and
inference rules, we can conclude that the n-bit mux is verified as well.
In general verifying an m− to− 1 Mux with n− bit wide input buses will
require m distinct symbolic variables for input buses and log m variable for
selecting one of the m inputs.
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Comparator

FSM∗

` xnor a b = (a ∧ b) ∨ (∼a ∧ ∼b)
` Comp [ [ ck ] ] =

let comp1 = Bitwise xnor Id in
map(map(DEL ck)) ◦ And ◦ comp1
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Property Reduction

Comp |= (′′a′′
0 is a0) and (′′b′′

0 is b0) and
(′′a′′

1 is a1) and (′′b′′
1 is b1)

⇒
(′′out′′ is 1) when ((a0 = b0) ∧ (a1 = b1)) and
(′′out′′ is 0) when (∼(a0 = b0) ∨ (∼(a1 = b1)))
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Verification in the presence of symmetry – I

Equality

Comp |= (′′a′′
0 is a0) and (′′b′′

0 is b0) and
(′′a′′

1 is a1) and (′′b′′
1 is b1)

⇒ (′′out′′ is 1) when ((a0 = b0) ∧ (a1 = b1))

Inequality

Comp |= (′′a′′
0 is a0) and (′′b′′

0 is b0) and
(′′a′′

1 is a1) and (′′b′′
1 is b1)

⇒ (′′out′′ is 0) when (∼(a0 = b0) ∨ (∼(a1 = b1)))
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Verification in the presence of symmetry – Equality

The goal is to show that

Comp |= (′′a′′
0 is a0) and (′′b′′

0 is b0) and
(′′a′′

1 is a1) and (′′b′′
1 is b1)

⇒ (′′out′′ is 1) when ((a0 = b0) ∧ (a1 = b1))
let B0 = (′′I′′0 is 1)
let B1 = (′′I′′1 is 1)
let A0 = (′′a′′

0 is a0) and (′′b′′
0 is b0)

let A1 = (′′a′′
1 is a1) and (′′b′′

1 is b1)
let G0 = (a0 = b0)
let G1 = (a1 = b1)
let C = ′′out′′ is 1
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Verification in the presence of symmetry – Equality

Comp |= A0 ⇒ (B0 when G0) (STE run)

Comp |= A1 ⇒ (B1 when G1) (Symmetry)

G0 ⊃ (Comp |= A0 ⇒ B0) (Constraint Implication 1)

G1 ⊃ (Comp |= A1 ⇒ B1) (Constraint Implication 1)
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Verification in the presence of symmetry – Equality

From Guard Conjunction we get
(G0 ∧ G1) ⊃ (Comp |= (A0 and A1) ⇒ (B0 and B1))

By STE run
Comp |= (B0 and B1) ⇒ C

By Specialised Cut we get
(G0 ∧ G1) ⊃ (Comp |= A0 and A1 ⇒ C)

By Constraint Implication 2 we get
Comp |= (A0 and A1) ⇒ (C when (G0 ∧ G1))
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Verification in the presence of symmetry – Equality

Replacing the values of A0, A1, C, G0 and G1 we get

Comp |= (′′a′′
0 is a0) and (′′b′′

0 is b0) and
(′′a′′

1 is a1) and (′′b′′
1 is b1)

⇒ (′′out′′ is 1) when ((a0 = b0) ∧ (a1 = b1))

Ashish Darbari Symmetry Reduction



In a nutshell
FSM*

STE Theory
Symmetry and STE

Reduction methodology
Examples and Case Studies

Related and Future Work

Basic Gates
Multiplexer
Comparator
Random Access Memory (RAM)
Content Addressable Memory (CAM)

Verification in the presence of symmetry – Inequality

Comp |= (′′a′′
0 is a0) and (′′b′′

0 is b0) and
(′′a′′

1 is a1) and (′′b′′
1 is b1)

⇒ (′′out′′ is 0) when (∼(a0 = b0) ∨ (∼(a1 = b1)))

let A = (′′a′′
0 is a0) and (′′b′′

0 is b0) and
(′′a′′

1 is a1) and (′′b′′
1 is b1)

let A0 = (′′a′′
0 is a0) and (′′b′′

0 is b0)
let A1 = (′′a′′

1 is a1) and (′′b′′
1 is b1)

let C = (′′out′′ is 0)
let G0 = ∼(a0 = b0)
let G1 = ∼(a1 = b1)
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Verification in the presence of symmetry – Inequality

Comp |= A0 ⇒ C when G0 (STE run)

Comp |= A1 ⇒ C when G1 (Symmetry)

G0 ⊃ (Comp |= A0 ⇒ C) (Constraint Implication 1)

G1 ⊃ (Comp |= A1 ⇒ C) (Constraint Implication 1)

G0 ∨ G1 ⊃ (Comp |= ((A0 and A1) ⇒ C))(Constraint Disjunction)

Comp |= (A0 and A1) ⇒ C when (G0 ∨ G1)
(Constraint Implication 2)
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Verification in the presence of symmetry – Inequality

Replacing values we get

Comp |= (′′a′′
0 is a0) and (′′b′′

0 is b0) and
(′′a′′

1 is a1) and (′′b′′
1 is b1)

⇒ (′′out′′ is 0) when (∼(a0 = b0) ∨ (∼(a1 = b1)))

Gist
We can verify an n-bit comparator requires only two variables instead
of 2n. Therefore the BDDs that get built stay really small.
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RAM – FSM∗

` CTRL AND inp = MAP (∧ (HD inp)) o id

//for a given addr line does the and with all the data bits
` (NBITS [] = NULL)
∧ (NBITS ([]::xs) = NULL)
∧ (NBITS [a::addr list] =
let n = (LENGTH (a::addr list) - 1) in
(NBITS [addr list]) || (MAP (CTRL AND [a]) o (SELECT n ID)))
∧ (NBITS ((x::y)::xs) = NULL)

//one line of memory --n bits
` oneline [[rw]] [[addr]] =
MAP (CTRL AND [addr]) o (MAP (CTRL AND [rw])) o
(MAP (MAP (AH ( rw)))) o NBITS [[addr]]

//generate n lines
` (NLineMem en [[]] = NULL)
∧ (NLineMem en [(x::xs)] =
let n = (LENGTH (x::xs) - 1) in
(((oneline en [[x]]) o (SELECT n ID)) || (NLineMem en [xs])))

// m X n memory
` memory en addr =
(BITWISE ∨ ID) o (NLineMem en addr)
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RAM – Memory Lines as seen in Forte I
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RAM – Memory Lines as seen in Forte II
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RAM – Memory Lines as seen in Forte III
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RAM – Property Reduction

// symmetry based reduction

// populate the first column with symbolic address and data values
let A0 = (("addr0" is addr0) and ("addr1" is addr1)) from 0 to 5

//populating the first column
let D0 = (("d00" is d00) and ("d10" is d10)) from 0 to 1

// write takes place in the first cycle followed by read enabled
let en = ("en" is F from 0 to 1) and ("en" is T from 1 to 5)

//output of the first column
let B0 = (("n4" is (addr0 ∧ d00)) from 1 to 2) and

(("n5" is (addr1 ∧ d10)) from 1 to 2)

let trace = map (λn. n,0,5)(nodes memory)
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RAM – Property Reduction

//A0 ⇒ B0 (by STE run)
STE "-s -w" memory [] (A0 and D0 and en) B0 trace

// output of the 0th bit
let C0 = ("out0" is ((addr0 ∧ d00) ∨ (addr1 ∧ d10))) from 1 to 2

//B0 ⇒ C0 (by STE run)
STE "-s -w" memory [] B0 C0 trace

// Specialised Cut
STE "-s -w" memory [] (A0 and D0 and en) C0 trace
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RAM – Property Reduction

// Now for the second column,
// of course we never do this but infer from Symmetry

pi = "d00" ; "d01",
"d10" ; "d11",
"n5" ; "n56",
"n4" ; "n55",
"out0" ; "out1"

let A1 = (("addr0" is addr0) and ("addr1" is addr1)) from 0 to 5
let D1 = (("d01" is d01) and ("d11" is d11)) from 0 to 1
let B1 = (("n55" is (addr0 ∧ d01)) from 1 to 2) and

(("n56" is (addr1 ∧ d11)) from 1 to 2)

//A1 ⇒ B1 (by STE run)
STE "-s -w" memory [] (A1 and D1 and en) B1 trace

// output of the 1st bit
let C1 = ("out1" is ((addr0 ∧ d01) ∨ (addr1 ∧ d11))) from 1 to 2

//B1 ⇒ C1 (by STE run)
STE "-s -w" memory [] B1 C1 trace
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RAM – Property Reduction

// Specialised Cut
STE "-s -w" memory [] (A1 and D1 and en) C1 trace

//STE Conjunction
STE "-s -w" memory [] (A0 and A1 and D0 and D1 and en) (C0 and C1) trace

// Antecedent Weakening
STE "-s -w" memory [] (A0 and D0 and D1 and en) (C0 and C1) trace
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RAM – Our memory requirement I
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RAM – Our memory requirement II
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RAM – Our memory requirement III

width of addr bus address lines memory sz (bits) variables reqd
data=32 bits  (symmetry + symb indexing)

1 2 64 2
2 4 128 4
3 8 256 6
4 16 512 8
5 32 1k 10
6 64 2k 12
7 128 4k 14
8 256 8k 16
9 512 16k 18
10 1k 32k 20
11 2k 64k 22
12 4k 128k 24
13 8k 256k 26
14 16k 512k 28
15 32k 1M 30
16 64k 2M 32
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Pandey’s RAM Verification
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Pandey’s RAM Verification versus Us

Pandey’s method
Even though the verification memory requirment seems to scale nearly linearly.

Substantial time and memory is used in isomorphism checks.

Computing reduced models by using symmetry, costing substantial extra time and memory (see page 76-78 of
Pandey’s thesis).

Heuristics employed for symmetry detection in SRAM may not be useful for symmetry detection for other circuits for
example a CAM.

Our method
Our requirement for symbolic variables is independent of the size of data bits, it only depends on the number of
address lines.

Our type checking is independent of the size of the RAM, and the type checking takes about a second.

Type checking and a structured ADT gives us a general method of circuit design and verification.
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CAM – FSM∗

// tag comparison unit
` (tcomparator 0 [[en]] = NULL)
∧ (tcomparator (SUC n) [[en]] =
let intags = (SELECT 0 ID) in
let storedtags = ((MAP(CTRL AND [en])) o (MAP(MAP(AH ∼en))) o (SELECT (SUC n) ID)) in

(mapand o comp1 o (intags || storedtags)) || (tcomparator n [[en]]))

// hit logic
` hit n nsym = BITWISE (∨) (tcomparator n nsym)

` (NBITS [] = NULL)
∧ (NBITS (a::addr list) =
let n = (LENGTH (a::addr list) - 1) in
(NBITS addr list) || (MAP (CTRL AND a) o (SELECT n ID)))
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CAM – FSM∗

// Full CAM
` cam nsym =
let tagen = (HD o HD)((SELECT 0 ID) nsym) in
let dataen = (HD o HD)((SELECT 1 ID) nsym) in
let n = LENGTH (ID nsym) - 3 in
let match = tcomparator n [[tagen]]

(((TAIL o TAIL)ID) nsym) in
let data = (NBITS match) o (MAP(CTRL AND [dataen])) o

(MAP(MAP(AH(∼dataen)))) o ID
in (BITWISE (∨) data)
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CAM – Towards the Netlist

val cam thm = ` ckt2netlist cam [["tagen"];["dataen"];
["Tag[0]";"Tag[1]"];
["t0[0]";"t0[1]"];
["t1[0]";"t1[1]"]]
[["d0[0]";"d0[1]"];
["d1[0]";"d1[1]"]]
[["out[0]";"out[1]"]] sb sb’

val hit thm = ` ckt2netlist (hit 2) [["tagen"]]
[["Tag[0]";"Tag[1]"];
["t0[0]";"t0[1]"];
["t1[0]";"t1[1]"]] [["hit"]] sb sb’
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hol2exlif
- hol2exlif [cam thm, hit thm] "cam" "";

exlif2exe
[ashish@clpc1 ashish] nexlif2exe2 cam.exlif
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Property Reduction – Initialising values

//initialising variables
//data stored in both the lines
let d00 = variable "d0[0]";
let d01 = variable "d0[1]";
let d10 = variable "d1[0]";
let d11 = variable "d1[1]";

//tags stored in the lines
let t00 = variable "t0[0]";
let t01 = variable "t0[1]";
let t10 = variable "t1[0]";
let t11 = variable "t1[1]";

//input tags
let Tag0 = variable "Tag[0]";
let Tag1 = variable "Tag[1]";

//read enabled and incoming tag takes on symbolic values
let base ant = ((("Tag[0]" is Tag0) and ("Tag[1]" is Tag1)) from 0 to 2)

and ("tagen" is F from 0 to 1) and ("tagen" is T from 1 to 2)
and ("dataen" is F from 0 to 1) and ("dataen" is T from 1 to 2);;
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Property Reduction – Initialising values

//populate the tags in the first line
let A0 0 = ((("T0[0]" is t10) and ("T0[1]" is t11)) from 0 to 1) and base ant;

//populate the data in the first line
let A0 1 = ((("d0[0]" is d10) and ("d0[1]" is d11)) from 0 to 1) and base ant;

//populate the tags in the second line
let A1 0 = ((("T1[0]" is t10) and ("T1[1]" is t11)) from 0 to 1) and base ant;

//populate the data in the second line
let A1 1 = ((("d1[0]" is d10) and ("d1[1]" is d11)) from 0 to 1) and base ant;

let A0 = A0 0 and A0 1;
let A1 = A1 0 and A1 1;

//data stored at the first line appears at the output
let C0 = (("out[0]" is d00) and ("out[1]" is d01)) from 1 to 2;

//data stored at the second line appears at the output
let C1 = (("out[0]" is d10) and ("out[1]" is d11)) from 1 to 2;
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Property Reduction – Initialising values

//incoming tags match the tags stored at the first line
let G0 = (Tag0 = t00) ∧ (Tag1 = t01);

//incoming tags match the tags stored at the second line
let G1 = (Tag0 = t10) ∧ (Tag1 = t11);

//incoming tags don’t match the tags stored at the first line
let nG0 = NOT G0;

//incoming tags don’t match the tags stored at the second line
let nG1 = NOT G1;

//hit[0] is 0
let B0 0 = "hit[0]" is F from 1 to 2;

//hit[0] is 1
let B0 1 = "hit[0]" is T from 1 to 2;

//hit[1] is 0
let B1 0 = "hit[1]" is F from 1 to 2;

//hit[1] is 1
let B1 1 = "hit[1]" is T from 1 to 2;
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Property Reduction – CAM read

Correct Data is read I
let trace = map (λn.n,0,2) (nodes cam fsm);

//By STE run, using the comparator verification strategy as in inequality case
using only two variables for tag comparison
nG0 ⊃ (STE "-s -w" cam fsm [] A0 0 B0 0 trace);

//Using Antecedent Strengthening
nG0 ⊃ (STE "-s -w" cam fsm [] (A0 0 and A0 1) B0 0 trace);

//But (A0 0 and A0 1) = A0, so we have
nG0 ⊃ (STE "-s -w" cam fsm A0 B0 0) (1)

//Now we shall show how to deduce the correctness property
G1 ⊃ (STE "-s -w" cam fsm [] (B0 0 and A1) C1 trace);
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Property Reduction – CAM read

Correct Data is read I
//comparator verification strategy,
//using only variables for the tag of the second line
G1 ⊃ (STE "-s -w" cam [] A1 0 B1 1 trace); (2)

// STE run using only one data variable, and using symmetry of the data bus to deduce
(STE "-s -w" cam [] (B1 1 and (A1 1 and B0 0)) C1 trace); (3)

//Using Cut on (2) and (3) we get
G1 ⊃ (STE "-s -w" cam [] (B0 0 and A1 0 and A1 1) C1 trace); (4)

//But A1 0 and A1 1 = A1, therefore
G1 ⊃ (STE "-s -w" cam [] (B0 0 and A1) C1 trace); (5)

//By Guard Conjunction and the Cut Rule on (1) and (5), we can deduce
(nG0 ∧ G1) ⊃ (STE "-s -w" cam fsm [] (A0 and A1) C1 trace);

//By Constraint Implication 2, we can deduce
(STE "-s -w" cam fsm [] (A0 and A1)(C1 when (nG0 ∧ G1)) trace);
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Property Reduction – CAM read

Correct Data is read II
//By repeating the same strategy for the second CAM line
(STE "-s -w" cam fsm [] (A0 and A1)(C0 when (nG1 ∧ G0)) trace);
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Property Reduction - Correct Data Read

Overall correctness assertion
//By STE Conjunction
(STE "-s -w" cam fsm [] (A0 and A1) ((C0 when (nG1 ∧ G0)) and

(C1 when (nG0 ∧ G1))) trace);
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Property Reduction – Hit Logic

Hit rises if there is a match
//hit is 1
let C = "hit" is T from 1 to 2;

//hit is 1 if the tags match at the first line
// STE run uses only two variables, comparator reduction strategy
G0 ⊃ (STE "-s -w" cam fsm [] A0 C trace);

//hit is 1 if the tags match at the second line
// STE run uses only two variables, comparator reduction strategy
G1 ⊃ (STE "-s -w" cam fsm [] A1 C trace);

//By Guard Disjunction we conclude
(G0 ∨ G1) ⊃ (STE "-s -w" cam fsm [] (A0 and A1) C trace);
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Hit stays low of there is no match
//hit[0] is 0
let hit0 = "hit0" is F from 1 to 2;

//hit[1] is 0
let hit1 = "hit1" is F from 1 to 2;

//hit is 0
let C = "hit" is F from 0 to 2;

//By STE run using only two variables, comparator verification strategy
nG0 ⊃ (STE "-s -w" cam fsm [] A0 hit0 trace);

//By STE run using only two variables, comparator verification strategy
nG1 ⊃ (STE "-s -w" cam fsm [] A1 hit1 trace);

//By Guard Conjunction
(nG0 ∧ nG1) ⊃ (STE"-s -w" cam fsm [](A0 and A1) (hit0 and hit1) trace);

//By STE run
(STE "-s -w" cam fsm [] (hit0 and hit1) C trace);

//Applying the Specialised Cut we conclude
(nG0 ∧ nG1) ⊃ (STE "-s -w" cam fsm [] (A0 and A1) C trace);
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Our memory and time requirement

Gist - Correct Data Read
For a CAM with n lines and tag width t and data width d, we need to use
only two variables at any one time for tag comparison and one variable for
data bit to verify the correct data read property. The space complexity is
reduced from n ∗ (t + d) + t to 3.
The time complexity is linear with respect to the number of CAM lines.

Gist - Hit Logic
For verifying the hit logic, we need only two variables at any point of time,
for any number of CAM lines, tag entries and data entries! The time
complexity is linear with respect to the number of CAM lines.
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Pandey’s CAM verification

Pandey’s CAM verification
Pandey’s CAM encoding requires log2 n + n ∗ log2 t + t + d variables
for verification of data read and hit logic. Symmetry is not used at all,
only symbolic indexing used.
For a 64 line CAM with 32 bit tags and 32 bit data, he would need
6+(64*5)+32+32=390 variables whereas we would need 3 for correct
data read property and 2 for the hit logic.
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CAM – BDD Variables Required wrt CAM size
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CAM – BDD Variables Required wrt tag size
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CAM – BDD Variables Required wrt data size
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Related Work

Symmetry in Model Checking
Pandey and Bryant – Verification of memory arrays
Ip and Dill, Ken McMillan – Scalarsets in Murphi and SMV
Sistla, Emerson and Jha – Symmetry and model checking
Sistla – Symmetry based model checker
Bill Roscoe, Ranko Lazic, Tom Newcomb – Data independence

Designing structured models
Mary Sheeran, Wayne Luk – Ruby
Mary Sheeran, Satnam Singh et.al. – Lava
O’ Donnell – Netlist generator from functional language
Chavan, Woo Min and Shiu-Kai Chin – HOL2GDT – Desiging a mulitplier chip from specifications in HOL
Tom Melham – Mini-Lava in reFLect
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Conclusions and Future Work

Dealing with other kinds of structural symmetry – perhaps more
richer type of structured models is needed.

Data symmetry and temporal symmetry.

Feedback is not implemented at present.

Lists are not the most appropriate data structure.
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