SMT Solvers

Theory & Practice

Leonardo de Moura

leonardo@microsoft.com

Microsoft Research

Credits

Slides inspired by previous presentations by: Clark Barrett, Harald Ruess, Natarajan Shankar, Cesare Tinelli, Ashish Tiwari

Special thanks to:

Clark Barrett, Cesare Tinelli (for contributing some of the material) and the FMCAD PC (for the invitation).

Introduction

- Industry tools rely on powerful verification engines.
 - Boolean satisfiability (SAT) solvers.
 - Binary decision diagrams (BDDs).
- Satisfiability Modulo Theories (SMT)
 - > The next generation of verification engines.
 - SAT solvers + Theories
 - Arithmetic
 - Arrays
 - Uninterpreted Functions
 - Some problems are more naturally expressed in SMT.
 - More automation.

- Extended Static Checking.
 - Microsoft Spec# and ESP.
 - ESC/Java
- Predicate Abstraction.
 - Microsoft SLAM/SDV (device driver verification).
- **b** Bounded Model Checking (BMC) & k-induction.
- Test-case generation.
 - Microsoft MUTT.
- Symbolic Simulation.
- Planning & Scheduling.
- Equivalence checking.

SMT-Solvers & SMT-Lib & SMT-Comp

SMT-Solves:

Ario, Barcelogic, CVC, CVC Lite, CVC3, ExtSAT, Harvey, HTP, *ICS (SRI)*, Jat, MathSAT, Sateen, Simplify, STeP, STP, SVC, TSAT, UCLID, *Yices (SRI)*, Zap (Microsoft), *Z3 (Microsoft)*

- SMT-Lib: library of benchmarks http://goedel.cs.uiowa.edu/smtlib/
- SMT-Comp: annual SMT-Solver competition.

Background

- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Language: Signatures

- A signature Σ is a finite set of:
 - Function symbols: $\Sigma_F = \{f, g, \ldots\}.$
 - Predicate symbols: $\Sigma_P = \{P, Q, \ldots\}.$
 - and an *arity* function: $\Sigma \mapsto N$
- Function symbols with arity 0 are called *constants*.
- A countable set \mathcal{V} of *variables* disjoint of Σ .

- The set $T(\Sigma, \mathcal{V})$ of *terms* is the smallest set such that:
 - $\flat \ \mathcal{V} \subset T(\Sigma, \mathcal{V})$
 - $f(t_1, \ldots, t_n) \in T(\Sigma, \mathcal{V})$ whenever $f \in \Sigma_F, t_1, \ldots, t_n \in T(\Sigma, \mathcal{V})$ and arity(f) = n.
- The set of *ground terms* is defined as $T(\Sigma, \emptyset)$.

Language: Atomic Formulas

- $P(t_1, \ldots, t_n)$ is an *atomic formula* whenever $P \in \Sigma_P$, *arity*(P) = n, and $t_1, \ldots, t_n \in T(\Sigma, \mathcal{V})$.
- true and false are atomic formulas.
- If t_1, \ldots, t_n are ground terms, then $P(t_1, \ldots, t_n)$ is called a *ground (atomic) formula*.
- We assume that the binary predicate = is present in Σ_P .
- A *literal* is an atomic formula or its negation.

Language: Quantifier Free Formulas

- The set $QFF(\Sigma, V)$ of *quantifier free formulas* is the smallest set such that:
 - Every atomic formulas is in $QFF(\Sigma, \mathcal{V})$.
 - If $\phi \in QFF(\Sigma, \mathcal{V})$, then $\neg \phi \in QFF(\Sigma, \mathcal{V})$.
 - If $\phi_1, \phi_2 \in \textit{QFF}(\Sigma, \mathcal{V})$, then

 $\phi_{1} \land \phi_{2} \in \mathsf{QFF}(\Sigma, \mathcal{V})$ $\phi_{1} \lor \phi_{2} \in \mathsf{QFF}(\Sigma, \mathcal{V})$ $\phi_{1} \Rightarrow \phi_{2} \in \mathsf{QFF}(\Sigma, \mathcal{V})$ $\phi_{1} \Leftrightarrow \phi_{2} \in \mathsf{QFF}(\Sigma, \mathcal{V})$

Language: Formulas

- The set of *first-order formulas* is the closure of *QFF*(∑, V) under existential (∃) and universal (∀) quantification.
- Free (occurrences) of variables in a formula are those not bound by a quantifier.
- A sentence is a first-order formula with no free variables.

- A *(first-order) theory* \mathcal{T} (over a signature Σ) is a set of (deductively closed) sentences (over Σ and \mathcal{V}).
- Let $DC(\Gamma)$ be the deductive closure of a set of sentences Γ .
 - For every theory \mathcal{T} , $\mathit{DC}(\mathcal{T}) = \mathcal{T}$.
- A theory \mathcal{T} is *consistent* if *false* $\notin \mathcal{T}$.
- We can view a (first-order) theory \mathcal{T} as the class of all *models* of \mathcal{T} (due to completeness of first-order logic).

- \blacktriangleright A model M is defined as:
 - \blacktriangleright Domain S: set of elements.
 - Interpretation $f^M: S^n \mapsto S$ for each $f \in \Sigma_F$ with $\operatorname{arity}(f) = n$.
 - Interpretation $P^M \subseteq S^n$ for each $P \in \Sigma_P$ with arity(P) = n.
 - Assignment $x^M \in S$ for every variable $x \in \mathcal{V}$.
- A formula ϕ is true in a model M if it evaluates to true under the given interpretations over the domain S.
- M is a model for the theory \mathcal{T} if all sentences of \mathcal{T} are true in M.

Satisfiability and Validity

A formula $\phi(\vec{x})$ is *satisfiable* in a theory \mathcal{T} if there is a model of $DC(\mathcal{T} \cup \exists \vec{x}.\phi(\vec{x}))$. That is, there is a model M for \mathcal{T} in which $\phi(\vec{x})$ evaluates to true, denoted by,

$$M \models_{\mathcal{T}} \phi(\vec{x})$$

- This is also called \mathcal{T} -satisfiability.
- A formula $\phi(\vec{x})$ is *valid* in a theory \mathcal{T} if $\forall \vec{x}.\phi(\vec{x}) \in \mathcal{T}$. That is $\phi(\vec{x})$ evaluates to true in every model M of \mathcal{T} .
- \mathcal{T} -validity is denoted by $\models_{\mathcal{T}} \phi(\vec{x})$.
- The quantifier free T -satisfiability problem restricts ϕ to be quantifier free.

Checking validity

- Checking the *validity* of ϕ in a theory \mathcal{T} is:
 - $\equiv \mathcal{T} ext{-satisfiability of } \neg \phi$
 - $\equiv \mathcal{T}$ -satisfiability of $\vec{Q}\vec{x}.\phi_1$ (PNF of $\neg\phi$)
 - $\equiv \mathcal{T}$ -satisfiability of $\forall \vec{x}. \phi_1$ (Skolemize)
 - $\equiv \mathcal{T}$ -satisfiability of ϕ_2 (Instantiate)
 - $\equiv \mathcal{T}$ -satisfiability of $\bigvee_i \psi_i$ (DNF of ϕ_2)
 - $\equiv \mathcal{T}$ -satisfiability of every ψ_i
- ψ_i is a conjunction of literals.

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Pure Theory of Equality (EUF)

- The theory $\mathcal{T}_{\mathcal{E}}$ of equality is the theory $DC(\emptyset)$.
- The exact set of sentences of $\mathcal{T}_{\mathcal{E}}$ depends on the *signature* in question.
- The theory does not restrict the possibles values of the symbols in its signature in any way. For this reason, it is sometimes called the theory of *equality and uninterpreted functions*.
- The satisfiability problem for $\mathcal{T}_{\mathcal{E}}$ is the satisfiability problem for first-order logic, which is undecidable.
- The satisfiability problem for conjunction of literals in $\mathcal{T}_{\mathcal{E}}$ is decidable in polynomial time using *congruence closure*.

Linear Integer Arithmetic

- $\Sigma_P = \{\leq\}, \Sigma_F = \{0, 1, +, -\}.$
- Let $M_{\mathcal{LIA}}$ be the standard model of integers.
- Then $\mathcal{T}_{\mathcal{LIA}}$ is defined to be the set of all Σ sentences true in the model $M_{\mathcal{LIA}}$.
- As showed by Presburger, the general satisfiability problem for $\mathcal{T}_{\mathcal{LIA}}$ is decidable, but its complexity is triply-exponential.
- The quantifier free satisfiability problem is NP-complete.
- Remark: non-linear integer arithmetic is undecidable even for the quantifier free case.

Linear Real Arithmetic

- The general satisfiability problem for $\mathcal{T}_{\mathcal{LRA}}$ is decidable, but its complexity is doubly-exponential.
- The quantifier free satisfiability problem is solvable in polynomial time, though exponential methods (Simplex) tend to perform best in practice.

Difference Logic

- **Difference logic** is a fragment of linear arithmetic.
- Atoms have the form: $x y \leq c$.
- Most linear arithmetic atoms found in hardware and software verification are in this fragment.
- The quantifier free satisfiability problem is solvable in O(nm).

Theory of Arrays

•
$$\Sigma_P = \emptyset$$
, $\Sigma_F = \{ read, write \}$.

- Non-extensional arrays
 - Let $\Lambda_{\mathcal{A}}$ be the following axioms:

 $\forall a, i, v. read(write(a, i, v), i) = v$ $\forall a, i, j, v. i \neq j \Rightarrow read(write(a, i, v), j) = read(a, j)$

 $\bullet \ \mathcal{T}_{\mathcal{A}} = DC(\Lambda_{\mathcal{A}})$

For extensional arrays, we need the following extra axiom:

$$\forall a, b. \; (\forall i.read(a, i) = read(b, i)) \Rightarrow a = b$$

The satisfiability problem for $\mathcal{T}_{\mathcal{A}}$ is undecidable, the quantifier free case is NP-complete.

Other theories

- Bit-vectors
- Partial orders
- Tuples & Records
- Algebraic data types
- • •

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Combination of Theories

- ▶ In practice, we need a combination of theories.
- Examples:

•
$$x+2 = y \Rightarrow f(\text{read}(\text{write}(a, x, 3), y-2)) = f(y-x+1)$$

• $f(f(x) - f(y)) \neq f(z), x+z \le y \le x \Rightarrow z < 0$

Given

$$\begin{split} \Sigma &= \Sigma_1 \cup \Sigma_2 \\ \mathcal{T}_1, \mathcal{T}_2 &: \text{ theories over } \Sigma_1, \Sigma_2 \\ \mathcal{T} &= \textit{DC}(\mathcal{T}_1 \cup \mathcal{T}_2) \end{split}$$

• Is T consistent?

Given satisfiability procedures for conjunction of literals of ${\cal T}_1$ and ${\cal T}_2$, how to decide the satisfiability of ${\cal T}$?

Preamble

- Disjoint signatures: $\Sigma_1 \cap \Sigma_2 = \emptyset$.
- Stably-Infinite Theories.
- Convex Theories.

Stably-Infinite Theories

- A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.
- Example. Theories with only finite models are not stably infinite. $T_2 = DC(\forall x, y, z. (x = y) \lor (x = z) \lor (y = z)).$
- Is this a problem in practice? (We want to support the "finite types" found in our programming languages)

Stably-Infinite Theories

- A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.
- Example. Theories with only finite models are not stably infinite. $T_2 = DC(\forall x, y, z. (x = y) \lor (x = z) \lor (y = z)).$
- Is this a problem in practice? (We want to support the "finite types" found in our programming languages)
- Answer: No. T_2 is not useful in practice. Add a predicate $in_2(x)$ (intuition: x is an element of the "finite type").

$$\mathcal{T}_{2}' = DC(\forall x, y, z. in_{2}(x) \land in_{2}(y) \land in_{2}(z) \Rightarrow$$
$$(x = y) \lor (x = z) \lor (y = z))$$

• ${\mathcal T}_2'$ is stably infinite.

Stably-Infinite Theories (cont.)

The union of two consistent, disjoint, stably infinite theories is consistent.

A theory \mathcal{T} is *convex* iff

for all finite sets Γ of literals and for all non-empty disjunctions $\bigvee_{i \in I} x_i = y_i$ of variables, $\Gamma \models_{\mathcal{T}} \bigvee_{i \in I} x_i = y_i$ iff $\Gamma \models_{\mathcal{T}} x_i = y_i$ for some $i \in I$.

- Every convex theory \mathcal{T} with non trivial models (i.e., $\models_T \exists x, y. \ x \neq y$) is stably infinite.
- All Horn theories are convex this includes all (conditional) equational theories.
- Linear rational arithmetic is convex.

Convexity (cont.)

- Many theories are not convex:
 - Linear integer arithmetic.

$$1 \le x \le 3 \models x = 1 \lor x = 2 \lor x = 3$$

Nonlinear arithmetic.

$$x^2 = 1, y = 1, z = -1 \models x = y \lor x = z$$

- Theory of Bit-vectors.
- Theory of Arrays.

$$v_1 = \operatorname{read}(\operatorname{write}(a, i, v_2), j), v_3 = \operatorname{read}(a, j) \models v_1 = v_2 \lor v_1 = v_3$$

Convexity: Example

- Let $T = T_1 \cup T_2$, where T_1 is EUF (O(nlog(n))) and T_2 is IDL (O(nm)).
- ${\mathcal T}_2$ is not convex.
- Satisfiability is NP-Complete for $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2$.
 - Reduce 3CNF satisfiability to \mathcal{T} -satisfiability.
 - For each boolean variable p_i add the atomic formulas: $0 \le x_i, x_i \le 1.$
 - For a clause $p_1 \vee \neg p_2 \vee p_3$ add the atomic formula: $f(x_1, x_2, x_3) \neq f(0, 1, 0)$

Nelson-Oppen Combination

- Let \mathcal{T}_1 and \mathcal{T}_2 be consistent, stably infinite theories over disjoint (countable) signatures. Assume satisfiability of conjunction of literals can decided in $O(T_1(n))$ and $O(T_2(n))$ time respectively. Then,
 - 1. The combined theory ${\mathcal T}$ is consistent and stably infinite.
 - 2. Satisfiability of quantifier free conjunction of literals in \mathcal{T} can be decided in $O(2^{n^2} \times (T_1(n) + T_2(n)))$.
 - 3. If \mathcal{T}_1 and \mathcal{T}_2 are convex, then so is \mathcal{T} and satisfiability in \mathcal{T} is in $O(n^4 \times (T_1(n) + T_2(n)))$.

Nelson-Oppen Combination Procedure

- The combination procedure:
 - **Initial State:** ϕ is a conjunction of literals over $\Sigma_1 \cup \Sigma_2$.
 - **Purification:** Preserving satisfiability transform ϕ into $\phi_1 \wedge \phi_2$, such that, $\phi_i \in \Sigma_i$.
 - Interaction: Guess a partition of $\mathcal{V}(\phi_1) \cap \mathcal{V}(\phi_2)$ into disjoint subsets. Express it as conjunction of literals ψ . Example. The partition $\{x_1\}, \{x_2, x_3\}, \{x_4\}$ is represented as $x_1 \neq x_2, x_1 \neq x_4, x_2 \neq x_4, x_2 = x_3$.
 - Component Procedures : Use individual procedures to decide whether $\phi_i \wedge \psi$ is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Purification:

$$\phi \wedge P(\dots, s[t], \dots) \rightsquigarrow \phi \wedge P(\dots, s[x], \dots) \wedge x = t,$$

t is not a variable.

> Purification is satisfiability preserving and terminating.

Purification:

$$\phi \wedge P(\dots, s[t], \dots) \rightsquigarrow \phi \wedge P(\dots, s[x], \dots) \wedge x = t$$
,
t is not a variable.

- > Purification is satisfiability preserving and terminating.
- Example:

$$f(\mathbf{x} - \mathbf{1}) - 1 = x, f(y) + 1 = y \rightsquigarrow$$

Purification:

$$\phi \wedge P(\dots, s[t], \dots) \rightsquigarrow \phi \wedge P(\dots, s[x], \dots) \wedge x = t$$
, t is not a variable.

- > Purification is satisfiability preserving and terminating.
- **Example**:

$$f(x-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$
$$f(u_1) - 1 = x, f(y) + 1 = y, u_1 = x - 1 \rightsquigarrow$$

Purification:

$$\phi \wedge P(\dots, s[t], \dots) \rightsquigarrow \phi \wedge P(\dots, s[x], \dots) \wedge x = t$$
, t is not a variable.

- > Purification is satisfiability preserving and terminating.
- **Example**:

$$f(x-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$

$$f(u_1) - 1 = x, f(y) + 1 = y, u_1 = x - 1 \rightsquigarrow$$

$$u_2 - 1 = x, f(y) + 1 = y, u_1 = x - 1, u_2 = f(u_1) \rightsquigarrow$$

Purification:

$$\phi \wedge P(\dots, s[t], \dots) \rightsquigarrow \phi \wedge P(\dots, s[x], \dots) \wedge x = t$$
,
t is not a variable.

- > Purification is satisfiability preserving and terminating.
- **Example**:

$$f(x-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$

$$f(u_1) - 1 = x, f(y) + 1 = y, u_1 = x - 1 \rightsquigarrow$$

$$u_2 - 1 = x, f(y) + 1 = y, u_1 = x - 1, u_2 = f(u_1) \rightsquigarrow$$

$$u_2 - 1 = x, u_3 + 1 = y, u_1 = x - 1, u_2 = f(u_1), u_3 = f(y)$$

Purification:

$$\phi \wedge P(\dots, s[t], \dots) \rightsquigarrow \phi \wedge P(\dots, s[x], \dots) \wedge x = t$$
,
t is not a variable.

- > Purification is satisfiability preserving and terminating.
- **Example**:

$$f(x-1) - 1 = x, f(y) + 1 = y \rightsquigarrow$$

$$f(u_1) - 1 = x, f(y) + 1 = y, u_1 = x - 1 \rightsquigarrow$$

$$u_2 - 1 = x, f(y) + 1 = y, u_1 = x - 1, u_2 = f(u_1) \rightsquigarrow$$

$$u_2 - 1 = x, u_3 + 1 = y, u_1 = x - 1, u_2 = f(u_1), u_3 = f(y)$$

Purification (cont.)

- As most of the SMT developers will tell you, the purification step is not really necessary.
- Given a set of mixed (impure) literal Γ, define a shared term to be any term in Γ which is alien in some literal or sub-term in Γ.
- In our examples, these were the terms replaced by constants.
- Assume that each satisfiability procedure treats alien terms as constants.

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
 - Purification: $\phi_1 \wedge \phi_2$ is satisfiable.

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
 - Purification: $\phi_1 \wedge \phi_2$ is satisfiable.
 - Iteration: for some partition ψ , $\phi_1 \wedge \phi_2 \wedge \psi$ is satisfiable.

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
 - Purification: $\phi_1 \wedge \phi_2$ is satisfiable.
 - Iteration: for some partition ψ , $\phi_1 \wedge \phi_2 \wedge \psi$ is satisfiable.
 - Component procedures: $\phi_1 \wedge \psi$ and $\phi_2 \wedge \psi$ are both satisfiable in component theories.

- Each step is satisfiability preserving.
- Say ϕ is satisfiable (in the combination).
 - Purification: $\phi_1 \wedge \phi_2$ is satisfiable.
 - Iteration: for some partition ψ , $\phi_1 \wedge \phi_2 \wedge \psi$ is satisfiable.
 - Component procedures: $\phi_1 \wedge \psi$ and $\phi_2 \wedge \psi$ are both satisfiable in component theories.
 - Therefore, if the procedure return unsatisfiable, then ϕ is unsatisfiable.

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of $\mathcal{T}_1 \wedge \phi_1 \wedge \psi$ and $\mathcal{T}_2 \wedge \phi_2 \wedge \psi$.

NO procedure: correctness

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of ${\mathcal T}_1 \wedge \phi_1 \wedge \psi$ and ${\mathcal T}_2 \wedge \phi_2 \wedge \psi$.
 - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).

NO procedure: correctness

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of ${\mathcal T}_1 \wedge \phi_1 \wedge \psi$ and ${\mathcal T}_2 \wedge \phi_2 \wedge \psi$.
 - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
 - Let *h* be a bijection between S_A and S_B such that $h(x^A) = x^B$ for each shared variable.

NO procedure: correctness

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of ${\mathcal T}_1 \wedge \phi_1 \wedge \psi$ and ${\mathcal T}_2 \wedge \phi_2 \wedge \psi$.
 - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
 - Let *h* be a bijection between S_A and S_B such that $h(x^A) = x^B$ for each shared variable.
 - Extend B to \overline{B} by interpretations of symbols in Σ_1 : $f^{\overline{B}}(b_1, \ldots, b_n) = h(f^A(h^{-1}(b_1), \ldots, h^{-1}(b_n)))$

- Suppose the procedure returns satisfiable.
 - Let ψ be the partition and A and B be models of ${\mathcal T}_1 \wedge \phi_1 \wedge \psi$ and ${\mathcal T}_2 \wedge \phi_2 \wedge \psi$.
 - The component theories are stably infinite. So, assume the models are infinite (of same cardinality).
 - Let *h* be a bijection between S_A and S_B such that $h(x^A) = x^B$ for each shared variable.
 - Extend *B* to \overline{B} by interpretations of symbols in Σ_1 : $f^{\overline{B}}(b_1, \ldots, b_n) = h(f^A(h^{-1}(b_1), \ldots, h^{-1}(b_n)))$
 - \bar{B} is a model of:

 $\mathcal{T}_1 \wedge \phi_1 \wedge \mathcal{T}_2 \wedge \phi_2 \wedge \psi$

NO deterministic procedure

Instead of *guessing*, we can *deduce* the equalities to be shared.
 Purification: no changes.

Interaction: Deduce an equality x = y:

$$\mathcal{T}_1 \vdash (\phi_1 \Rightarrow x = y)$$

Update $\phi_2 := \phi_2 \wedge x = y$. And vice-versa. Repeat until no further changes.

- **Component Procedures** : Use individual procedures to decide whether ϕ_i is satisfiable.
- Remark: $\mathcal{T}_i \vdash (\phi_i \Rightarrow x = y)$ iff $\phi_i \land x \neq y$ is not satisfiable in \mathcal{T}_i .

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.
 - By convexity, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.
 - By convexity, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$.

•
$$\phi_i \wedge \bigwedge_E x_j \neq x_k$$
 is satisfiable.

- Assume the theories are convex.
 - Suppose ϕ_i is satisfiable.
 - Let *E* be the set of equalities $x_j = x_k$ ($j \neq k$) such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.
 - By convexity, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$.

•
$$\phi_i \wedge \bigwedge_E x_j \neq x_k$$
 is satisfiable.

The proof now is identical to the nondeterministic case.

 $x + 2 = y \land f(\mathit{read}(\mathit{write}(a, x, 3), y - 2)) \neq f(y - x + 1)$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$

$$f(\mathit{read}(\mathit{write}(a, x, \mathcal{3}), y - 2)) \neq f(y - x + 1)$$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	$\mathcal{T}_{\mathcal{A}}$
	x + 2 = y	

$$f(\textit{read}(\textit{write}(a, x, u_1), y - 2)) \neq f(y - x + 1)$$

${\mathcal T}_{\mathcal E}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
	x + 2 = y	
	$x + 2 = y$ $u_1 = 3$	

 $f(\operatorname{read}(\operatorname{write}(a, x, u_1), u_2)) \neq f(y - x + 1)$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
	x + 2 = y	
	$x + 2 = y$ $u_1 = 3$ $u_2 = y - 2$	
	$u_2 = y - 2$	

$$f(u_3) \neq f(y - x + 1)$$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
	x + 2 = y	$u_3 =$
	$u_1 = 3$	$\mathit{read}(\mathit{write}(a,x,u_1),u_2)$
	$u_2 = y - 2$	

 $f(u_3) \neq f(u_4)$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
	x + 2 = y	$u_3 =$
	$u_1 = 3$	$\mathit{read}(\mathit{write}(a,x,u_1),u_2)$
	$u_2 = y - 2$	
	$u_4 = y - x + 1$	

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
$f(u_3) \neq f(u_4)$	x + 2 = y	$u_3 =$
	$u_1 = 3$	$\mathit{read}(\mathit{write}(a,x,u_1),u_2)$
	$u_2 = \frac{y}{2} - 2$	
	$u_4 = \mathbf{y} - x + 1$	

Solving $\mathcal{T}_{\mathcal{LA}}$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
$f(u_3) \neq f(u_4)$	y = x + 2	$u_3 =$
	$u_1 = 3$	$\mathit{read}(\mathit{write}(a,x,u_1),u_2)$
	$u_{\mathscr{Q}} = x$	
	$u_4 = 3$	

Propagating $u_2 = x$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	$\mathcal{T}_{\mathcal{A}}$
$f(u_3) \neq f(u_4)$	y = x + 2	$u_3 =$
$u_2 = x$	$u_1 = 3$	$\mathit{read}(\mathit{write}(a, \pmb{x}, u_1), \pmb{u_2})$
	$u_2 = x$	$u_2 = x$
	$u_4 = 3$	

Solving $\mathcal{T}_{\mathcal{A}}$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
$f(u_3) \neq f(u_4)$	y = x + 2	$u_3 = u_1$
$u_2 = x$	$u_1 = 3$	$u_2 = x$
	$u_2 = x$	
	$u_4 = 3$	

Propagating $u_3 = u_1$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
$f(u_3) \neq f(u_4)$	y = x + 2	$u_3 = u_1$
$u_2 = x$	$u_1 = 3$	$u_2 = x$
$u_3 = u_1$	$u_2 = x$	
	$u_4 = 3$	
	$u_3 = u_1$	

Propagating $u_1 = u_4$

${\mathcal T}_{\mathcal E}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
$f(u_3) \neq f(u_4)$	y = x + 2	$u_3 = u_1$
$u_2 = x$	$u_1 = 3$	$u_2 = x$
$u_3 = u_1$	$u_2 = x$	
$u_4 = u_1$	$u_4 = 3$	
	$u_3 = u_1$	

Congruence $u_3 = u_1 \land u_4 = u_1 \Rightarrow f(u_3) = f(u_4)$

$\mathcal{T}_{\mathcal{E}}$	${\cal T}_{{\cal L}{\cal A}}$	${\mathcal T}_{\mathcal A}$
$f(u_3) \neq f(u_4)$	y = x + 2	$u_3 = u_1$
$u_2 = x$	$u_1 = 3$	$u_2 = x$
$u_3 = u_1$	$u_2 = x$	
$u_4 = u_1$	$u_4 = 3$	
$f(u_3) = f(u_4)$	$u_3 = u_1$	

Unsatisfiable!

Reduction Functions

- A reduction function reduces the satisfiability of a complex theory to the satisfiability problem of a simpler theory.
- Ackerman reduction is used to remove uninterpreted functions.
 - For each application $f(\vec{a})$ in ϕ create a fresh variable $f_{\vec{a}}$.
 - For each pair of applications $f(\vec{a})$, $f(\vec{c})$ in ϕ add the formula $\vec{a} = \vec{c} \Rightarrow f_{\vec{a}} = f_{\vec{c}}$.
 - It is used in some SMT solvers to reduce $\mathcal{T}_{\mathcal{LA}} \cup \mathcal{T}_{\mathcal{E}}$ to $\mathcal{T}_{\mathcal{LA}}$.

Reduction Functions

- Theory of commutative functions.
 - Deductive closure of: $\forall x, y. f(x, y) = f(y, x)$
 - Reduction to $\mathcal{T}_{\mathcal{E}}$.
 - $\blacktriangleright \ \text{For every} \ f(a,b) \ \text{in} \ \phi \text{, do} \ \phi := \phi \wedge f(a,b) = f(b,a).$
- Theory of "lists".
 - Deductive closure of:

$$\forall x, y. \ car(cons(x, y)) = x$$
$$\forall x, y. \ cdr(cons(x, y)) = y$$

- Reduction to ${\mathcal T}_{\mathcal E}$
- For each term cons(a, b) in ϕ , do $\phi := \phi \wedge car(cons(a, b)) = a \wedge cdr(cons(a, b)) = b.$

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Breakthrough in SAT solving

- Breakthrough in SAT solving influenced the way SMT solvers are implemented.
- Modern SAT solvers are based on the DPLL algorithm.
- Modern implementations add several sophisticated search techniques.
 - Backjumping
 - Learning
 - Restarts
 - Watched literals

The Original DPLL Procedure

- Tries to *build* incrementally a *satisfying truth assignment* M for a CNF formula F.
- M is grown by
 - deducing the truth value of a literal from M and F, or
 - *guessing* a truth value.
- If a wrong guess leads to an inconsistency, the procedure backtracks and tries the opposite one.

$\emptyset \ \| \quad \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2}$

$$\begin{split} \emptyset &\| & \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \implies (\text{Decide}) \\ 1 &\| & \overline{1} \lor 2, \ \overline{3} \lor 4, \ \overline{5} \lor \overline{6}, \ 6 \lor \overline{5} \lor \overline{2} \end{split}$$

$$\begin{split} \emptyset & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\text{Decide}) \\ 1 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\text{UnitProp}) \\ 1 & 2 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \end{split}$$

$$\begin{split} \emptyset & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{Decide}) \\ 1 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{UnitProp}) \\ 1 & 2 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{Decide}) \\ 1 & 2 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{Decide}) \\ \end{split}$$

$$\begin{split} \emptyset & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{Decide}) \\ 1 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{UnitProp}) \\ 1 & 2 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{Decide}) \\ 1 & 2 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{UnitProp}) \\ 1 & 2 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{UnitProp}) \\ 1 & 2 & \| \quad \overline{1} \lor 2, \quad \overline{3} \lor 4, \quad \overline{5} \lor \overline{6}, \quad 6 \lor \overline{5} \lor \overline{2} \implies (\mathsf{UnitProp}) \\ \end{split}$$

Ø	$\overline{1} \lor 2,$	$\overline{3} \lor 4,$	$\overline{5} \lor \overline{6},$	$6 \vee \overline{5} \vee \overline{2}$	\implies	(Decide)
1	$\overline{1} \lor 2,$	$\overline{3} \lor 4,$	$\overline{5} \lor \overline{6},$	$6 \vee \overline{5} \vee \overline{2}$	\implies	(UnitProp)
12	$\overline{1} \lor 2,$	$\overline{3} \lor 4,$	$\overline{5} \lor \overline{6},$	$6 \vee \overline{5} \vee \overline{2}$	\implies	(Decide)
123	$\overline{1} \lor 2,$	$\overline{3} \lor 4,$	$\overline{5} \lor \overline{6},$	$6 \vee \overline{5} \vee \overline{2}$	\implies	(UnitProp)
1 2 3 4	$\overline{1} \lor 2,$	$\overline{3} \lor 4,$	$\overline{5} \lor \overline{6},$	$6 \vee \overline{5} \vee \overline{2}$	\implies	(Decide)
$1\ 2\ 3\ 4\ 5$	$\overline{1} \lor 2,$	$\overline{3} \lor 4,$	$\overline{5} \lor \overline{6},$	$6 \vee \overline{5} \vee \overline{2}$	\Longrightarrow	(UnitProp)
$1\ 2\ \mathbf{\overline{3}}\ 4\ \mathbf{\overline{5}}\ \overline{6}\ \ $	$\overline{1} \lor 2,$	$\overline{3} \lor 4,$	$\overline{5} \lor \overline{6},$	$6 \vee \overline{5} \vee \overline{2}$	\Longrightarrow	(Backjump)
$1\ 2\ \overline{5}$	$\overline{1} \lor 2,$	$\overline{3} \lor 4,$	$\overline{5} \vee \overline{6},$	$6 \lor \overline{5} \lor \overline{2}$		

Backjumpwith clause $\overline{1} \vee \overline{5}$

• • •

. . .

 $\overline{1} \vee \overline{5}$ is implied by the original set of clauses. For instance, by resolution,

$$\frac{\overline{1} \lor 2 \quad 6 \lor \overline{5} \lor \overline{2}}{\overline{1} \lor 6 \lor \overline{5}} \quad \overline{5} \lor \overline{6}$$

$$\overline{1} \lor \overline{5}$$

Therefore, instead *deciding* 3, we could have *deduced* $\overline{5}$.

. . .

 $\overline{1} \vee \overline{5}$ is implied by the original set of clauses. For instance, by resolution,

$$\frac{\overline{1} \lor 2 \quad 6 \lor \overline{5} \lor \overline{2}}{\overline{1} \lor 6 \lor \overline{5}} \quad \overline{5} \lor \overline{6} \\
\overline{1} \lor \overline{5}$$

Therefore, instead *deciding* 3, we could have *deduced* $\overline{5}$.

Clauses like $\overline{1} \vee \overline{5}$ are computed by navigating the *implication graph*.

The Eager Approach

- Translate formula into equisatisfiable propositional formula and use off-the-shelf SAT solver.
- Why "eager"?

Search uses *all* theory information from the beginning.

- Can use best available SAT solver.
- Sophisticated encodings are need for each theory.
- Sometimes translation and/or solving too slow.

Lazy approach: SAT solvers + Theories

- This approach was independently developed by several groups: CVC (Stanford), ICS (SRI), MathSAT (Univ. Trento, Italy), and Verifun (HP).
- It was motivated also by the breakthroughs in SAT solving.
- SAT solver "manages" the boolean structure, and assigns truth values to the atoms in a formula.
- Efficient theory solvers is used to validate the (partial) assignment produced by the SAT solver.
- When theory solver detects unsatisfiability → a new clause (*lemma*) is created.

- Example:
 - Suppose the SAT solver assigns

$$\{x = y \to T, y = z \to T, f(x) = f(z) \to F\}.$$

- Theory solver detects the conflict, and a *lemma* is created $\neg(x = y) \lor \neg(y = z) \lor f(x) = f(z)$.
- Some theory solvers use the "proof" of the conflict to build the lemma.
- Problems in these tools:
 - The lemmas are imprecise (not minimal).
 - The theory solver is "passive": *it just detects conflicts*. There is no propagation step.
 - Backtracking is expensive, some tools restart from scratch when a conflict is detected.

Lemma:

$$\{a_1 = T, a_1 = F, a_3 = F\}$$
 is inconsistent $\rightsquigarrow \neg a_1 \lor a_2 \lor a_3$

- An inconsistent A set is *redundant* if $A' \subset A$ is also inconsistent.
- Redundant inconsistent sets ~> Imprecise Lemmas ~> Ineffective pruning of the search space.
- Noise of a redundant set: $A \setminus A_{min}$.
- The imprecise lemma is useless in any context (partial assignment) where an atom in the noise has a different assignment.
- Example: suppose a_1 is in the noise, then $\neg a_1 \lor a_2 \lor a_3$ is useless when $a_1 = F$.

Theory Propagation

- > The SAT solver is assigning truth values to the atoms in a formula.
- The partial assignment produced by the SAT solver may imply the truth value of unassigned atoms.
- Example:

$$x = y \land y = z \land (f(x) \neq f(z) \lor f(x) = f(w))$$

The partial assignment $\{x = y \rightarrow T, y = z \rightarrow T\}$ implies f(x) = f(z).

Reduces the number of conflicts and the search space.

Efficient Backtracking

- One of the most important improvements in SAT was efficient backtracking.
- Until recently, backtracking was ignored in the design of theory solvers.
- Extreme (inefficient) approach: restart from scratch on every conflict.
- Other easy (and inefficient solutions):
 - Functional data-structures.
 - Backtrackable data-structures (trail-stack).
- Backtracking should be included in the design of theory solvers.
- Restore to a logically equivalent state.

The ideal theory solver

- Efficient in real benchmarks.
- Produces precise lemmas.
- Supports Theory Propagation.
- Incremental.
- Efficient Backtracking.
- Produces counterexamples.

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

 $T_{\mathcal{E}}\mbox{-}satisfiability can be decided with a simple algorithm known as congruence closure$

Let G = (V, E) be a directed graph such that for each vertex v in G, the successors of v are ordered.

Let C be any equivalence relation on V.

The congruence closure C^* of C is the finest equivalence relation on V that contains C and satisfies the following property for all vertices v and w:

Let v and w have successors v_1, \ldots, v_k and w_1, \ldots, w_l respectively. If k = l and $(v_i, w_i) \in C^*$ for $1 \le i \le k$, then $(v, w) \in C^*$.

Congruence Closure

Often, the vertices are labeled by some labeling function λ . In this case, the property becomes:

If
$$\lambda(v) = \lambda(w)$$
 and if $k = l$ and $(v_i, w_i) \in C^*$ for $1 \le i \le k$, then $(v, w) \in C^*$.

Let $C_0 = C$ and i = 0.

- 1. Number the equivalence classes in C_i .
- 2. Let α assign to each vertex v the number $\alpha(v)$ of the equivalence class containing v.
- 3. For each vertex v construct a *signature* $s(v) = \lambda(v)(\alpha(v_1), \dots, \alpha(v_k))$, where v_1, \dots, v_k are the successors of v.
- 4. Group the vertices into equivalence classes by signature.
- 5. Let C_{i+1} be the finest equivalence relation on V such that two vertices equivalent under C_i or having the same signature are equivalent under C_{i+1} .
- 6. If $C_{i+1} = C_i$, let $C^* = C_i$; otherwise increment *i* and repeat.

Congruence Closure and $\mathcal{T}_{\mathcal{E}}$

Recall that $\mathcal{T}_{\mathcal{E}}$ is the empty theory with equality over some signature $\Sigma(C)$ containing only function symbols.

If Γ is a set of ground Σ -equalities and Δ is a set of ground $\Sigma(C)$ -disequalities, then the satisfiability of $\Gamma \cup \Delta$ can be determined as follows.

- Let G be a graph which corresponds to the abstract syntax trees of terms in $\Gamma \cup \Delta$, and let v_t denote the vertex of G associated with the term t.
- Let C be the equivalence relation on the vertices of G induced by Γ .
- $\Gamma \cup \Delta$ is satisfiable iff for each $s \neq t \in \Delta$, $(v_s, v_t) \notin C^*$.

- Graph interpretation:
 - Variables are nodes.
 - Atoms $x y \le c$ are weighted edges: $y \xrightarrow{c} x$.
 - A set of literals is satisfiable iff there is no negative cycle: $x_1 \xrightarrow{c_1} x_2 \dots x_n \xrightarrow{c_n} x_1, C = c_1 + \dots + c_n < 0$. That is, negative cycle implies $0 \le C < 0$.
 - Bellman-Ford like algorithm to find such cycles in O(mn).

Linear arithmetic

- Most SMT solvers use algorithms based on Fourier-Motzkin or Simplex.
- Fourier Motzkin:
 - Variable elimination method.
 - $t_1 \le ax, \ bx \le t_2 \rightsquigarrow bt_1 \le at_2$
 - Polynomial time for difference logic.
 - Double exponential and consumes a lot of memory.
- Simplex:
 - Very efficient in practice.
 - Worst-case exponential (I've never seen this behavior in real benchmarks).

Fast Linear Arithmetic

- Simplex General Form.
- New algorithm based on the Dual Simplex.
- Efficient Backtracking.
- Efficient Theory Propagation.
- New approach for solving strict inequalities (t > 0).
- Preprocessing step.
- It outperforms even solvers using algorithms for the Difference Logic fragment.

Fast Linear Arithmetic: General Form

- General Form: Ax = 0 and $l_j \le x_j \le u_j$
- **Example**:

$$x \ge 0 \land (x + y \le 2 \lor x + 2y \ge 6) \land (x + y = 2 \lor x + 2y > 4)$$

$$\rightsquigarrow$$

$$(s_1 = x + y \land s_2 = x + 2y) \land$$

$$(x \ge 0 \land (s_1 \le 2 \lor s_2 \ge 6) \land (s_1 = 2 \lor s_2 > 4))$$

- Only *bounds* (e.g., $s_1 \leq 2$) are asserted during the search.
- Unconstrained variables can be eliminated before the beginning of the search.

Equations + Bounds + Assignment

- An *assignment* β is a mapping from variables to values.
- We maintain an *assignment* that satisfies all *equations* and *bounds*.
- The assignment of non basic variables implies the assignment of basic variables.
- Equations + Bounds can be used to derive new bounds.
- Example: $x = y z, y \le 2, z \ge 3 \rightsquigarrow x \le -1$.
- The new bound may be inconsistent with the already known bounds.
- Example: $x \leq -1, x \geq 0$.

- Background
- Theories
- Combination of Theories
- SAT + Theories
- Decision Procedures for Specific Theories
- Applications

Bounded Model Checking (BMC)

• To check whether a program with initial state I and next-state relation T violates the invariant *Inv* in the first k steps, one checks:

 $I(s_0) \wedge T(s_0, s_1) \wedge \ldots \wedge T(s_{k-1}, s_k) \wedge (\neg \mathit{Inv}(s_0) \vee \ldots \vee \neg \mathit{Inv}(s_k))$

- This formula is satisfiable if and only if there exists a path of length at most k from the initial state s_0 which violates the invariant k.
- Formulas produced in BMC are usually quite big.
- The SAL bounded model checker from SRI uses SMT solvers. http://sal.csl.sri.com

MUTT: MSIL Unit Testing Tools

- http://research.microsoft.com/projects/mutt
- Unit tests are popular, but it is far from trivial to write them.
- It is quite laborious to write enough of them to have confidence in the correctness of an implementation.
- Approach: *symbolic execution*.
- Symbolic execution builds a path condition over the input symbols.
- A path condition is a mathematical formula that encodes data constraints that result from executing a given code path.

MUTT: MSIL Unit Testing Tools

- When symbolic execution reaches a if-statement, it will explore two execution paths:
 - 1. The if-condition is conjoined to the path condition for the then-path.
 - 2. The negated condition to the path condition of the else-path.
- SMT solver must be able to produce models.
- SMT solver is also used to test path *feasibility*.

Spec#: Extended Static Checking

- http://research.microsoft.com/specsharp/
- Superset of C#
 - non-null types
 - pre- and postconditions
 - object invariants
- Static program verification
- Example:

Spec#: Architecture

Verification condition generation:

Spec# compiler: Spec# ~> MSIL (bytecode).

Bytecode translator: MSIL ~> Boogie PL.

V.C. generator: Boogie PL \rightsquigarrow SMT formula.

- SMT solver is used to prove the verification conditions.
- Counterexamples are traced back to the source code.
- The formulas produces by Spec# are not quantifier free.
 - Heuristic quantifier instantiation is used.

SLAM: device driver verification

- http://research.microsoft.com/slam/
- SLAM/SDV is a software model checker.
- Application domain: *device drivers*.
- Architecture

c2bp C program → boolean program (*predicate abstraction*).
bebop Model checker for boolean programs.
newton Model refinement (*check for path feasibility*)

- SMT solvers are used to perform predicate abstraction and to check path feasibility.
- c2bp makes several calls to the SMT solver. The formulas are relatively small.

Conclusion

- SMT is the next generation of verification engines.
- More automation: it is push-button technology.
- SMT solvers are used in different applications.
- The breakthrough in SAT solving influenced the new generation of SMT solvers:
 - Precise lemmas.
 - Theory Propagation.
 - Incrementality.
 - Efficient Backtracking.

- [Ack54] W. Ackermann. Solvable cases of the decision problem. *Studies in Logic and the Foundation of Mathematics*, 1954
- **[ABC⁺02]** G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based approach for solving formulas over boolean and linear mathematical propositions. In *Proc. of CADE'02*, 2002
- [BDS00] C. Barrett, D. Dill, and A. Stump. A framework for cooperating decision procedures. In 17th International Conference on Computer-Aided Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, pages 79–97. Springer-Verlag, 2000
- [BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition. In Int. Conference on Computer Aided Verification (CAV'05), pages 20–23. Springer, 2005
- [BDS02] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental translation to SAT. In Ed Brinksma and Kim Guldstrand Larsen, editors, *Proceedings of the* 14th *International Conference on Computer Aided Verification (CAV '02)*, volume 2404 of *Lecture Notes in Computer Science*, pages 236–249. Springer-Verlag, July 2002. Copenhagen, Denmark
- [BBC⁺05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and
 R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination. In *Int. Conf. on Computer-Aided Verification (CAV)*, volume 3576 of *LNCS*. Springer, 2005
- [Chv83] V. Chvatal. *Linear Programming*. W. H. Freeman, 1983

- **[CG96]** B. Cherkassky and A. Goldberg. Negative-cycle detection algorithms. In *European Symposium on Algorithms*, pages 349–363, 1996
- [DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. *Communications of the ACM*, 5(7):394–397, July 1962
- [DNS03] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical Report HPL-2003-148, HP Labs, 2003
- **[DST80]** P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common Subexpression Problem. *Journal of the Association for Computing Machinery*, 27(4):758–771, 1980
- [dMR02] L. de Moura and H. Rueß. Lemmas on demand for satisfiability solvers. In *Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002).* Cincinnati, Ohio, 2002
- **[DdM06]** B. Dutertre and L. de Moura. Integrating simplex with DPLL(T). Technical report, CSL, SRI International, 2006
- [GHN⁺04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision procedures. In R. Alur and D. Peled, editors, *Int. Conference on Computer Aided Verification (CAV* 04), volume 3114 of *LNCS*, pages 175–188. Springer, 2004

- [MSS96] J. Marques-Silva and K. A. Sakallah. GRASP A New Search Algorithm for Satisfiability. In *Proc.* of *ICCAD*'96, 1996
- **[NO79]** G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. *ACM Transactions* on *Programming Languages and Systems*, 1(2):245–257, 1979
- [NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its application to difference logic. In *Int. Conference on Computer Aided Verification (CAV'05)*, pages 321–334. Springer, 2005
- **[Opp80]** D. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3):403–411, 1980
- **[PRSS99]** A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small domains instantiations. *Lecture Notes in Computer Science*, 1633:455–469, 1999
- **[Pug92]** William Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis. In *Communications of the ACM*, volume 8, pages 102–114, August 1992
- [RT03] S. Ranise and C. Tinelli. The smt-lib format: An initial proposal. In Proceedings of the 1st International Workshop on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR'03), Miami, Florida, pages 94–111, 2003

- **[RS01]** H. Ruess and N. Shankar. Deconstructing shostak. In *16th Annual IEEE Symposium on Logic in Computer Science*, pages 19–28, June 2001
- [SLB03] S. Seshia, S. Lahiri, and R. Bryant. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions. In *Proc. 40th Design Automation Conference*, pages 425–430. ACM Press, 2003
- [Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM, 28(4):769–779, October 1981