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Motivation

Why another data structure for model checking?

BDD based model checking fails on certain problems

e.g. blow-up when representing combinational multipliers
...

And-Inverter Graphs have been successfully used in:

Combinational Equivalence Checking (e.g. Mishchenko, Kuehlmann)
Bounded Model Checking (e.g. Kuehlmann)
Technology mapping
Various other verification/synthesis applications

Use And-Inverter Graphs as the underlying data structure for unbounded
symbolic CTL model checking
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And-Inverter Graphs



And-Inverter Graphs

And-Inverter Graphs

x y z

f = x · (y + z)

node ≈ and gate

inverted edge ≈ inverter

variables ≈ inputs

Networks of 2-input and gates and inverters

Simple data structure

Every Boolean function can be represented by an AIG

But: possibly redundant and non-canonical (in contrast to BDDs)
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y x z
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And-Inverter Graphs

Operations

AND by adding a new and node, NOT by adding an inverted edge

Cofactor by propagating constants

Substitution of variables

Quantification by cofactoring (∃x .f ≡ f |x=0 + f |x=1) (possibly
expensive)

Equivalence check of two nodes? ⇒ SAT

f g

f · g
h
¬h
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And-Inverter Graphs

Are we ready for model checking?

We already have the needed operations for model checking:

Basic Boolean operators

Quantification

Substitution

Equivalence check for two nodes

But, plain AIGs are not enough:

Too many redundant nodes

Quantification will result in extremely large AIGs

We need to add some things to make model checking with AIGs feasible
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Functionally Reduced And-Inverter Graphs: FRAIGs



FRAIGs

FRAIGs

FRAIG (A. Mishchenko)

A functionally reduced AIG does not contain two nodes representing the
same Boolean function.

How to create FRAIGs?

When creating a new node...

Find possibly equivalent candidate nodes using simulation

Solve the equivalence checking problems of the new node and
candidate nodes with a SAT solver (MiniSAT)

When finding an equivalent candidate: delete one of the two nodes

Use the feedback from the solver to strengthen the simulation values

A FRAIG is reduced by removing (functionally) redundant nodes
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FRAIGs

How to handle pairs of equivalent nodes?

When we detect a pair of functionally equivalent nodes during FRAIG
construction, we have to delete one of the two nodes.

Two different simple node selection heuristics:

hkeep: keep the old, existing node and delete the new node

hsize : keep the node with the smaller cone size, delete the other node
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Speeding up Quantification



Quantifier Scheduling

Quantifier Scheduling: A Motivating Example

n-bit Carry-Ripple-Adder ( ~s = ~x + ~y )
Formula ∃~x .sn · sn−1

quantification order UP: quantify x0 first, then x1, . . .

quantification order DOWN: quantify xn−1 first, then xn−2, . . .
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⇒ Quantification order is crucial!
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Quantifier Scheduling

Multiple Quantifications

One quantification operation may double the AIG’s size
x x = 0 x = 1

f

∃x.f

f |x=0 f |x=1

A series of quantifications may lead to an exponential blow-up

How to avoid the blow-up?

Find a good quantification schedule!
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Quantifier Scheduling

A greedy algorithm for quantifier scheduling

Greedy quantification

greedy quantify( f, vars )
res ← f;
while vars 6= ∅

bestvar ← NULL; bestsize ←∞;
for all v ∈ vars

if expected size( res, v ) < bestsize
bestsize ← expected size( res, v ); bestvar ← v;

res ← quantify( res, bestvar );
vars ← vars \{ bestvar };

return res;
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Quantifier Scheduling

Expected quantification result size?

How to compute the expected size of the quantification result?

One could actually perform quantifications by all variables to get the
exact sizes. Too expensive!

Estimate the resulting size of one quantification step by simulating
the two constant propagations:
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Combining AIGs and BDDs: BDD Sweeping



BDD Sweeping

BDD Sweeping: Combining advantages of AIG and BDD
representations

“Classical” notion of BDD sweeping by A. Kuehlmann: Detection of
functionally equivalent AIG nodes by BDD construction

Our functionally reduced AIGs don’t contain such nodes (achieved
by SAT)!

But: BDD representations of Boolean functions in model checking
are not always large...

Therefore: Use “good” BDD representations to restructure AIGs!
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BDD Sweeping

BDD Sweeping Algorithm

AIG cone a
BDD b AIG a′CUDD

3 · |b| < |a|

blow-up
3 · |b| ≥ |a|

Failure

b ≡ a a′ ≡ a, |a′| < |a|

too big

good BDD

MUX
0 1

low high

xx

low high

xlow high
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BDD Sweeping

Application of BDD Sweeping

We apply BDD sweeping to the results of quantifications

We limit the number of created BDD nodes to avoid a blow-up

Heuristics ensure that BDD-sweeping is used less frequently if the
BDD node limit was reached in the past
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Experimental Results Our Model Checker

Our AIG based Model Checker

We use a standard CTL model checking algorithm based on fix point
iteration

The transition function and the characteristic functions of state sets
are represented by AIGs

Alternatives for pre-image computation:

transition relation based:

χSat(EX φ)(~q, ~x) := ∃~q′∃~x ′(χR(~q, ~x , ~q′) · (χSat(φ)|~q←~q′,~x←~x′)(~q′, ~x ′))

transition function based:

χ′Sat(EX φ)(~q, ~x) := ∃~x ′(χSat(φ)|~q←~δ(~q,~x),~x←~x′)(~q, ~x ′))
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Experimental Results Functional Reduction, Node Selection Heuristics

Impact of Functional Reduction and Node Selection
Heuristics

No BDD sweeping, no quantifier scheduling
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Experimental Results BDD-Sweeping and Quantifier Scheduling

Impact of BDD Sweeping and Quantifier Scheduling
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Experimental Results Comparison with BDD based model checkers

Comparison with BDD based model checkers

VIS: VIS 2.1, sifting, no reachability analysis
BDDMC: our model checker with AIGs replaced by BDDs
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Conclusions

Summary

Successful unbounded CTL model checking based on And-Inverter
Graphs (up to 2000 quantifications)

Made possible by using

Functionally Reduced And-Inverter Graphs
Simple node selection heuristics
BDD sweeping
and Quantifier Scheduling

Outperforms BDD based MCs on various benchmarks...

and has comparable runtimes on most other benchmarks
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Conclusions

Future and Related Work

Optimize heuristics (node selection, application of BDD sweeping)

Lazier AIG compression instead of complete functional reduction

Time limited SAT to skip hard SAT instances

Evaluate recent AIG rewriting techniques

Try structural SAT instead of CNF based SAT

At ATVA06 we presented a hybrid model checker based on AIGs and
linear constraints over the reals
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Thank you for your attention!
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