SMT Solvers

Theory \& Practice
Leonardo de Moura
leonardo@microsoft.com

Microsoft Research

Credits

- Slides inspired by previous presentations by:

Clark Barrett, Harald Ruess, Natarajan Shankar, Cesare
Tinelli, Ashish Tiwari

- Special thanks to:

Clark Barrett, Cesare Tinelli (for contributing some of the material) and the FMCAD PC (for the invitation).

Introduction

- Industry tools rely on powerful verification engines.
- Boolean satisfiability (SAT) solvers.
- Binary decision diagrams (BDDs).
- Satisfiability Modulo Theories (SMT)
- The next generation of verification engines.
- SAT solvers + Theories
- Arithmetic
- Arrays
- Uninterpreted Functions
- Some problems are more naturally expressed in SMT.
- More automation.

Applications

- Extended Static Checking.
- Microsoft Spec\# and ESP.
- ESC/Java
- Predicate Abstraction.
- Microsoft SLAM/SDV (device driver verification).
- Bounded Model Checking (BMC) \& k-induction.
- Test-case generation.
- Microsoft MUTT.
- Symbolic Simulation.
- Planning \& Scheduling.
- Equivalence checking.

SMT-Solvers \& SMT-Lib \& SMT-Comp

- SMT-Solves:

Ario, Barcelogic, CVC, CVC Lite, CVC3, ExtSAT, Harvey,
HTP, ICS (SRI), Jat, MathSAT, Sateen, Simplify, STeP, STP, SVC, TSAT, UCLID, Yices (SRI), Zap (Microsoft),

Z3 (Microsoft)

- SMT-Lib: library of benchmarks
http://goedel.cs.uiowa.edu/smtlib/
- SMT-Comp: annual SMT-Solver competition.

Roadmap

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Language: Signatures

- A signature Σ is a finite set of:
- Function symbols: $\Sigma_{F}=\{f, g, \ldots\}$.
- Predicate symbols: $\Sigma_{P}=\{P, Q, \ldots\}$.
- and an arity function: $\Sigma \mapsto N$
- Function symbols with arity 0 are called constants.
- A countable set \mathcal{V} of variables disjoint of Σ.

Language: Terms

- The set $T(\Sigma, \mathcal{V})$ of terms is the smallest set such that:
- $\mathcal{V} \subset T(\Sigma, \mathcal{V})$
- $f\left(t_{1}, \ldots, t_{n}\right) \in T(\Sigma, \mathcal{V})$ whenever

$$
f \in \Sigma_{F}, t_{1}, \ldots, t_{n} \in T(\Sigma, \mathcal{V}) \text { and } \operatorname{arity}(f)=n
$$

- The set of ground terms is defined as $T(\Sigma, \emptyset)$.

Language: Atomic Formulas

- $P\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula whenever
$P \in \Sigma_{P}, \operatorname{arity}(P)=n$, and $t_{1}, \ldots, t_{n} \in T(\Sigma, \mathcal{V})$.
- true and false are atomic formulas.
- If t_{1}, \ldots, t_{n} are ground terms, then $P\left(t_{1}, \ldots, t_{n}\right)$ is called a ground (atomic) formula.
- We assume that the binary predicate $=$ is present in Σ_{P}.
- A literal is an atomic formula or its negation.

Language: Quantifier Free Formulas

- The set $\operatorname{QFF}(\Sigma, \mathcal{V})$ of quantifier free formulas is the smallest set such that:
- Every atomic formulas is in $\operatorname{QFF}(\Sigma, \mathcal{V})$.
- If $\phi \in \operatorname{QFF}(\Sigma, \mathcal{V})$, then $\neg \phi \in \operatorname{QFF}(\Sigma, \mathcal{V})$.
- If $\phi_{1}, \phi_{2} \in \operatorname{QFF}(\Sigma, \mathcal{V})$, then

$$
\begin{aligned}
\phi_{1} \wedge \phi_{2} & \in \operatorname{QFF}(\Sigma, \mathcal{V}) \\
\phi_{1} \vee \phi_{2} & \in \operatorname{QFF}(\Sigma, \mathcal{V}) \\
\phi_{1} \Rightarrow \phi_{2} & \in \operatorname{QFF}(\Sigma, \mathcal{V}) \\
\phi_{1} \Leftrightarrow \phi_{2} & \in \operatorname{QFF}(\Sigma, \mathcal{V})
\end{aligned}
$$

Language: Formulas

- The set of first-order formulas is the closure of $\operatorname{QFF}(\Sigma, \mathcal{V})$ under existential (\exists) and universal (\forall) quantification.
- Free (occurrences) of variables in a formula are those not bound by a quantifier.
- A sentence is a first-order formula with no free variables.

Theories

- A (first-order) theory \mathcal{T} (over a signature Σ) is a set of (deductively closed) sentences (over Σ and \mathcal{V}).
- Let $D C(\Gamma)$ be the deductive closure of a set of sentences Γ.
- For every theory $\mathcal{T}, D C(\mathcal{T})=\mathcal{T}$.
- A theory \mathcal{T} is consistent if false $\notin \mathcal{T}$.
- We can view a (first-order) theory \mathcal{T} as the class of all models of \mathcal{T} (due to completeness of first-order logic).

Models (Semantics)

- A model M is defined as:
- Domain S : set of elements.
- Interpretation $f^{M}: S^{n} \mapsto S$ for each $f \in \Sigma_{F}$ with $\operatorname{arity}(f)=n$.
- Interpretation $P^{M} \subseteq S^{n}$ for each $P \in \Sigma_{P}$ with $\operatorname{arity}(P)=n$.
- Assignment $x^{M} \in S$ for every variable $x \in \mathcal{V}$.
- A formula ϕ is true in a model M if it evaluates to true under the given interpretations over the domain S.
- M is a model for the theory \mathcal{T} if all sentences of \mathcal{T} are true in M.

Satisfiability and Validity

- A formula $\phi(\vec{x})$ is satisfiable in a theory \mathcal{T} if there is a model of $D C(\mathcal{T} \cup \exists \vec{x} \cdot \phi(\vec{x}))$. That is, there is a model M for \mathcal{T} in which $\phi(\vec{x})$ evaluates to true, denoted by,

$$
M \models_{\mathcal{T}} \phi(\vec{x})
$$

- This is also called \mathcal{T}-satisfiability.
- A formula $\phi(\vec{x})$ is valid in a theory \mathcal{T} if $\forall \vec{x} . \phi(\vec{x}) \in \mathcal{T}$. That is $\phi(\vec{x})$ evaluates to true in every model M of \mathcal{T}.
- \mathcal{T}-validity is denoted by $\models_{\mathcal{T}} \phi(\vec{x})$.
- The quantifier free \mathcal{T}-satisfiability problem restricts ϕ to be quantifier free.

Checking validity

- Checking the validity of ϕ in a theory \mathcal{T} is:

$$
\equiv \mathcal{T} \text {-satisfiability of } \neg \phi
$$

$$
\begin{array}{ll}
\equiv \mathcal{T} \text {-satisfiability of } \vec{Q} \vec{x} \cdot \phi_{1} & (\text { PNF of } \neg \phi) \\
\equiv \mathcal{T} \text {-satisfiability of } \forall \vec{x} \cdot \phi_{1} & \text { (Skolemize) }
\end{array}
$$

$$
\equiv \mathcal{T} \text {-satisfiability of } \phi_{2} \quad \text { (Instantiate) }
$$

$$
\equiv \mathcal{T} \text {-satisfiability of } \bigvee_{i} \psi_{i} \quad\left(\text { DNF of } \phi_{2}\right)
$$

$\equiv \mathcal{T}$-satisfiability of every ψ_{i}

- ψ_{i} is a conjunction of literals.

Roadmap

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Pure Theory of Equality (EUF)

- The theory $\mathcal{T}_{\mathcal{E}}$ of equality is the theory $D C(\emptyset)$.
- The exact set of sentences of $\mathcal{T}_{\mathcal{E}}$ depends on the signature in question.
- The theory does not restrict the possibles values of the symbols in its signature in any way. For this reason, it is sometimes called the theory of equality and uninterpreted functions.
- The satisfiability problem for $\mathcal{T}_{\mathcal{E}}$ is the satisfiability problem for first-order logic, which is undecidable.
- The satisfiability problem for conjunction of literals in $\mathcal{T}_{\mathcal{E}}$ is decidable in polynomial time using congruence closure.

Linear Integer Arithmetic

- $\Sigma_{P}=\{\leq\}, \Sigma_{F}=\{0,1,+,-\}$.
- Let $M_{\mathcal{L I A}}$ be the standard model of integers.
- Then $\mathcal{T}_{\mathcal{L I A}}$ is defined to be the set of all Σ sentences true in the model $M_{\mathcal{L I A}}$.
- As showed by Presburger, the general satisfiability problem for $\mathcal{T}_{\mathcal{L I A}}$ is decidable, but its complexity is triply-exponential.
- The quantifier free satisfiability problem is NP-complete.
- Remark: non-linear integer arithmetic is undecidable even for the quantifier free case.

Linear Real Arithmetic

- The general satisfiability problem for $\mathcal{T}_{\mathcal{L R} \mathcal{A}}$ is decidable, but its complexity is doubly-exponential.
- The quantifier free satisfiability problem is solvable in polynomial time, though exponential methods (Simplex) tend to perform best in practice.

Difference Logic

- Difference logic is a fragment of linear arithmetic.
- Atoms have the form: $x-y \leq c$.
- Most linear arithmetic atoms found in hardware and software verification are in this fragment.
- The quantifier free satisfiability problem is solvable in $O(n m)$.

Theory of Arrays

- $\Sigma_{P}=\emptyset, \Sigma_{F}=\{$ read, write $\}$.
- Non-extensional arrays
- Let $\Lambda_{\mathcal{A}}$ be the following axioms:

$$
\begin{aligned}
& \forall a, i, v \cdot \operatorname{read}(w r i t e(a, i, v), i)=v \\
& \forall a, i, j, v \cdot i \neq j \Rightarrow \operatorname{read}(\text { write }(a, i, v), j)=\operatorname{read}(a, j) \\
& \mathcal{T}_{\mathcal{A}}=D C\left(\Lambda_{\mathcal{A}}\right)
\end{aligned}
$$

- For extensional arrays, we need the following extra axiom:

$$
\forall a, b .(\forall i . \operatorname{read}(a, i)=\operatorname{read}(b, i)) \Rightarrow a=b
$$

- The satisfiability problem for $\mathcal{T}_{\mathcal{A}}$ is undecidable, the quantifier free case is NP-complete.

Other theories

- Bit-vectors
- Partial orders
- Tuples \& Records
- Algebraic data types

Roadmap

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Combination of Theories

- In practice, we need a combination of theories.
- Examples:

$$
\begin{aligned}
& x+2=y \Rightarrow f(\operatorname{read}(\text { write }(a, x, 3), y-2))=f(y-x+1) \\
& f(f(x)-f(y)) \neq f(z), x+z \leq y \leq x \Rightarrow z<0
\end{aligned}
$$

- Given

$$
\begin{aligned}
\Sigma & =\Sigma_{1} \cup \Sigma_{2} \\
\mathcal{T}_{1}, \mathcal{T}_{2} & : \text { theories over } \Sigma_{1}, \Sigma_{2} \\
\mathcal{T} & =D C\left(\mathcal{T}_{1} \cup \mathcal{T}_{2}\right)
\end{aligned}
$$

- Is \mathcal{T} consistent?
- Given satisfiability procedures for conjunction of literals of \mathcal{T}_{1} and \mathcal{T}_{2}, how to decide the satisfiability of \mathcal{T} ?

Preamble

- Disjoint signatures: $\Sigma_{1} \cap \Sigma_{2}=\emptyset$.
- Stably-Infinite Theories.
- Convex Theories.

Stably-Infinite Theories

- A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.
- Example. Theories with only finite models are not stably infinite.

$$
\mathcal{T}_{2}=D C(\forall x, y, z .(x=y) \vee(x=z) \vee(y=z))
$$

- Is this a problem in practice? (We want to support the "finite types" found in our programming languages)

Stably-Infinite Theories

- A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.
- Example. Theories with only finite models are not stably infinite.

$$
\mathcal{T}_{2}=D C(\forall x, y, z \cdot(x=y) \vee(x=z) \vee(y=z))
$$

- Is this a problem in practice? (We want to support the "finite types" found in our programming languages)
- Answer: No. \mathcal{T}_{2} is not useful in practice. Add a predicate $i n_{2}(x)$ (intuition: x is an element of the "finite type").

$$
\begin{array}{r}
\mathcal{T}_{2}^{\prime}=D C\left(\forall x, y, z \cdot i n_{2}(x) \wedge i n_{2}(y) \wedge i n_{2}(z) \Rightarrow\right. \\
(x=y) \vee(x=z) \vee(y=z))
\end{array}
$$

- $\mathcal{T}_{2}{ }^{\prime}$ is stably infinite.

Stably-Infinite Theories (cont.)

- The union of two consistent, disjoint, stably infinite theories is consistent.

Convexity

- A theory \mathcal{T} is convex iff
for all finite sets Γ of literals and

$$
\text { for all non-empty disjunctions } \bigvee_{i \in I} x_{i}=y_{i} \text { of variables, }
$$

$$
\Gamma \models_{\mathcal{T}} \bigvee_{i \in I} x_{i}=y_{i} \text { iff } \Gamma \models_{\mathcal{T}} x_{i}=y_{i} \text { for some } i \in I
$$

- Every convex theory \mathcal{T} with non trivial models (i.e., $\left.\models_{T} \exists x, y . x \neq y\right)$ is stably infinite.
- All Horn theories are convex - this includes all (conditional) equational theories.
- Linear rational arithmetic is convex.

Convexity (cont.)

- Many theories are not convex:
- Linear integer arithmetic.

$$
1 \leq x \leq 3 \models x=1 \vee x=2 \vee x=3
$$

- Nonlinear arithmetic.

$$
x^{2}=1, y=1, z=-1 \models x=y \vee x=z
$$

- Theory of Bit-vectors.
- Theory of Arrays.

$$
\begin{aligned}
v_{1}=\operatorname{read}\left(\operatorname{write}\left(a, i, v_{2}\right), j\right), v_{3} & =\operatorname{read}(a, j) \models \\
v_{1} & =v_{2} \vee v_{1}=v_{3}
\end{aligned}
$$

Convexity: Example

Let $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$, where \mathcal{T}_{1} is EUF $(O(n \log (n)))$ and \mathcal{T}_{2} is IDL $(O(n m))$.

- \mathcal{T}_{2} is not convex.
- Satisfiability is NP-Complete for $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$.
- Reduce 3CNF satisfiability to \mathcal{T}-satisfiability.
- For each boolean variable p_{i} add the atomic formulas:

$$
0 \leq x_{i}, x_{i} \leq 1
$$

- For a clause $p_{1} \vee \neg p_{2} \vee p_{3}$ add the atomic formula:

$$
f\left(x_{1}, x_{2}, x_{3}\right) \neq f(0,1,0)
$$

Nelson-Oppen Combination

- Let \mathcal{T}_{1} and \mathcal{T}_{2} be consistent, stably infinite theories over disjoint (countable) signatures. Assume satisfiability of conjunction of literals can decided in $O\left(T_{1}(n)\right)$ and $O\left(T_{2}(n)\right)$ time respectively. Then,

1. The combined theory \mathcal{T} is consistent and stably infinite.
2. Satisfiability of quantifier free conjunction of literals in \mathcal{T} can be decided in $O\left(2^{n^{2}} \times\left(T_{1}(n)+T_{2}(n)\right)\right.$.
3. If \mathcal{T}_{1} and \mathcal{T}_{2} are convex, then so is \mathcal{T} and satisfiability in \mathcal{T} is in $O\left(n^{4} \times\left(T_{1}(n)+T_{2}(n)\right)\right)$.

Nelson-Oppen Combination Procedure

- The combination procedure:

Initial State: ϕ is a conjunction of literals over $\Sigma_{1} \cup \Sigma_{2}$.
Purification: Preserving satisfiability transform ϕ into $\phi_{1} \wedge \phi_{2}$, such that, $\phi_{i} \in \Sigma_{i}$.

Interaction: Guess a partition of $\mathcal{V}\left(\phi_{1}\right) \cap \mathcal{V}\left(\phi_{2}\right)$ into disjoint
subsets. Express it as conjunction of literals ψ.
Example. The partition $\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{4}\right\}$ is represented as $x_{1} \neq x_{2}, x_{1} \neq x_{4}, x_{2} \neq x_{4}, x_{2}=x_{3}$.

Component Procedures : Use individual procedures to decide whether $\phi_{i} \wedge \psi$ is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Purification

- Purification:
$\phi \wedge P(\ldots, s[t], \ldots) \rightsquigarrow \phi \wedge P(\ldots, s[x], \ldots) \wedge x=t$,
t is not a variable.
- Purification is satisfiability preserving and terminating.

Purification

- Purification:
$\phi \wedge P(\ldots, s[t], \ldots) \rightsquigarrow \phi \wedge P(\ldots, s[x], \ldots) \wedge x=t$, t is not a variable.
- Purification is satisfiability preserving and terminating.
- Example:

$$
f(x-1)-1=x, f(y)+1=y \rightsquigarrow
$$

Purification

- Purification:
$\phi \wedge P(\ldots, s[t], \ldots) \rightsquigarrow \phi \wedge P(\ldots, s[x], \ldots) \wedge x=t$,
t is not a variable.
- Purification is satisfiability preserving and terminating.
- Example:

$$
\begin{aligned}
& f(x-1)-1=x, f(y)+1=y \rightsquigarrow \\
& f\left(u_{1}\right)-1=x, f(y)+1=y, u_{1}=x-1 \rightsquigarrow
\end{aligned}
$$

Purification

- Purification:
$\phi \wedge P(\ldots, s[t], \ldots) \rightsquigarrow \phi \wedge P(\ldots, s[x], \ldots) \wedge x=t$,
t is not a variable.
- Purification is satisfiability preserving and terminating.
- Example:

$$
\begin{aligned}
& f(x-1)-1=x, f(y)+1=y \rightsquigarrow \\
& f\left(u_{1}\right)-1=x, f(y)+1=y, u_{1}=x-1 \rightsquigarrow \\
& u_{2}-1=x, f(y)+1=y, u_{1}=x-1, u_{2}=f\left(u_{1}\right) \rightsquigarrow
\end{aligned}
$$

Purification

- Purification:

$$
\phi \wedge P(\ldots, s[t], \ldots) \rightsquigarrow \phi \wedge P(\ldots, s[x], \ldots) \wedge x=t
$$

t is not a variable.

- Purification is satisfiability preserving and terminating.
- Example:

$$
\begin{aligned}
& f(x-1)-1=x, f(y)+1=y \rightsquigarrow \\
& f\left(u_{1}\right)-1=x, f(y)+1=y, u_{1}=x-1 \rightsquigarrow \\
& u_{2}-1=x, f(y)+1=y, u_{1}=x-1, u_{2}=f\left(u_{1}\right) \rightsquigarrow \\
& u_{2}-1=x, u_{3}+1=y, u_{1}=x-1, u_{2}=f\left(u_{1}\right), u_{3}=f(y)
\end{aligned}
$$

Purification

- Purification:

$$
\phi \wedge P(\ldots, s[t], \ldots) \rightsquigarrow \phi \wedge P(\ldots, s[x], \ldots) \wedge x=t
$$

t is not a variable.

- Purification is satisfiability preserving and terminating.
- Example:

$$
\begin{aligned}
& f(x-1)-1=x, f(y)+1=y \rightsquigarrow \\
& f\left(u_{1}\right)-1=x, f(y)+1=y, u_{1}=x-1 \rightsquigarrow \\
& u_{2}-1=x, f(y)+1=y, u_{1}=x-1, u_{2}=f\left(u_{1}\right) \rightsquigarrow \\
& u_{2}-1=x, u_{3}+1=y, u_{1}=x-1, u_{2}=f\left(u_{1}\right), u_{3}=f(y)
\end{aligned}
$$

Purification (cont.)

- As most of the SMT developers will tell you, the purification step is not really necessary.
- Given a set of mixed (impure) literal Γ, define a shared term to be any term in Γ which is alien in some literal or sub-term in Γ.
- In our examples, these were the terms replaced by constants.
- Assume that each satisfiability procedure treats alien terms as constants.

NO procedure: soundness

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
- Purification: $\phi_{1} \wedge \phi_{2}$ is satisfiable.

NO procedure: soundness

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
- Purification: $\phi_{1} \wedge \phi_{2}$ is satisfiable.
- Iteration: for some partition $\psi, \phi_{1} \wedge \phi_{2} \wedge \psi$ is satisfiable.

NO procedure: soundness

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
- Purification: $\phi_{1} \wedge \phi_{2}$ is satisfiable.
- Iteration: for some partition $\psi, \phi_{1} \wedge \phi_{2} \wedge \psi$ is satisfiable.
- Component procedures: $\phi_{1} \wedge \psi$ and $\phi_{2} \wedge \psi$ are both satisfiable in component theories.

NO procedure: soundness

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
- Purification: $\phi_{1} \wedge \phi_{2}$ is satisfiable.
- Iteration: for some partition $\psi, \phi_{1} \wedge \phi_{2} \wedge \psi$ is satisfiable.
- Component procedures: $\phi_{1} \wedge \psi$ and $\phi_{2} \wedge \psi$ are both satisfiable in component theories.
- Therefore, if the procedure return unsatisfiable, then ϕ is unsatisfiable.

NO procedure: correctness

- Suppose the procedure returns satisfiable.
- Let ψ be the partition and A and B be models of $\mathcal{T}_{1} \wedge \phi_{1} \wedge \psi$ and $\mathcal{T}_{2} \wedge \phi_{2} \wedge \psi$.

NO procedure: correctness

- Suppose the procedure returns satisfiable.
- Let ψ be the partition and A and B be models of $\mathcal{T}_{1} \wedge \phi_{1} \wedge \psi$ and $\mathcal{T}_{2} \wedge \phi_{2} \wedge \psi$.
- The component theories are stably infinite. So, assume the models are infinite (of same cardinality).

NO procedure: correctness

- Suppose the procedure returns satisfiable.
- Let ψ be the partition and A and B be models of $\mathcal{T}_{1} \wedge \phi_{1} \wedge \psi$ and $\mathcal{T}_{2} \wedge \phi_{2} \wedge \psi$.
- The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
- Let h be a bijection between S_{A} and S_{B} such that $h\left(x^{A}\right)=x^{B}$ for each shared variable.

NO procedure: correctness

- Suppose the procedure returns satisfiable.
- Let ψ be the partition and A and B be models of $\mathcal{T}_{1} \wedge \phi_{1} \wedge \psi$ and $\mathcal{T}_{2} \wedge \phi_{2} \wedge \psi$.
- The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
- Let h be a bijection between S_{A} and S_{B} such that $h\left(x^{A}\right)=x^{B}$ for each shared variable.
- Extend B to \bar{B} by interpretations of symbols in Σ_{1} :

$$
f^{\bar{B}}\left(b_{1}, \ldots, b_{n}\right)=h\left(f^{A}\left(h^{-1}\left(b_{1}\right), \ldots, h^{-1}\left(b_{n}\right)\right)\right)
$$

NO procedure: correctness

- Suppose the procedure returns satisfiable.
- Let ψ be the partition and A and B be models of $\mathcal{T}_{1} \wedge \phi_{1} \wedge \psi$ and $\mathcal{T}_{2} \wedge \phi_{2} \wedge \psi$.
- The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
- Let h be a bijection between S_{A} and S_{B} such that $h\left(x^{A}\right)=x^{B}$ for each shared variable.
- Extend B to \bar{B} by interpretations of symbols in Σ_{1} : $f^{\bar{B}}\left(b_{1}, \ldots, b_{n}\right)=h\left(f^{A}\left(h^{-1}\left(b_{1}\right), \ldots, h^{-1}\left(b_{n}\right)\right)\right)$
- \bar{B} is a model of:

$$
\mathcal{T}_{1} \wedge \phi_{1} \wedge \mathcal{T}_{2} \wedge \phi_{2} \wedge \psi
$$

NO deterministic procedure

- Instead of guessing, we can deduce the equalities to be shared. Purification: no changes.

Interaction: Deduce an equality $x=y$:

$$
\mathcal{T}_{1} \vdash\left(\phi_{1} \Rightarrow x=y\right)
$$

Update $\phi_{2}:=\phi_{2} \wedge x=y$. And vice-versa. Repeat until no further changes.

Component Procedures : Use individual procedures to decide whether ϕ_{i} is satisfiable.

- Remark: $\mathcal{T}_{i} \vdash\left(\phi_{i} \Rightarrow x=y\right)$ iff $\phi_{i} \wedge x \neq y$ is not satisfiable in \mathcal{T}_{i}.

NO deterministic procedure: correctness

- Assume the theories are convex.
- Suppose ϕ_{i} is satisfiable.

NO deterministic procedure: correctness

- Assume the theories are convex.
- Suppose ϕ_{i} is satisfiable.
- Let E be the set of equalities $x_{j}=x_{k}(j \neq k)$ such that,

$$
\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow x_{j}=x_{k}
$$

NO deterministic procedure: correctness

- Assume the theories are convex.
- Suppose ϕ_{i} is satisfiable.
- Let E be the set of equalities $x_{j}=x_{k}(j \neq k)$ such that, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow x_{j}=x_{k}$.
- By convexity, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow \bigvee_{E} x_{j}=x_{k}$.

NO deterministic procedure: correctness

- Assume the theories are convex.
- Suppose ϕ_{i} is satisfiable.
- Let E be the set of equalities $x_{j}=x_{k}(j \neq k)$ such that, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow x_{j}=x_{k}$.
- By convexity, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow \bigvee_{E} x_{j}=x_{k}$.
- $\phi_{i} \wedge \bigwedge_{E} x_{j} \neq x_{k}$ is satisfiable.

NO deterministic procedure: correctness

- Assume the theories are convex.
- Suppose ϕ_{i} is satisfiable.
- Let E be the set of equalities $x_{j}=x_{k}(j \neq k)$ such that, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow x_{j}=x_{k}$.
- By convexity, $\mathcal{T}_{i} \nvdash \phi_{i} \Rightarrow \bigvee_{E} x_{j}=x_{k}$.
- $\phi_{i} \wedge \bigwedge_{E} x_{j} \neq x_{k}$ is satisfiable.
- The proof now is identical to the nondeterministic case.

NO procedure: example

$$
x+2=y \wedge f(\operatorname{read}(\operatorname{write}(a, x, 3), y-2)) \neq f(y-x+1)
$$

	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$

Purifying

NO procedure: example

$$
f(\operatorname{read}(\text { write }(a, x, 3), y-2)) \neq f(y-x+1)
$$

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
	$x+2=y$	

Purifying

NO procedure: example

$f\left(\operatorname{read}\left(\operatorname{write}\left(a, x, u_{1}\right), y-2\right)\right) \neq f(y-x+1)$

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
	$x+2=y$	
	$u_{1}=3$	

Purifying

NO procedure: example

$$
f\left(\operatorname{read}\left(\operatorname{write}\left(a, x, u_{1}\right), u_{2}\right)\right) \neq f(y-x+1)
$$

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
	$x+2=y$	
	$u_{1}=3$	
	$u_{2}=y-2$	

Purifying

NO procedure: example

$$
f\left(u_{3}\right) \neq f(y-x+1)
$$

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
	$x+2=y$	$u_{3}=$
	$u_{1}=3$	$\operatorname{read}\left(\operatorname{write}\left(a, x, u_{1}\right), u_{2}\right)$
	$u_{2}=y-2$	

Purifying

NO procedure: example

$$
\begin{aligned}
& f\left(u_{3}\right) \neq f\left(u_{4}\right) \\
&
\end{aligned}
$$

Purifying

NO procedure: example

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$	$x+2=y$	$u_{3}=$
	$u_{1}=3$	$\operatorname{read}\left(\operatorname{write}\left(a, x, u_{1}\right), u_{2}\right)$
	$u_{2}=y-2$	
$u_{4}=y-x+1$		

Solving $\mathcal{T}_{\mathcal{L A}}$

NO procedure: example

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$	$y=x+2$	$u_{3}=$
	$u_{1}=3$	$\operatorname{read}\left(\operatorname{write}\left(a, x, u_{1}\right), u_{2}\right)$
	$u_{2}=x$	
	$u_{4}=3$	

Propagating $u_{2}=x$

NO procedure: example

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$	$y=x+2$	$u_{3}=$
$u_{2}=x$	$u_{1}=3$	$\operatorname{read}\left(\operatorname{write}\left(a, x, u_{1}\right), u_{\mathcal{Q}}\right)$
	$u_{2}=x$	$u_{\mathscr{2}}=x$
	$u_{4}=3$	

Solving $\mathcal{T}_{\mathcal{A}}$

NO procedure: example

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$	$y=x+2$	$u_{3}=u_{1}$
$u_{2}=x$	$u_{1}=3$	$u_{2}=x$
	$u_{2}=x$	
	$u_{4}=3$	

Propagating $u_{3}=u_{1}$

NO procedure: example

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$	$y=x+2$	$u_{3}=u_{1}$
$u_{2}=x$	$u_{1}=3$	$u_{2}=x$
$u_{3}=u_{1}$	$u_{2}=x$	
	$u_{4}=3$	
	$u_{3}=u_{1}$	

Propagating $u_{1}=u_{4}$

NO procedure: example

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$	$y=x+2$	$u_{3}=u_{1}$
$u_{2}=x$	$u_{1}=3$	$u_{2}=x$
$u_{3}=u_{1}$	$u_{2}=x$	
$u_{4}=u_{1}$	$u_{4}=3$	
	$u_{3}=u_{1}$	

Congruence $u_{3}=u_{1} \wedge u_{4}=u_{1} \Rightarrow f\left(u_{3}\right)=f\left(u_{4}\right)$

NO procedure: example

$\mathcal{T}_{\mathcal{E}}$	$\mathcal{T}_{\mathcal{L A}}$	$\mathcal{T}_{\mathcal{A}}$
$f\left(u_{3}\right) \neq f\left(u_{4}\right)$	$y=x+2$	$u_{3}=u_{1}$
$u_{2}=x$	$u_{1}=3$	$u_{2}=x$
$u_{3}=u_{1}$	$u_{2}=x$	
$u_{4}=u_{1}$	$u_{4}=3$	
$f\left(u_{3}\right)=f\left(u_{4}\right)$	$u_{3}=u_{1}$	

Unsatisfiable!

Reduction Functions

- A reduction function reduces the satisfiability of a complex theory to the satisfiability problem of a simpler theory.
- Ackerman reduction is used to remove uninterpreted functions.
- For each application $f(\vec{a})$ in ϕ create a fresh variable $f_{\vec{a}}$.
- For each pair of applications $f(\vec{a}), f(\vec{c})$ in ϕ add the formula $\vec{a}=\vec{c} \Rightarrow f_{\vec{a}}=f_{\vec{c}}$.
- It is used in some SMT solvers to reduce $\mathcal{T}_{\mathcal{L A}} \cup \mathcal{T}_{\mathcal{E}}$ to $\mathcal{T}_{\mathcal{L A}}$.

Reduction Functions

- Theory of commutative functions.
- Deductive closure of: $\forall x, y \cdot f(x, y)=f(y, x)$
- Reduction to $\mathcal{T}_{\mathcal{E}}$.
- For every $f(a, b)$ in ϕ, do $\phi:=\phi \wedge f(a, b)=f(b, a)$.
- Theory of "lists".
- Deductive closure of:

$$
\begin{aligned}
& \forall x, y \cdot \operatorname{car}(\operatorname{cons}(x, y))=x \\
& \forall x, y \cdot c d r(\operatorname{cons}(x, y))=y
\end{aligned}
$$

- Reduction to $\mathcal{T}_{\mathcal{E}}$
- For each term $\operatorname{cons}(a, b)$ in ϕ, do

$$
\phi:=\phi \wedge \operatorname{car}(\operatorname{cons}(a, b))=a \wedge c d r(\operatorname{cons}(a, b))=b
$$

Roadmap

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Breakthrough in SAT solving

- Breakthrough in SAT solving influenced the way SMT solvers are implemented.
- Modern SAT solvers are based on the DPLL algorithm.
- Modern implementations add several sophisticated search techniques.
- Backjumping
- Learning
- Restarts
- Watched literals

The Original DPLL Procedure

- Tries to build incrementally a satisfying truth assignment M for a CNF formula F.
- M is grown by
- deducing the truth value of a literal from M and F, or
- guessing a truth value.
- If a wrong guess leads to an inconsistency, the procedure backtracks and tries the opposite one.

Basic DPLL System - Example

$$
\emptyset \| \quad \overline{1} \vee 2, \quad \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, \quad 6 \vee \overline{5} \vee \overline{2}
$$

Basic DPLL System - Example

$$
\begin{array}{l||llll}
\emptyset & \overline{1} \vee 2, & \overline{3} \vee 4, & \overline{5} \vee \overline{6}, & 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \quad \text { (Decide) } \\
1 \| & \overline{1} \vee 2, & \overline{3} \vee 4, & \overline{5} \vee \overline{6}, & 6 \vee \overline{5} \vee \overline{2}
\end{array}
$$

Basic DPLL System - Example

$$
\left.\left.\begin{array}{r||l}
\emptyset & \overline{1} \vee 2, \\
\hline
\end{array} \right\rvert\, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \quad \text { (Decide) }\right)
$$

Basic DPLL System - Example

$$
\begin{aligned}
& \emptyset \| \quad \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 1 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 12 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 123 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2}
\end{aligned}
$$

Basic DPLL System - Example

$$
\begin{aligned}
& \emptyset \| \quad \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 1 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 12 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 123 \| \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 1234 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2}
\end{aligned}
$$

Basic DPLL System - Example

$$
\left.\begin{array}{rllll}
\emptyset \| & \overline{1} \vee 2, & \overline{3} \vee 4, & \overline{5} \vee \overline{6}, & 6 \vee \overline{5} \vee \overline{2}
\end{array} \gg \text { (Decide) }\right)
$$

Basic DPLL System - Example

$$
\begin{aligned}
& \emptyset \| \quad \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 1 \| \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, \quad 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 12 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 123 \| \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 1234 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 12345 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 12345 \overline{6} \| \quad \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, \quad 6 \vee \overline{5} \vee \overline{2}
\end{aligned}
$$

Basic DPLL System - Example

$$
\begin{aligned}
& \emptyset \| \quad \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 1 \| \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, \quad 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 12 \| \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 123 \| \overline{1} \vee 2, \overline{3} \vee 4, \quad \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 1234 \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Decide) } \\
& 12345 \| \quad \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (UnitProp) } \\
& 12345 \overline{6} \| \quad \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2} \Longrightarrow \text { (Backjump) } \\
& 12 \overline{5} \| \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, 6 \vee \overline{5} \vee \overline{2}
\end{aligned}
$$

Basic DPLL System - Example

$$
\begin{aligned}
12345 \overline{6} \| & \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, \\
12 \vee \overline{5} \vee \overline{2} \| & \Longrightarrow \quad \text { (Backjump) } \\
1 \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, & 6 \vee \overline{5} \vee \overline{2} .
\end{aligned}
$$

Basic DPLL System - Example

$$
\begin{aligned}
12345 \overline{6} \| & \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, \\
12 \vee \overline{5} \vee \overline{2} \| & \Longrightarrow \quad \text { (Backjump) } \\
12, \overline{3} \vee 4, \overline{5} \vee \overline{6}, & 6 \vee \overline{5} \vee \overline{2} .
\end{aligned}
$$

$\overline{1} \vee \overline{5}$ is implied by the original set of clauses. For instance, by resolution,
$\frac{\frac{\overline{1} \vee 26 \vee \overline{5} \vee \overline{2}}{\overline{1} \vee 6 \vee \overline{5}} \overline{5} \vee \overline{6}}{\overline{1} \vee \overline{5}}$

Therefore, instead deciding 3 , we could have deduced $\overline{5}$.

Basic DPLL System - Example

$$
\begin{aligned}
12345 \overline{6} \| & \overline{1} \vee 2, \overline{3} \vee 4, \overline{5} \vee \overline{6}, \\
12 \vee \overline{5} \vee \overline{2} \| & \Longrightarrow \quad \text { (Backjump) } \\
12, \overline{3} \vee 4, \overline{5} \vee \overline{6}, & 6 \vee \overline{5} \vee \overline{2} .
\end{aligned}
$$

$\overline{1} \vee \overline{5}$ is implied by the original set of clauses. For instance, by resolution,
$\frac{\frac{\overline{1} \vee 26 \vee \overline{5} \vee \overline{2}}{\overline{1} \vee 6 \vee \overline{5}} \overline{5} \vee \overline{6}}{\overline{1} \vee \overline{5}}$

Therefore, instead deciding 3 , we could have deduced $\overline{5}$.
Clauses like $\overline{1} \vee \overline{5}$ are computed by navigating the implication graph.

The Eager Approach

- Translate formula into equisatisfiable propositional formula and use off-the-shelf SAT solver.
- Why "eager"?

Search uses all theory information from the beginning.

- Can use best available SAT solver.
- Sophisticated encodings are need for each theory.
- Sometimes translation and/or solving too slow.

Lazy approach: SAT solvers + Theories

- This approach was independently developed by several groups: CVC (Stanford), ICS (SRI), MathSAT (Univ. Trento, Italy), and Verifun (HP).
- It was motivated also by the breakthroughs in SAT solving.
- SAT solver "manages" the boolean structure, and assigns truth values to the atoms in a formula.
- Efficient theory solvers is used to validate the (partial) assignment produced by the SAT solver.
- When theory solver detects unsatisfiability \rightarrow a new clause (lemma) is created.

SAT solvers + Theories (cont.)

- Example:
- Suppose the SAT solver assigns

$$
\{x=y \rightarrow T, y=z \rightarrow T, f(x)=f(z) \rightarrow F\}
$$

- Theory solver detects the conflict, and a lemma is created

$$
\neg(x=y) \vee \neg(y=z) \vee f(x)=f(z)
$$

- Some theory solvers use the "proof" of the conflict to build the lemma.
- Problems in these tools:
- The lemmas are imprecise (not minimal).
- The theory solver is "passive": it just detects conflicts. There is no propagation step.
- Backtracking is expensive, some tools restart from scratch when a conflict is detected.

Precise Lemmas

- Lemma:
$\left\{a_{1}=T, a_{1}=F, a_{3}=F\right\}$ is inconsistent $\rightsquigarrow \neg a_{1} \vee a_{2} \vee a_{3}$
- An inconsistent A set is redundant if $A^{\prime} \subset A$ is also inconsistent.
- Redundant inconsistent sets \rightsquigarrow Imprecise Lemmas \rightsquigarrow Ineffective pruning of the search space.
- Noise of a redundant set: $A \backslash A_{\min }$.
- The imprecise lemma is useless in any context (partial assignment) where an atom in the noise has a different assignment.
- Example: suppose a_{1} is in the noise, then $\neg a_{1} \vee a_{2} \vee a_{3}$ is useless when $a_{1}=F$.

Theory Propagation

- The SAT solver is assigning truth values to the atoms in a formula.
- The partial assignment produced by the SAT solver may imply the truth value of unassigned atoms.
- Example:

$$
x=y \wedge y=z \wedge(f(x) \neq f(z) \vee f(x)=f(w))
$$

The partial assignment $\{x=y \rightarrow T, y=z \rightarrow T\}$ implies $f(x)=f(z)$.

- Reduces the number of conflicts and the search space.

Efficient Backtracking

- One of the most important improvements in SAT was efficient backtracking.
- Until recently, backtracking was ignored in the design of theory solvers.
- Extreme (inefficient) approach: restart from scratch on every conflict.
- Other easy (and inefficient solutions):
- Functional data-structures.
- Backtrackable data-structures (trail-stack).
- Backtracking should be included in the design of theory solvers.
- Restore to a logically equivalent state.

The ideal theory solver

- Efficient in real benchmarks.
- Produces precise lemmas.
- Supports Theory Propagation.
- Incremental.
- Efficient Backtracking.
- Produces counterexamples.

Roadmap

- Background
- Theories
- Combination of Theories
- SAT + Theories

Decision Procedures for Specific Theories

- Applications

Congruence Closure

$T_{\mathcal{E}}$-satisfiability can be decided with a simple algorithm known as congruence closure

Let $G=(V, E)$ be a directed graph such that for each vertex v in G, the successors of v are ordered.

Let C be any equivalence relation on V.
The congruence closure C^{*} of C is the finest equivalence relation on V that contains C and satisfies the following property for all vertices v and $w:$

Let v and w have successors v_{1}, \ldots, v_{k} and w_{1}, \ldots, w_{l}
respectively. If $k=l$ and $\left(v_{i}, w_{i}\right) \in C^{*}$ for $1 \leq i \leq k$, then

$$
(v, w) \in C^{*}
$$

Congruence Closure

Often, the vertices are labeled by some labeling function λ. In this case, the property becomes:

$$
\begin{aligned}
& \text { If } \lambda(v)=\lambda(w) \text { and if } k=l \text { and }\left(v_{i}, w_{i}\right) \in C^{*} \text { for } \\
& 1 \leq i \leq k \text {, then }(v, w) \in C^{*} .
\end{aligned}
$$

A Simple Algorithm

Let $C_{0}=C$ and $i=0$.

1. Number the equivalence classes in C_{i}.
2. Let α assign to each vertex v the number $\alpha(v)$ of the equivalence class containing v.
3. For each vertex v construct a signature $s(v)=\lambda(v)\left(\alpha\left(v_{1}\right), \ldots, \alpha\left(v_{k}\right)\right)$, where v_{1}, \ldots, v_{k} are the successors of v.
4. Group the vertices into equivalence classes by signature.
5. Let C_{i+1} be the finest equivalence relation on V such that two vertices equivalent under C_{i} or having the same signature are equivalent under C_{i+1}.
6. If $C_{i+1}=C_{i}$, let $C^{*}=C_{i}$; otherwise increment i and repeat.

Congruence Closure and $\mathcal{T}_{\mathcal{E}}$

Recall that $\mathcal{T}_{\mathcal{E}}$ is the empty theory with equality over some signature $\Sigma(C)$ containing only function symbols.

If Γ is a set of ground Σ-equalities and Δ is a set of ground $\Sigma(C)$-disequalities, then the satisfiability of $\Gamma \cup \Delta$ can be determined as follows.

- Let G be a graph which corresponds to the abstract syntax trees of terms in $\Gamma \cup \Delta$, and let v_{t} denote the vertex of G associated with the term t.
- Let C be the equivalence relation on the vertices of G induced by Γ.
- $\Gamma \cup \Delta$ is satisfiable iff for each $s \neq t \in \Delta,\left(v_{s}, v_{t}\right) \notin C^{*}$.

Difference Logic

- Graph interpretation:
- Variables are nodes.
- Atoms $x-y \leq c$ are weighted edges: $y \xrightarrow{c} x$.
- A set of literals is satisfiable iff there is no negative cycle:
$x_{1} \xrightarrow{c_{1}} x_{2} \ldots x_{n} \xrightarrow{c_{n}} x_{1}, C=c_{1}+\ldots+c_{n}<0$. That is, negative cycle implies $0 \leq C<0$.
- Bellman-Ford like algorithm to find such cycles in $O(m n)$.

Linear arithmetic

- Most SMT solvers use algorithms based on Fourier-Motzkin or Simplex.
- Fourier Motzkin:
- Variable elimination method.
- $t_{1} \leq a x, b x \leq t_{2} \rightsquigarrow b t_{1} \leq a t_{2}$
- Polynomial time for difference logic.
- Double exponential and consumes a lot of memory.
- Simplex:
- Very efficient in practice.
- Worst-case exponential (I've never seen this behavior in real benchmarks).

Fast Linear Arithmetic

- Simplex General Form.
- New algorithm based on the Dual Simplex.
- Efficient Backtracking.
- Efficient Theory Propagation.
- New approach for solving strict inequalities $(t>0)$.
- Preprocessing step.
- It outperforms even solvers using algorithms for the Difference Logic fragment.

Fast Linear Arithmetic: General Form

- General Form: $A x=0$ and $l_{j} \leq x_{j} \leq u_{j}$
- Example:

$$
\begin{aligned}
& x \geq 0 \wedge(x+y \leq 2 \vee x+2 y \geq 6) \wedge(x+y=2 \vee x+2 y>4) \\
& \rightsquigarrow \\
& \left(s_{1}=x+y \wedge s_{2}=x+2 y\right) \wedge \\
& \left(x \geq 0 \wedge\left(s_{1} \leq 2 \vee s_{2} \geq 6\right) \wedge\left(s_{1}=2 \vee s_{2}>4\right)\right)
\end{aligned}
$$

- Only bounds (e.g., $s_{1} \leq 2$) are asserted during the search.
- Unconstrained variables can be eliminated before the beginning of the search.

Equations + Bounds + Assignment

- An assignment β is a mapping from variables to values.
- We maintain an assignment that satisfies all equations and bounds.
- The assignment of non basic variables implies the assignment of basic variables.
- Equations + Bounds can be used to derive new bounds.
- Example: $x=y-z, y \leq 2, z \geq 3 \rightsquigarrow x \leq-1$.
- The new bound may be inconsistent with the already known bounds.
- Example: $x \leq-1, x \geq 0$.

Roadmap

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Bounded Model Checking (BMC)

- To check whether a program with initial state I and next-state relation T violates the invariant $I n v$ in the first k steps, one checks:

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge\left(\neg \operatorname{lnv}\left(s_{0}\right) \vee \ldots \vee \neg \operatorname{lnv}\left(s_{k}\right)\right)
$$

- This formula is satisfiable if and only if there exists a path of length at most k from the initial state s_{0} which violates the invariant k.
- Formulas produced in BMC are usually quite big.
- The SAL bounded model checker from SRI uses SMT solvers. http://sal.csl.sri.com

MUTT: MSIL Unit Testing Tools

- http://research.microsoft.com/projects/mutt
- Unit tests are popular, but it is far from trivial to write them.
- It is quite laborious to write enough of them to have confidence in the correctness of an implementation.
- Approach: symbolic execution.
- Symbolic execution builds a path condition over the input symbols.
- A path condition is a mathematical formula that encodes data constraints that result from executing a given code path.

MUTT: MSIL Unit Testing Tools

- When symbolic execution reaches a if-statement, it will explore two execution paths:

1. The if-condition is conjoined to the path condition for the then-path.
2. The negated condition to the path condition of the else-path.

- SMT solver must be able to produce models.
- SMT solver is also used to test path feasibility.

Spec\#: Extended Static Checking

- http://research.microsoft.com/specsharp/
- Superset of C\#
- non-null types
- pre- and postconditions
- object invariants
- Static program verification
- Example:

```
public StringBuilder Append(char[] value, int startIndex,
                                    int charCount);
    requires value == null ==> startIndex == 0 && charCount == 0;
    requires 0 <= startIndex;
    requires 0 <= charCount;
    requires value == null ||
        startIndex + charCount <= value.Length;
```


Spec\#: Architecture

- Verification condition generation:

Spec\# compiler: Spec\# \rightsquigarrow MSIL (bytecode).
Bytecode translator: MSIL \rightsquigarrow Boogie PL.
V.C. generator: Boogie PL \rightsquigarrow SMT formula.

- SMT solver is used to prove the verification conditions.
- Counterexamples are traced back to the source code.
- The formulas produces by Spec\# are not quantifier free.
- Heuristic quantifier instantiation is used.

SLAM: device driver verification

- http://research.microsoft.com/slam/
- SLAM/SDV is a software model checker.
- Application domain: device drivers.
- Architecture
c2bp C program \rightsquigarrow boolean program (predicate abstraction). bebop Model checker for boolean programs.
newton Model refinement (check for path feasibility)
- SMT solvers are used to perform predicate abstraction and to check path feasibility.
- c2bp makes several calls to the SMT solver. The formulas are relatively small.

Conclusion

- SMT is the next generation of verification engines.
- More automation: it is push-button technology.
- SMT solvers are used in different applications.
- The breakthrough in SAT solving influenced the new generation of SMT solvers:
- Precise lemmas.
- Theory Propagation.
- Incrementality.
- Efficient Backtracking.

References

[Ack54] W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the Foundation of Mathematics, 1954
[ABC ${ }^{+}$02] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based approach for solving formulas over boolean and linear mathematical propositions. In Proc. of CADE'02, 2002
[BDS00] C. Barrett, D. Dill, and A. Stump. A framework for cooperating decision procedures. In 17th International Conference on Computer-Aided Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, pages 79-97. Springer-Verlag, 2000
[BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition. In Int. Conference on Computer Aided Verification (CAV’05), pages 20-23. Springer, 2005
[BDS02] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental translation to SAT. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the $14^{\text {th }}$ International Conference on Computer Aided Verification (CAV '02), volume 2404 of Lecture Notes in Computer Science, pages 236-249. Springer-Verlag, July 2002. Copenhagen, Denmark
[BBC ${ }^{+}$05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination. In Int. Conf. on Computer-Aided Verification (CAV), volume 3576 of LNCS. Springer, 2005
[Chv83] V. Chvatal. Linear Programming. W. H. Freeman, 1983

References

[CG96] B. Cherkassky and A. Goldberg. Negative-cycle detection algorithms. In European Symposium on Algorithms, pages 349-363, 1996
[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM, 5(7):394-397, July 1962
[DNS03] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical Report HPL-2003-148, HP Labs, 2003
[DST80] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common Subexpression Problem. Journal of the Association for Computing Machinery, 27(4):758-771, 1980
[dMR02] L. de Moura and H. Rueß. Lemmas on demand for satisfiability solvers. In Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002). Cincinnati, Ohio, 2002
[DdM06] B. Dutertre and L. de Moura. Integrating simplex with $\operatorname{DPLL}(T)$. Technical report, CSL, SRI International, 2006
[GHN ${ }^{+}$04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision procedures. In R. Alur and D. Peled, editors, Int. Conference on Computer Aided Verification (CAV 04), volume 3114 of LNCS, pages 175-188. Springer, 2004

References

[MSS96] J. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm for Satisfiability. In Proc. of ICCAD'96, 1996
[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems, 1(2):245-257, 1979
[NO05] R. Nieuwenhuis and A. Oliveras. $\operatorname{DPLL}(T)$ with exhaustive theory propagation and its application to difference logic. In Int. Conference on Computer Aided Verification (CAV'05), pages 321-334. Springer, 2005
[Opp80] D. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3):403-411, 1980
[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small domains instantiations. Lecture Notes in Computer Science, 1633:455-469, 1999
[Pug92] William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis. In Communications of the ACM, volume 8, pages 102-114, August 1992
[RT03] S. Ranise and C. Tinelli. The smt-lib format: An initial proposal. In Proceedings of the 1st International Workshop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR'03), Miami, Florida, pages 94-111, 2003

References

[RS01] H. Ruess and N. Shankar. Deconstructing shostak. In 16th Annual IEEE Symposium on Logic in Computer Science, pages 19-28, June 2001
[SLB03] S. Seshia, S. Lahiri, and R. Bryant. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions. In Proc. 40th Design Automation Conference, pages 425-430. ACM Press, 2003
[Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28(4):769-779, October 1981

