Advanced Unbounded CTL Model Checking Based on AIGs, BDD Sweeping, And Quantifier Scheduling

Florian Pigorsch, Christoph Scholl, Stefan Disch

Albert-Ludwigs-Universität Freiburg, Institut für Informatik

FMCAD 2006
1 Motivation

2 And-Inverter Graphs

3 FRAIGs

4 Quantifier Scheduling

5 BDD Sweeping

6 Experimental Results
 • Our Model Checker
 • Functional Reduction, Node Selection Heuristics
 • BDD-Sweeping and Quantifier Scheduling
 • Comparison with BDD based model checkers

7 Conclusions
Why another data structure for model checking?

- BDD based model checking fails on certain problems
 - e.g. blow-up when representing combinational multipliers
 - ...

- And-Inverter Graphs have been successfully used in:
 - Combinational Equivalence Checking (e.g. Mishchenko, Kuehlmann)
 - Bounded Model Checking (e.g. Kuehlmann)
 - Technology mapping
 - Various other verification/synthesis applications
Motivation

Why another data structure for model checking?

- BDD based model checking fails on certain problems
 - e.g. blow-up when representing combinational multipliers
 - ...
- And-Inverter Graphs have been successfully used in:
 - Combinational Equivalence Checking (e.g. Mishchenko, Kuehlmann)
 - Bounded Model Checking (e.g. Kuehlmann)
 - Technology mapping
 - Various other verification/synthesis applications

Use And-Inverter Graphs as the underlying data structure for unbounded symbolic CTL model checking
And-Inverter Graphs
And-Inverter Graphs

\[f = x \cdot (y + z) \]

- Networks of 2-input \textit{and} gates and \textit{inverters}
- Simple data structure
- Every Boolean function can be represented by an AIG
And-Inverter Graphs

\[f = x \cdot (y + z) \]

- Networks of 2-input and gates and inverters
- Simple data structure
- Every Boolean function can be represented by an AIG
- But: possibly redundant and non-canonical (in contrast to BDDs)

\[f = y \cdot x + x \cdot z \]
Operations

- AND by adding a new and node, NOT by adding an inverted edge
Operations

- AND by adding a new and node, NOT by adding an inverted edge
- Cofactor by propagating constants

\[
\begin{align*}
 x &= c \\
 f &
\end{align*}
\]
Operations

- AND by adding a new and node, NOT by adding an inverted edge
- Cofactor by propagating constants
- Substitution of variables
Operations

- AND by adding a new and node, NOT by adding an inverted edge
- Cofactor by propagating constants
- Substitution of variables
- Quantification by cofactoring ($\exists x. f \equiv f|_{x=0} + f|_{x=1}$) (possibly expensive)

\[
\begin{align*}
\exists x . f &\equiv f|_{x=0} + f|_{x=1} \\
\end{align*}
\]
Operations

- AND by adding a new and node, NOT by adding an inverted edge
- Cofactor by propagating constants
- Substitution of variables
- Quantification by cofactoring ($\exists x. f \equiv f|_{x=0} + f|_{x=1}$) (possibly expensive)
- Equivalence check of two nodes? \Rightarrow SAT
Are we ready for model checking?

We already have the needed operations for model checking:

- Basic Boolean operators
- Quantification
- Substitution
- Equivalence check for two nodes
Are we ready for model checking?

We already have the needed operations for model checking:

- Basic Boolean operators
- Quantification
- Substitution
- Equivalence check for two nodes

But, plain AIGs are not enough:

- Too many redundant nodes
- Quantification will result in extremely large AIGs
Are we ready for model checking?

We already have the needed operations for model checking:

- Basic Boolean operators
- Quantification
- Substitution
- Equivalence check for two nodes

But, plain AIGs are not enough:

- Too many redundant nodes
- Quantification will result in extremely large AIGs

We need to add some things to make model checking with AIGs feasible
Functionally Reduced And-Inverter Graphs: FRAIGs
A functionally reduced AIG does not contain two nodes representing the same Boolean function.

How to create FRAIGs?

Find possibly equivalent candidate nodes using simulation.

Solve the equivalence checking problems of the new node and candidate nodes with a SAT solver (MiniSAT).

When finding an equivalent candidate: delete one of the two nodes.

Use the feedback from the solver to strengthen the simulation values.
FRAIGs

FRAIG (A. Mishchenko)

A functionally reduced AIG does not contain two nodes representing the same Boolean function.

How to create FRAIGs?
When creating a new node...

Find possibly equivalent candidate nodes using simulation.
Solve the equivalence checking problems of the new node and candidate nodes with a SAT solver (MiniSAT).
When finding an equivalent candidate: delete one of the two nodes.
Use the feedback from the solver to strengthen the simulation values.

A FRAIG is reduced by removing (functionally) redundant nodes.
A functionally reduced AIG does not contain two nodes representing the same Boolean function.

How to create FRAIGs?
When creating a new node...
- Find possibly equivalent candidate nodes using simulation
FRAIGs

FRAIG (A. Mishchenko)

A functionally reduced AIG does not contain two nodes representing the same Boolean function.

How to create FRAIGs?
When creating a new node...

- Find possibly equivalent candidate nodes using simulation
- Solve the equivalence checking problems of the new node and candidate nodes with a SAT solver (MiniSAT)
A functionally reduced AIG does not contain two nodes representing the same Boolean function.

How to create FRAIGs?
When creating a new node...

- Find possibly equivalent candidate nodes using simulation
- Solve the equivalence checking problems of the new node and candidate nodes with a SAT solver (MiniSAT)
- When finding an equivalent candidate: delete one of the two nodes
A functionally reduced AIG does not contain two nodes representing the same Boolean function.

How to create FRAIGs?
When creating a new node...

- Find possibly equivalent candidate nodes using **simulation**
- Solve the equivalence checking problems of the new node and candidate nodes with a **SAT solver** (MiniSAT)
- When finding an equivalent candidate: delete one of the two nodes
- Use the feedback from the solver to strengthen the simulation values
FRAIGs

FRAIG (A. Mishchenko)

A functionally reduced AIG does not contain two nodes representing the same Boolean function.

How to create FRAIGs?
When creating a new node...

- Find possibly equivalent candidate nodes using simulation
- Solve the equivalence checking problems of the new node and candidate nodes with a SAT solver (MiniSAT)
- When finding an equivalent candidate: delete one of the two nodes
- Use the feedback from the solver to strengthen the simulation values

A FRAIG is reduced by removing (functionally) redundant nodes
How to handle pairs of equivalent nodes?

When we detect a pair of functionally equivalent nodes during FRAIG construction, we have to delete one of the two nodes.
When we detect a pair of functionally equivalent nodes during FRAIG construction, we have to delete one of the two nodes. Two different simple node selection heuristics:

- h_{keep}: keep the old, existing node and delete the new node
- h_{size}: keep the node with the smaller cone size, delete the other node
Speeding up Quantification
Quantifier Scheduling: A Motivating Example

n-bit Carry-Ripple-Adder \(\vec{s} = \vec{x} + \vec{y} \)

Formula \(\exists \vec{x}. s_n \cdot \overline{s_{n-1}} \)
Quantifier Scheduling: A Motivating Example

n-bit Carry-Ripple-Adder ($\vec{s} = \vec{x} + \vec{y}$)

Formula $\exists \vec{x}. s_n \cdot \bar{s}_{n-1}$

- quantification order **UP**: quantify x_0 first, then x_1, ...
- quantification order **DOWN**: quantify x_{n-1} first, then x_{n-2}, ...

⇒ Quantification order is crucial!

12 Florian Pigorsch, Christoph Scholl, Stefan Disch

MC based on AIGs, BDD Sweeping, and Quantifier Scheduling
n-bit Carry-Ripple-Adder \(\mathbf{s} = \mathbf{x} + \mathbf{y} \)

Formula \(\exists \mathbf{x}. s_n \cdot \mathbf{s}_{n-1} \)

- quantification order \textbf{UP}: quantify \(x_0 \) first, then \(x_1, \ldots \)
- quantification order \textbf{DOWN}: quantify \(x_{n-1} \) first, then \(x_{n-2}, \ldots \)
Quantifier Scheduling: A Motivating Example

n-bit Carry-Ripple-Adder \((\vec{s} = \vec{x} + \vec{y})\)

Formula \(\exists \vec{x}. s_n \cdot \overline{s_{n-1}}\)

- quantification order **UP**: quantify \(x_0\) first, then \(x_1, \ldots\)
- quantification order **DOWN**: quantify \(x_{n-1}\) first, then \(x_{n-2}, \ldots\)

\[\Rightarrow\] Quantification order is crucial!
Multiple Quantifications

- One quantification operation may double the AIG’s size

A series of quantifications may lead to an exponential blow-up

How to avoid the blow-up?

Find a good quantification schedule!
Multiple Quantifications

- One quantification operation may double the AIG’s size

\[
\exists x. f(x=0) \lor f(x=1)
\]

- A series of quantifications may lead to an exponential blow-up
One quantification operation may double the AIG’s size

A series of quantifications may lead to an exponential blow-up

How to avoid the blow-up?
One quantification operation may double the AIG’s size

A series of quantifications may lead to an exponential blow-up
How to avoid the blow-up?
Find a good quantification schedule!
A greedy algorithm for quantifier scheduling

Greedy quantification

greedy_quantify(f, vars)
 res ← f;
 while vars ≠ ∅
 bestvar ← NULL; bestsize ← ∞;
 for all v ∈ vars
 if expected_size(res, v) < bestsize
 bestsize ← expected_size(res, v); bestvar ← v;
 res ← quantify(res, bestvar);
 vars ← vars \ { bestvar };
 return res;
How to compute the expected size of the quantification result?
Expected quantification result size?

- How to compute the expected size of the quantification result?
- One could actually perform quantifications by all variables to get the exact sizes. Too expensive!
How to compute the expected size of the quantification result?

One could actually perform quantifications by all variables to get the exact sizes. Too expensive!

Estimate the resulting size of one quantification step by simulating the two constant propagations:
Expected quantification result size?

- How to compute the expected size of the quantification result?
- One could actually perform quantifications by all variables to get the exact sizes. Too expensive!
- **Estimate** the resulting size of one quantification step by simulating the two constant propagations:

\[
x = c \\
\text{not dep. on } x \\
\text{dep. on } x \\
\text{removed} \\
\text{dep. on } x \\
\text{recreated}
\]
How to compute the expected size of the quantification result?

One could actually perform quantifications by all variables to get the exact sizes. Too expensive!

Estimate the resulting size of one quantification step by simulating the two constant propagations:

\[
\exists x. f
\]

[Diagram showing quantification steps and their result sizes]
Combining AIGs and BDDs: BDD Sweeping
BDD Sweeping: Combining advantages of AIG and BDD representations

- “Classical” notion of BDD sweeping by A. Kuehlmann: Detection of functionally equivalent AIG nodes by BDD construction
"Classical" notion of BDD sweeping by A. Kuehlmann: Detection of functionally equivalent AIG nodes by BDD construction

Our functionally reduced AIGs don’t contain such nodes (achieved by SAT)!
“Classical” notion of BDD sweeping by A. Kuehlmann: Detection of functionally equivalent AIG nodes by BDD construction

Our functionally reduced AIGs don’t contain such nodes (achieved by SAT)!

But: BDD representations of Boolean functions in model checking are not always large...
“Classical” notion of BDD sweeping by A. Kuehlmann: Detection of functionally equivalent AIG nodes by BDD construction

Our functionally reduced AIGs don’t contain such nodes (achieved by SAT)!

But: BDD representations of Boolean functions in model checking are not always large...

Therefore: Use “good” BDD representations to **restructure** AIGs!
BDD Sweeping Algorithm

AIG cone \(a \) → CUDD → BDD \(b \) → good BDD \(3 \cdot |b| < |a| \) → AIG \(a' \) → too big \(3 \cdot |b| \geq |a| \) → Failure

\[b \equiv a \]

\[a' \equiv a, |a'| < |a| \]

\[\begin{align*}
 x & \quad |low| \quad |high| \\
 & \quad \downarrow \quad \downarrow \\
 MUX & \quad 0 \quad 1 \\
 x & \quad |low| \quad |high| \\
 & \quad \downarrow \quad \downarrow \\
 & \quad \text{low} \quad x \quad \text{high}
\end{align*} \]
We apply BDD sweeping to the results of quantifications
We limit the number of created BDD nodes to avoid a blow-up
Heuristics ensure that BDD-sweeping is used less frequently if the BDD node limit was reached in the past
Experimental Results
Our AIG based Model Checker

- We use a standard CTL model checking algorithm based on fix point iteration
- The transition function and the characteristic functions of state sets are represented by AIGs
- Alternatives for pre-image computation:
 - transition relation based:
 \[
 \chi_{\text{Sat}}(\text{EX } \phi)(\bar{q}, \bar{x}) := \exists \bar{q}' \exists \bar{x}' (\chi_R(\bar{q}, \bar{x}, \bar{q}') \cdot (\chi_{\text{Sat}}(\phi)|_{\bar{q} \leftarrow \bar{q}', \bar{x} \leftarrow \bar{x}'}) (\bar{q}', \bar{x}'))
 \]
 - transition function based:
 \[
 \chi'_{\text{Sat}}(\text{EX } \phi)(\bar{q}, \bar{x}) := \exists \bar{x}' (\chi_{\text{Sat}}(\phi)|_{\bar{q} \leftarrow \delta(\bar{q}, \bar{x}), \bar{x} \leftarrow \bar{x}'}) (\bar{q}, \bar{x}')
 \]
Impact of Functional Reduction and Node Selection Heuristics

No BDD sweeping, no quantifier scheduling
Experimental Results

Impact of BDD Sweeping and Quantifier Scheduling

Benchmark vs Runtime

- Red: FRAIGs, size heur.
- Blue: FRAIGs, BDD-Sweep.
- Green: FRAIGs, BDD-Sweep., Quant. Sched.

Florian Pigorsch, Christoph Scholl, Stefan Disch
Comparison with BDD based model checkers

- **VIS**: VIS 2.1, sifting, no reachability analysis
- **BDDMC**: our model checker with AIGs replaced by BDDs
Successful unbounded CTL model checking based on And-Inverter Graphs (up to 2000 quantifications)
Summary

- Successful unbounded CTL model checking based on And-Inverter Graphs (up to 2000 quantifications)
- Made possible by using
 - Functionally Reduced And-Inverter Graphs
 - Simple node selection heuristics
 - BDD sweeping
 - and Quantifier Scheduling

Outperforms BDD based MCs on various benchmarks... and has comparable runtimes on most other benchmarks.
Conclusions

Summary

- Successful unbounded CTL model checking based on And-Inverter Graphs (up to 2000 quantifications)
- Made possible by using
 - Functionally Reduced And-Inverter Graphs
 - Simple node selection heuristics
 - BDD sweeping
 - and Quantifier Scheduling
- Outperforms BDD based MCs on various benchmarks...
- and has comparable runtimes on most other benchmarks
Future and Related Work

- Optimize heuristics (node selection, application of BDD sweeping)
- Lazier AIG compression instead of complete functional reduction
 - Time limited SAT to skip hard SAT instances
- Evaluate recent AIG rewriting techniques
- Try structural SAT instead of CNF based SAT
Future and Related Work

- Optimize heuristics (node selection, application of BDD sweeping)
- Lazier AIG compression instead of complete functional reduction
 - Time limited SAT to skip hard SAT instances
- Evaluate recent AIG rewriting techniques
- Try structural SAT instead of CNF based SAT
- At ATVA06 we presented a hybrid model checker based on AIGs and linear constraints over the reals
Thank you for your attention!