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3-Valued Semantics: Example

Compositional 
Semantics

Thorough 
Semantics 

odd(x)
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odd(x) ?
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odd(x)

odd(y)

P:
int x, y = 1, 1;
int t;
x, y = t, t+1;
x, y = 1, 1;

Property :

M:

4

AG(odd(y)) ∧ A[odd(x) U ¬odd(y)]
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Compositional vs Thorough

.

SW/HW
Artifact

Correctness
Property

Model

Extraction
Translation

Partial Models
Universal +

Existential Properties

Model-Checker
Yes/No

Maybe

Compositional Semantics Thorough Semantics
✔Computationally cheap 
✘Less precise (more maybe’s)

✔Various implementations

✘Computationally expensive

✔More precise (less maybe’s)
✘No implementation 

Need to increase conclusiveness
while avoiding too much overhead
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Implementing Thorough via
Compositional

Identify formulas where compositional = 
thorough
Self-minimizing formulas [Godefroid & Huth 05]
E.g. AG(odd(y))

Transform other formulas into equivalent 
self-minimizing ones
Semantic minimization [Reps et. al. 02]
E.g. AG(odd(y)) ∧ A[odd(x) U ¬odd(y)]

      A[(odd(x) ∧ odd(y)) U False] (Self-minimizing)
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Thorough Checking Algorithm
ThoroughCheck(M , ϕ)
(1): if (v := ModelCheck(M , ϕ)) != Maybe

return v
(2): if IsSelfMinimizing(M , ϕ)

return Maybe
(3): return ModelCheck(M , SemanticMinimization(ϕ))
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Thorough Checking Algorithm
ThoroughCheck(M , ϕ)
(1): if (v := ModelCheck(M , ϕ)) != Maybe

return v
(2): if IsSelfMinimizing(M , ϕ)

return Maybe
(3): return ModelCheck(M , SemanticMinimization(ϕ))

✔
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Our Goal
ThoroughCheck(M , ϕ)
(1): if (v := ModelCheck(M , ϕ)) != Maybe

return v
(2): if IsSelfMinimizing(M , ϕ)

return Maybe
(3): return ModelCheck(M , SemanticMinimization(ϕ))

✔

Step (2): 
Identifying a large class of self-minimizing 
formulas 

Step (3):
Devising practical algorithms for semantic 
minimization of remaining formulas
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Our Contributions
1.We prove that disjunctive/conjunctive μ-
calculus formulas are self-minimizing
Related Work: 

[Gurfinkel & Chechik 05] [Godefroid & Huth 05] checking 
pure polarity

Only works for PKSs, not for all partial models
2.We provide a semantic minimization 
algorithm via the tableau-based translation 
of [Janin & Walukiewicz 95]
Related Work:

[Godefroid & Huth 05]: μ-calculus is closed under 
semantic-minimization

But no implementable algorithm
8



Main Idea
Thorough checking can be as hard as 
satisfiability checking 
Satisfiability checking is linear for 
disjunctive μ-calculus
Then, can we show that disjunctive 
μ-calculus is self-minimizing?

But, a naive inductive proof does not work 
for the greatest fixpoint formulas [Godefroid 
& Huth 05]

Our proof uses an automata 
characterization of thorough checking
reducing checking self-minimization to 
deciding an automata intersection game 
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Outline
Need for thorough checking

Thorough via compositional

Main Result: Disjunctive/Conjunctive μ-
calculus is self-minimizing
Intuition
Background
Proof

Our thorough checking algorithm

Conclusion and future work

10



Background
Disjunctive μ-calculus [Janin and Walukiewicz 95]

Conjunctions are restricted (special conjunctions)
Examples 

Syntax

Conjunctive μ-calculus is dual

Disjunctive μ-calculus is equal to μ-calculus

ϕ2 = AX(p ∧ q)
ϕ3 = AXp ∧ AXq

ϕ1 = EXp ∧ EX¬q ∧ AX(p ∨ ¬q)

ϕ ::= p | ¬p | Z | ϕ ∨ ϕ | p ∧
∧

ψ∈Γ

EXψ ∧AX
∨

ψ∈Γ

ψ | ν(Z) · ϕ(Z) | µ(Z) · ϕ(Z)

✔
✔
✘
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Background:
      Abstraction as Automata [Dams & Namjoshi 05]

Formulas = automata, 
abstract models = automata
Model Checking 

Model M satisfies formula φ
Refinement Checking 

Model M abstracts model M’   

We use μ-automata [Janin & Walukiewicz 95]

Similar to non-deterministic tree automata 
But

no fixed branching degree
no ordering over successors 

L(AM) ⊆ L(AM′)

L(AM) ⊆ L(Aϕ)

12



Self-minimization and Automata 
A formula φ is self-minimizing if 

 1.For every abstract model M over which φ is non-false   
   (true or maybe)

 2.For every abstract model M over which φ is non-true
   (false or maybe)

13

there is a completion of M satisfying φ

there is a completion of M refuting φ
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Self-minimization and Automata 
A formula φ is self-minimizing if 

 1.For every abstract model M over which φ is non-false   
   (true or maybe)

 2.For every abstract model M over which φ is non-true
   (false or maybe)

13

L(AM) ∩ L(Aϕ) "= ∅

L(AM) ∩ L(A¬ϕ) "= ∅

Existing partial model formalisms can be 
translated to μ-automata

There exists a linear syntactic translation 
from disjunctive μ-calculus to μ-automata 
[Janin & Walukiewicz 95]
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Main Result
Let φ be a disjunctive formula. Show: 

for every abstract model M over which φ is
non-false

The case for conjunctive φ is dual

Proof Steps:

1. Translate models and formulas to μ-automata

2.Find a winning strategy for an intersection game 
between      and     (by structural induction)

L(AM) ∩ L(Aϕ) "= ∅

AM Aϕ

15



(a)
THOROUGHCHECK(M , ϕ)
(1): if (v := MODELCHECK(M , ϕ)) != maybe

return v
(2): if ISSELFMINIMIZING(M , ϕ)

return maybe
(3): return MODELCHECK(M , SEMANTICMINIMIZATION(ϕ))

(b)
P::
int x, y = 1, 1;
int t;
x, y = t, t+1;
x, y = 1, 1;

(c)M
p

q

q = m

p = m

p

q

s0

s1

s2

(d)H
p

q

p

q

¬q

p¬p

q

s0

s1 s2

s3

Fig. 1. (a) A sketch of an algorithm for thorough checking. A simple program P (adapted from [8]) (b) and its abstractions described as: (c) a PKS M ; and
(d) an HTS H .

tableau-based translation of Janin and Walukiewicz [11].
Godefroid and Huth [8] proved that Lµ formulas are closed
under semantic minimization, i.e., every Lµ formula can be
translated to an equivalent Lµ formula (in classical logic), for
which compositional checking yields the most precise answer.
The translation, however, is complicated and includes several
steps: transforming Lµ formulas to non-deterministic tree
automata, making non-deterministic tree automata 3-valued,
and translating back these automata to Lµ. Our semantic min-
imization procedure is more straightforward and only uses the
simple tableau-based construction described in [11]. Finally,
we show that our semantic minimization procedure can be
extended to abstract models described as PKSs and MixTSs,
thus providing a general SEMANTICMINIMIZATION() subroutine for
the algorithm in Figure 1(a).
The rest of this paper is organized as follows: Section II

outlines some preliminaries. Section III defines an automata in-
tersection game inspired by the abstraction framework in [12].
This game is used in Section IV to prove the main result of the
paper which establishes a connection between self-minimizing
formulas over HTSs and disjunctive/conjunctive forms of
Lµ. Section V provides a complete algorithm for thorough
checking of Lµ over arbitrary abstract models including PKSs,
MixTSs, and HTSs, and discusses the complexity of this
algorithm. In Section VI, we present some self-minimizing
fragments of CTL for HTSs. We further discuss our work and
compare it to related work in Section VII. Section VIII con-
cludes the paper. Proofs for the major theorems are available
in the Appendix.

II. PRELIMINARIES
In this section, we provide background on modelling

formalisms, temporal logics, refinement relation, and compo-
sitional and thorough semantics.
3-valued logic.We denote by 3 the 3-valued Kleene logic [13]
with elements true (t), false (f), and maybe (m). The truth
ordering ≤ of this logic is defined as f ≤ m ≤ t, and negation
as ¬t = f and ¬m = m. An additional ordering " relates
values based on the amount of information: m " t and m " f,
so that m represents the least amount of information.
Models. In what follows, we introduce different modelling
formalisms that are used in this paper.
A Kripke structure (KS) is a tuple K = (Σ, s0, R, L,AP ),

where Σ is a set of states, s0 ∈ Σ is the initial state, R ⊆ Σ×Σ

is a transition relation, AP is the set of atomic propositions,
and L : Σ → 2AP is a labelling function. We assume KSs are
total, i.e., R is left-total.
A Partial Kripke Structure (PKS) [1] is a KS whose la-
belling function L is 3-valued, i.e., L : Σ → 3AP . Figure 1(c)
illustrates a PKS, where propositions p and q are m in state s1.
An Mixed Transition System (MixTS) [2], [3] is a tuple

(Σ, s0, R
must, Rmay, L,AP ), where Σ is a set of states, s0 ∈

Σ is the initial state, Rmust ⊆ Σ × Σ and Rmay ⊆ Σ × Σ
are must and may transition relations, respectively, AP is the
set of atomic propositions, and L : Σ → 3AP is a 3-valued
labelling function.
A hyper-transition system (HTS) [4], [5], [6] is a tuple

H = (Σ, s0, R
must, Rmay, L,AP ), where Rmust ⊆ Σ×P(Σ)

and Rmay ⊆ Σ × Σ are must and may transition relations,
respectively, L : Σ → 2AP is a 2-valued labelling function,
and Σ, s0 and AP are defined as above. Intuitively, an HTS is
a MixTS with a 2-valued labelling function and must hyper-
transitions. We assume HTSs and MixTSs are total, i.e., Rmay

is left-total. Figure 1(d) illustrates an HTS, where must and
may transitions are represented as solid and dashed arrows,
respectively. Throughout this paper, we often write relations
as functions: for instance, Rmay(s) is the set {s′ | (s, s′) ∈
Rmay}.
An HTS H is concrete if for every s, s′ ∈ Σ, we have

s′ ∈ Rmay(s) ⇔ {s′} ∈ Rmust(s). For every KS K =
(Σ, s0, R, L,AP ), there is an equivalent concrete HTS HK =
(Σ, s0, R

must, Rmay, L,AP ), where Rmay = R and s′ ∈
R(s) ⇔ {s′} ∈ Rmust(s) for every s, s′ ∈ Σ.
Temporal logics. Temporal properties are specified in the
propositional µ-calculus Lµ [14].
Definition 1: Let Var be a set of fixpoint variables, and

AP be a set of atomic propositions. The logic Lµ(AP ) is the
set of formulas generated by the following grammar:

ϕ ::= true | p | Z | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ | µZ · ϕ(Z)

where p ∈ AP , Z ∈ Var , and ϕ(Z) is syntactically monotone
in Z.
The derived connectives are defined as follows:

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)
AXϕ = ¬EX¬ϕ
νZ · ϕ(Z) = ¬µZ · ¬ϕ(¬Z)

Any Lµ formula can be transformed into an equivalent
formula in which negations are applied only to atomic propo-
sitions. Such formulas are said to be in negation normal form

2

AGp

Show that AGp is self-minimizing 
 i.e.,∀M over which φ is non-false

L(AM) ∩ L(AAGP) "= ∅

M

16

Illustrating the Proof

Choose



1.Translate models and formulas to μ-automata (a)
THOROUGHCHECK(M , ϕ)
(1): if (v := MODELCHECK(M , ϕ)) != maybe

return v
(2): if ISSELFMINIMIZING(M , ϕ)

return maybe
(3): return MODELCHECK(M , SEMANTICMINIMIZATION(ϕ))

(b)
P::
int x, y = 1, 1;
int t;
x, y = t, t+1;
x, y = 1, 1;

(c)M
p

q

q = m

p = m

p

q

s0

s1

s2

(d)H
p

q

p

q

¬q

p¬p

q

s0

s1 s2

s3

Fig. 1. (a) A sketch of an algorithm for thorough checking. A simple program P (adapted from [8]) (b) and its abstractions described as: (c) a PKS M ; and
(d) an HTS H .
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Godefroid and Huth [8] proved that Lµ formulas are closed
under semantic minimization, i.e., every Lµ formula can be
translated to an equivalent Lµ formula (in classical logic), for
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The translation, however, is complicated and includes several
steps: transforming Lµ formulas to non-deterministic tree
automata, making non-deterministic tree automata 3-valued,
and translating back these automata to Lµ. Our semantic min-
imization procedure is more straightforward and only uses the
simple tableau-based construction described in [11]. Finally,
we show that our semantic minimization procedure can be
extended to abstract models described as PKSs and MixTSs,
thus providing a general SEMANTICMINIMIZATION() subroutine for
the algorithm in Figure 1(a).
The rest of this paper is organized as follows: Section II
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tersection game inspired by the abstraction framework in [12].
This game is used in Section IV to prove the main result of the
paper which establishes a connection between self-minimizing
formulas over HTSs and disjunctive/conjunctive forms of
Lµ. Section V provides a complete algorithm for thorough
checking of Lµ over arbitrary abstract models including PKSs,
MixTSs, and HTSs, and discusses the complexity of this
algorithm. In Section VI, we present some self-minimizing
fragments of CTL for HTSs. We further discuss our work and
compare it to related work in Section VII. Section VIII con-
cludes the paper. Proofs for the major theorems are available
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2. Find a winning strategy for an intersection game
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2. Find a winning strategy for an intersection game

Proof by structural induction (see the paper)

Show that AGp is self-minimizing 
 i.e.,∀M over which φ is non-false

L(AM) ∩ L(AAGP) "= ∅

AM AAGp
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Proof Steps:
1. Translate models and formulas to μ-automata

2.Find a winning strategy for an intersection game

In conclusion:
Disjunctive/conjunctive μ-calculus formulas are self-
minimizing

Every μ-calculus formula can be translated to its 
disjunctive/conjunctive form 

17
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Thorough Checking Algorithm
ThoroughCheck(M , ϕ)
(1): if (v := ModelCheck(M , ϕ)) != Maybe

return v
(2): if IsSelfMinimizing(M , ϕ)

return Maybe
(3): return ModelCheck(M , SemanticMinimization(ϕ))

19



IsSelfMinimizing(M , ϕ)
(i) if M is a PKS or an MixTS and ϕ is monotone

return true
(ii) if M is an HTS and ϕ is disjunctive

return true
(iii) return false

Example
Property                  over 

PKSs and MixTSs violates condition (i)
HTSs violates condition (ii)

Thus,                    is not self-minimizingAGq ∧ A[p U ¬q]

AGq ∧ A[p U ¬q]

Self-Minimization

19



SemanticMinimization(ϕ)
(i) convert ϕ to its disjunctive form ϕ∨

(ii) replace all special conjunctions in ϕ∨

containing p and ¬p with False
(iii) return ϕ∨

Semantic Minimization

Example: semantic minimization of 
Step (i) 
Step (ii)

AGq ∧ A[p U ¬q]

AGq ∧ A[p U ¬q]
(i)→ A[p ∧ q U q ∧ ¬q ∧ AXAGq]

A[p ∧ q U q ∧ ¬q ∧ AXAGq]
(ii)→ A[p ∧ q U False]

19



Complexity 

Step (1) 
Model checking μ-calculus formulas

Step (2) 
Self-minimization check is linear in the size of 
formulas

Step (3)
Semantic minimization

O((|ϕ| · |M |)!d/2"+1)

O((2O(|ϕ|) · |M |)!d/2"+1)

ThoroughCheck(M , ϕ)
(1): if (v := ModelCheck(M , ϕ)) != Maybe

return v
(2): if IsSelfMinimizing(M , ϕ)

return Maybe
(3): return ModelCheck(M , SemanticMinimization(ϕ))
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Conclusion
Studied thorough checking over partial 
models
An automata-based characterization for 
thorough checking

Simple and syntactic self-minimization checks
Grammars for identifying self-minimizing formulas in 
CTL

A semantic-minimization procedure
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Future Work
Studying the classes of formulas for which 
thorough checking is cheap 
linear in the size of models

Identifying commonly used formulas in 
practice that are self-minimizing
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Thank You!
Questions?
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