A Write-Based Solver for SAT Modulo the Theory of Arrays

Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell and Albert Rubio

8th International Conference, FMCAD 2008
Portland, OR, USA
November 19th, 2008
Overview of the talk

- SAT Modulo Theories (SMT)
 - The Theory of Extensional Arrays
 - Solving SMT with DPLL(T)

- Handling Arrays in SMT
 - Theory instantiation for Arrays
 - A new solver for the theory of Arrays

- Key points

- Experimental evaluation

- Conclusions
Overview of the talk

- SAT Modulo Theories (SMT)
 - The Theory of Extensional Arrays
 - Solving SMT with DPLL(T)

- Handling Arrays in SMT
 - Theory instantiation for Arrays
 - A new solver for the theory of Arrays

- Key points

- Experimental evaluation

- Conclusions
SAT Modulo Theories (SMT)

Some problems are more naturally expressed in other logics than propositional logic, e.g:

- Software verification needs reasoning about equality, arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a **(ground)** FO formula with respect to a background theory

Example (Equality with Uninterpreted Functions – **EUF**):

\[g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d \]

Wide range of applications:

- Predicate abstraction
- Model checking
- Equivalence checking
- Static analysis
- Scheduling
- ...

A Write-Based Solver for SAT Modulo the Theory of Arrays – p. 4
The Theory of Extensional Arrays

- This is a very common structure
The Theory of Extensional Arrays

This is a very common structure

Axiomatization of the Theory:

- **Read/Write Axioms**
 \[i = j \implies \text{read}(\text{write}(a, i, x), j) = x \]
 \[i \neq j \implies \text{read}(\text{write}(a, i, x), j) = \text{read}(a, j) \]

- **Extensionality**
 \[\forall i. \text{read}(a, i) = \text{read}(b, i) \implies a = b \]
The Theory of Extensional Arrays

- This is a very common structure

Axiomatization of the Theory:

- **Read/Write Axioms**

 \[
 i = j \Rightarrow \text{read}(\text{write}(a, i, x), j) = x
 \]

 \[
 i \neq j \Rightarrow \text{read}(\text{write}(a, i, x), j) = \text{read}(a, j)
 \]

- **Extensionality**

 \[
 a \neq b \Rightarrow \exists i. \text{read}(a, i) \neq \text{read}(b, i)
 \]
The Theory of Extensional Arrays

- This is a very common structure

- Axiomatization of the Theory:
 - **Read/Write Axioms**
 \[i = j \Rightarrow \text{read}(\text{write}(a, i, x), j) = x \]
 \[i \neq j \Rightarrow \text{read}(\text{write}(a, i, x), j) = \text{read}(a, j) \]
 - **Extensionality**
 \[a \neq b \Rightarrow \exists i. \text{read}(a, i) \neq \text{read}(b, i) \]

Combined with
Uninterpreted Functions, Linear Integer Arithmetic or Bit-vectors
This is a very common structure

Axiomatization of the Theory:

- **Read/Write Axioms**

 \[i = j \implies \text{read}(\text{write}(a, i, x), j) = x \]

 \[i \neq j \implies \text{read}(\text{write}(a, i, x), j) = \text{read}(a, j) \]

- **Extensionality**

 \[a \neq b \implies \exists i. \text{read}(a, i) \neq \text{read}(b, i) \]

Combined with

Uninterpreted Functions, Linear Integer Arithmetic or Bit-vectors

THIS TALK: Quantifier-free formulas over Extensional Arrays
Solving SMT with DPLL(T)

Methodology:

\[\text{read}(a, j) \neq \text{read}(b, i) \land (a = b \lor a = \text{write}(b, i, x)) \land \text{read}(a, i) \neq x \land j = i\]

SAT solver returns model \([1, 2, 4, 5]\)
Solving SMT with DPLL(T)

Methodology:

\[\begin{align*}
\text{read}(a, j) \neq \text{read}(b, i) & \quad \land \quad (a = b \lor a = \text{write}(b, i, x)) \land \text{read}(a, i) \neq x \land j = i \\
\end{align*}\]

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says T-inconsistent
Solving SMT with DPLL(T)

Methodology:

\[
\begin{align*}
\text{read}(a, j) \neq \text{read}(b, i) & \land (a = b \lor a = \text{write}(b, i, x)) \land \text{read}(a, i) \neq x \land j = i \\
\end{align*}
\]

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says T-inconsistent
- Send \{1, 2 \lor 3, 4, 5, \overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}\} to SAT solver
Solving SMT with DPLL(T)

Methodology:

\[
\begin{align*}
\text{read}(a, j) \neq \text{read}(b, i) \quad &\land (a = b \lor a = \text{write}(b, i, x)) \quad \land \text{read}(a, i) \neq x \quad \land j = i \\
\end{align*}
\]

- SAT solver returns model $[1, 2, 4, 5]$
- Theory solver says T-inconsistent
- Send $\{1, 2 \lor 3, 4, 5, \overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}\}$ to SAT solver
- SAT solver returns model $[1, \overline{2}, 3, 4, 5]$
Solving SMT with DPLL\((T)\)

Methodology:

\[
\text{read}(a, j) \neq \text{read}(b, i) \land (a = b \lor a = \text{write}(b, i, x)) \land \text{read}(a, i) \neq x \land j = i
\]

- **SAT solver** returns model \([1, 2, 4, 5]\)
- **Theory solver** says \(T\)-inconsistent
- Send \([1, 2 \lor 3, 4, 5, \overline{3} \lor \overline{4} \lor 5]\) to SAT solver
- **SAT solver** returns model \([1, \overline{2}, 3, 4, 5]\)
- **Theory solver** says \(T\)-inconsistent
Solving SMT with DPLL(T)

Methodology:

\[
\underbrace{\text{read}(a,j) \neq \text{read}(b,i)}_{1} \land \underbrace{(a = b \lor a = \text{write}(b,i,x))}_{2} \land \underbrace{\text{read}(a,i) \neq x}_{4} \land j = i
\]

- SAT solver returns model $[1, 2, 4, 5]$
- Theory solver says T-inconsistent
- Send $\{1, 2 \lor 3, 4, 5, \overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}\}$ to SAT solver
- SAT solver returns model $[1, \overline{2}, 3, 4, 5]$
- Theory solver says T-inconsistent
- SAT solver detects $\{1, 2 \lor 3, 4, 5, \overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}, \overline{1} \lor \overline{3} \lor \overline{4} \lor \overline{5}\}$

UNSAT
Solving SMT with DPLL(T)

Methodology:

\[
\begin{align*}
\text{read}(a, j) \neq \text{read}(b, i) \land \left(a = b \lor a = \text{write}(b, i, x) \right) \land \text{read}(a, i) \neq x \land j = i \\
\end{align*}
\]

- SAT solver returns model $[1, 2, 4, 5]$.
- Theory solver says T-inconsistent.
- Send $\{1, 2 \lor 3, 4, 5, \overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}\}$ to SAT solver.
- SAT solver returns model $[1, \overline{2}, 3, 4, 5]$.
- Theory solver says T-inconsistent.
- SAT solver detects $\{1, 2 \lor 3, 4, 5, \overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}, \overline{1} \lor \overline{3} \lor \overline{4} \lor \overline{5}\}$.
- UNSAT

Two components: Boolean engine $\text{DPLL}(X)$ + T-Solver.
Solving SMT with DPLL(\(T\)) (2)

Several optimizations for enhancing efficiency:

- Check \(T\)-consistency only of full prop. models (at a leaf)
Several optimizations for enhancing efficiency:

- Check T-consistency only of full prop. models (at a leaf)
- Check T-consistency of partial assignment while being built
Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T-consistency only of full prop. models (at a leaf)
- Check T-consistency of partial assignment while being built
- Given a T-inconsistent assignment M, add $\neg M$ as a clause
Several optimizations for enhancing efficiency:

- Check \(T \)-consistency only of full propositional models (at a leaf).
- Check \(T \)-consistency of partial assignment while being built.
- Given a \(T \)-inconsistent assignment \(M \), add \(\neg M \) as a clause.
- Given a \(T \)-inconsistent assignment \(M \), identify a \(T \)-inconsistent subset \(M_0 \subseteq M \) and add \(\neg M_0 \) as a clause.
Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models (at a leaf)
- Check T-consistency of partial assignment while being built
- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause
- Upon a T-inconsistency, add clause and restart
Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T-consistency only of full propositional models (at a leaf)
- Check T-consistency of partial assignment while being built
- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause
- Upon a T-inconsistency, add clause and restart
- Upon a T-inconsistency, bactrack to some point where the assignment was still T-consistent
Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T-consistency only of full prop. models (at a leaf) –
- Check T-consistency of partial assignment while being built
- Given a T-inconsistent assignment M, add $\neg M$ as a clause –
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_0 \subseteq M$ and add $\neg M_0$ as a clause
- Upon a T-inconsistency, add clause and restart –
- Upon a T-inconsistency, bactrack to some point where the assignment was still T-consistent

THIS TALK: obtain an Arr-solver that is incremental, backtrackable and produce inconsistency explanations
Solving SMT with DPLL(T) (3)

Need of case analysis inside the T-Solver:

\[
\begin{cases}
 \text{write}(a, i, x) = \text{write}(b, j, y), \\
 \text{write}(c, i, x) \neq \text{write}(c, j, y), \\
 \text{read}(a, j) \neq y
\end{cases}
\]

It’s inconsistent, but we need a case analysis on $i = j$
Need of case analysis inside the T-Solver:

\[
\{ \text{write}(a,i,x) = \text{write}(b,j,y), \quad \text{write}(c,i,x) \neq \text{write}(c,j,y), \quad \text{read}(a,j) \neq y \}\]

It’s inconsistent, but we need a case analysis on $i = j$

Assume $i = j$:
- From 1 we infer $x = y$
- From 2 we infer $x \neq y$
 Inconsistency
Solving SMT with DPLL(T) (3)

Need of case analysis inside the T-Solver:

\[
\{ \text{write}(a, i, x) = \text{write}(b, j, y), \ \text{write}(c, i, x) \neq \text{write}(c, j, y), \ \text{read}(a, j) \neq y \} \]

It’s inconsistent, but we need a case analysis on $i = j$

- Assume $i = j$:
 - From 1 we infer $x = y$
 - From 2 we infer $x \neq y$ \hspace{1cm} \text{Inconsistency}

- Assume $i \neq j$:
 - From 1 we infer that a at position j has y
 - which contradicts 3 \hspace{1cm} \text{Inconsistency}
Solving SMT with DPLL(T) (3)

Need of case analysis inside the T-Solver:

\[
\{ \text{write}(a, i, x) = \text{write}(b, j, y), \quad \text{write}(c, i, x) \neq \text{write}(c, j, y), \quad \text{read}(a, j) \neq y \}
\]

It’s inconsistent, but we need a case analysis on $i = j$

- Assume $i = j$:
 - From 1 we infer $x = y$
 - From 2 we infer $x \neq y$ Inconsistency

- Assume $i \neq j$:
 - From 1 we infer that a at position j has y
 - which contradicts 3 Inconsistency

We use split-on-demand: case analysis done by the boolean engine
Overview of the talk

- SAT Modulo Theories (SMT)
 - The Theory of Extensional Arrays
 - Solving SMT with DPLL(\(T\))

- Handling Arrays in SMT
 - Theory instantiation for Arrays
 - A new solver for the theory of Arrays

- Key points
- Experimental evaluation
- Conclusions
Handling Arrays in SMT

There are basically two possibilities:

- Using theory instantiation
- Having an Arr-solver for DPLL(Arr)
Theory instantiation for Arrays

There is no explicit T-Solver for Arrays

Instead, have a Module that generate Lemmas

Lemmas are instances of the axioms of the theory

Add the Lemmas to the set of clauses used by the SAT engine.
Theory instantiation for Arrays

- There is no explicit T-Solver for Arrays
- Instead, have a Module that generate Lemmas
 Lemmas are instances of the axioms of the theory

Add the Lemmas to the set of clauses used by the SAT engine.

- Used in SMT solvers like Yices or Z3
- [Goel,Krstic&Fuch2008] studied completeness
Theory instantiation for Arrays

- There is no explicit \(T \)-Solver for Arrays
- Instead, have a Module that generate Lemmas
 - Lemmas are instances of the axioms of the theory
 - Add the Lemmas to the set of clauses used by the SAT engine.

- Used in SMT solvers like Yices or Z3
- [Goel, Krstic & Fuch 2008] studied completeness

- Positive: simple and easier to implement
- Negative: cannot use dedicated algorithms for the Theory
Theory instantiation for Arrays(2)

To see pros and cons

Consider a simpler theory: uninterpreted functions
Theory instantiation for Arrays(2)

To see pros and cons

Consider a simpler theory: uninterpreted functions

Using Theory Instantiation:
Generate Lemmas like

\[a = b \Rightarrow f(a) = f(b) \]

if \(f \) is a function symbol and \(a \) and \(b \) are constants.
To see pros and cons

Consider a simpler theory: uninterpreted functions

- Using **Theory Instantiation**: Generate **Lemmas** like

 \[a = b \Rightarrow f(a) = f(b) \]

 if \(f \) is a function symbol and \(a \) and \(b \) are constants.

- Having a **T-Solver**: Apply **congruence closure** on the set of equality literals.
Theory instantiation for Arrays(2)

To see pros and cons

Consider a simpler theory: uninterpreted functions

- Using Theory Instantiation:
 Generate Lemmas like
 \[a = b \Rightarrow f(a) = f(b) \]
 if \(f \) is a function symbol and \(a \) and \(b \) are constants.

- Having a T-Solver:
 Apply congruence closure on the set of equality literals.

 It’s not obvious what’s the best
Theory instantiation for Arrays(2)

To see pros and cons

Consider a simpler theory: uninterpreted functions

- Using Theory Instantiation:
 Generate Lemmas like

\[a = b \Rightarrow f(a) = f(b) \]

if \(f \) is a function symbol and \(a \) and \(b \) are constants.

- Having a T-Solver:
 Apply congruence closure on the set of equality literals.

It’s not obvious what’s the best
We believe that the same happens with the Theory of Arrays
A new solver for the Theory of Arrays
A new solver for the Theory of Arrays

Existing Solver [Stump, Barrett, Dill & Levitt 2001]:

Based on the “read” operator

We call it Read-based:

write operators are translated into read operators.
A new solver for the Theory of Arrays

- Existing Solver [Stump, Barrett, Dill & Levitt 2001]:
 Based on the "read" operator
 We call it Read-based:
 write operators are translated into read operators.

- New approach:
 We call it Write-based:
 read operators are translated into write operators.
Read-based:

\[a = \text{write}(b, i, x) \]
A new solver for the Theory of Arrays(2)

Read-based:

\[a = \text{write}(b, i, x) \]

\[\downarrow \]

is translated into
A new solver for the Theory of Arrays(2)

Read-based:

\[a = \text{write}(b, i, x) \]
\[\downarrow \]
\[\text{read}(a, i) = x \]

is translated into
A new solver for the Theory of Arrays(2)

Read-based:

\[a = \text{write}(b, i, x) \]

\[\downarrow \]

\[\text{read}(a, i) = x \]

\[+ \]

\[a \simeq b \]

is translated into

???
A new solver for the Theory of Arrays(2)

Read-based:

\[a = \text{write}(b, i, x) \]

\[\downarrow \]

\[\text{read}(a, i) = x \]

\[+ \]

\[a =_{i} b \]

is translated into
equal except in \(i \)
A new solver for the Theory of Arrays(2)

Read-based:

\[a = \text{write}(b, i, x) \]
\[\downarrow \]
\[\text{read}(a, i) = x \]
\[+ \]
\[a =_{i} b \]

is translated into

equal except in \(i \)

Basically, ends up with uninterpreted functions plus this new theory of \(I \)-equality of arrays (which can be handled using theory instantiation)
A new solver for the Theory of Arrays(2)

- **Read-based:**

 \[a = \text{write}(b, i, x) \]

 \[\downarrow \]

 \[\text{read}(a, i) = x \]

 \[+ \]

 \[a =_i b \]

 is translated into

 equal except in \(i \)

- **Write-based:**

 \[\text{read}(a, i) = x \]
A new solver for the Theory of Arrays(2)

- Read-based:

\[a = \text{write}(b, i, x) \]

\[\Downarrow \]

\[\text{read}(a, i) = x \]

\[+ \]

\[a =_i b \]

is translated into

equal except in \(i \)

- Write-based:

\[\text{read}(a, i) = x \]

\[\Downarrow \]
A new solver for the Theory of Arrays(2)

- **Read-based:**

 \[
 a = \text{write}(b, i, x) \\
 \Downarrow \\
 \text{read}(a, i) = x \\
 + \\
 a =_i b
 \]

 is translated into

 equal except in \(i\)

- **Write-based:**

 \[
 \text{read}(a, i) = x \\
 \Downarrow \\
 a = \text{write}(b, i, x)
 \]

 for some fresh \(b\)
A new solver for the Theory of Arrays(2)

- **Read-based:**

\[a = \text{write}(b, i, x) \]

\[\Downarrow \]

\[\text{read}(a, i) = x \]

+ \[a =_i b \]

is translated into

equal except in \(i \)

- **Write-based:**

\[\text{read}(a, i) = x \]

\[\Downarrow \]

\[a = \text{write}(b, i, x) \]

for some fresh \(b \)

We follow the **Write-based** approach.
Set of literals:

\[
\begin{align*}
a &= \text{write}(b, j, x) \\
b &= \text{write}(c, i, y) \\
d &= \text{write}(e, i, y) \\
a &= d
\end{align*}
\]
A new solver for the Theory of Arrays (3)

Set of literals:

\[
\begin{align*}
 a &= \text{write}(b, j, x) \\
 b &= \text{write}(c, i, y) \\
 d &= \text{write}(c, i, y) \\
 a &= d
\end{align*}
\]

Representation:

\[
\begin{array}{ccc}
 a & j & x \\
 b & i & y \\
 c & & \\
 d & i & y \\
 e & & \\
\end{array}
\]

A Write-Based Solver for SAT Modulo the Theory of Arrays – p. 15
A new solver for the Theory of Arrays (3)

Set of literals:

\[a = \text{write}(b, j, x) \]
\[b = \text{write}(c, i, y) \]
\[d = \text{write}(e, i, y) \]
\[a = d \]

Which “writes” are relevant?

Representation:

\[
\begin{array}{ccc}
\text{a} & \text{j} & \text{x} \\
\text{b} & \text{i} & \text{y} \\
\text{c} & & \\
\end{array}
= \begin{array}{cc}
\text{d} & \text{i} \\
\text{e} & \text{y} \\
\end{array}
\]
A new solver for the Theory of Arrays(3)

Set of literals:

\[a = \text{write}(b, j, x) \]
\[b = \text{write}(c, i, y) \]
\[d = \text{write}(e, i, y) \]
\[a = d \]

Which “writes” are relevant?

- if \(i = j \) then we need \(x = y \)
Set of literals:

\[a = \text{write}(b, j, x) \]
\[b = \text{write}(c, i, y) \]
\[d = \text{write}(e, i, y) \]
\[a = d \]

Which “writes” are relevant?

- if \(i = j \) then we need \(x = y \)
- if \(i \neq j \) we need \(e = \text{write}(e_1, j, x) \)
A new solver for the Theory of Arrays(3)

Set of literals:

\[a = \text{write}(b, j, x) \]
\[b = \text{write}(c, i, y) \]
\[d = \text{write}(e, i, y) \]
\[a = d \]

Which “writes” are relevant?

- if \(i = j \) then we need \(x = y \)
- if \(i \neq j \) we need \(e = \text{write}(e_1, j, x) \)
A new solver for the Theory of Arrays (3)

Set of literals:

\[a = \text{write}(b, j, x) \]
\[b = \text{write}(c, i, y) \]
\[d = \text{write}(e, i, y) \]
\[a = d \]

Representation:

\[
\begin{array}{c|c|c}
\hline
a & j & x \\
\hline
b & i & y \\
\hline
d & i & y \\
e & j & x \\
e_1 & & \\
\hline
\end{array}
\]

Which “writes” are relevant?

- if \(i = j \) then we need \(x = y \)
- if \(i \neq j \) we need \(e = \text{write}(e_1, j, x) \)
A new solver for the Theory of Arrays (3)

Set of literals:

\[a = write(b, j, x) \]
\[b = write(c, i, y) \]
\[d = write(e, i, y) \]
\[a = d \]

Which “writes” are relevant?

- If \(i = j \) then we need \(x = y \)
- If \(i \neq j \) we need \(e = write(e_1, j, x) \)

Recall: we may need splitting on \(i = j \)
Overview of the talk

- SAT Modulo Theories (SMT)
 - The Theory of Extensional Arrays
 - Solving SMT with DPLL(T)

- Handling Arrays in SMT
 - Theory instantiation for Arrays
 - A new solver for the theory of Arrays

Key points

- Experimental evaluation
- Conclusions
Key points

There are three key points in our approach:
Key points

There are three key points in our approach:

- **Notion of solved form:**
 Early detection of satisfiable sets of literals
Key points

There are three key points in our approach:

- **Notion of solved form:**
 Early detection of satisfiable sets of literals

- **Delay negative witnesses introduction:**
Key points

There are three key points in our approach:

- **Notion of solved form:**
 Early detection of satisfiable sets of literals

- **Delay negative witnesses introduction:**
 Recall the extensionality axiom:

\[
 a \neq b \Rightarrow \exists i. \text{read}(a, i) \neq \text{read}(b, i)
\]
Key points

There are three key points in our approach:

- **Notion of solved form:**
 Early detection of satisfiable sets of literals

- **Delay negative witnesses introduction:**

 \[
 a \neq b \\
 \Downarrow \\
 a = \text{write}(a_1, ni, ne_1) \text{ and } b = \text{write}(b_2, ni, ne_2)
 \]

 where \(ni \) is a new index and \(ne_1 \) and \(ne_2 \) are fresh constants with \(ne_1 \neq ne_2 \)
Key points

There are three key points in our approach:

- **Notion of solved form:**
 Early detection of satisfiable sets of literals

- **Delay negative witnesses introduction:**

\[
a \neq b
\]

\[
\Downarrow
\]

\[
a = \text{write}(a_1, ni, ne_1) \text{ and } b = \text{write}(b_2, ni, ne_2)
\]

where \(ni \) is a new index and \(ne_1 \) and \(ne_2 \) are fresh constants with \(ne_1 \neq ne_2 \)

This name is a tribute to Monty Python’s “Ni knights” (check Google with “Knights who say Ni” for further details)

The relationship between them is that both Ni’s (the indexes and the Knights) introduce a lot of noise
There are three key points in our approach:

- **Notion of solved form:**
 Early detection of satisfiable sets of literals

- **Delay negative witnesses introduction:**
 Delay the introduction of “Ni’s” avoiding unnecessary case analysys
Key points

There are three key points in our approach:

- **Notion of solved form:**
 Early detection of satisfiable sets of literals

- **Delay negative witnesses introduction:**
 Delay the introduction of “Ni’s” avoiding unnecessary case analysis

- **Produce better (shorter) explanations:**
 Using specialized mechanisms that take into account the knowledge about the theory of Arrays
Key points: Solved forms

There are several solved situations

Three particular examples (see paper for general definition):
Key points: Solved forms

There are several solved situations

Three particular examples (see paper for general definition):

\[
\begin{align*}
\text{write}(a, i, x) &= \text{write}(b, j, y) \\
\text{if } i &= j, \ x = y \text{ and } a \text{ and } b \text{ are different free constants.}
\end{align*}
\]
Key points: Solved forms

There are several solved situations

Three particular examples (see paper for general definition):

- \(\text{write}(a, i, x) = \text{write}(b, j, y) \)

 if \(i = j, x = y \) and \(a \) and \(b \) are different free constants.

- \(\text{write}(a, i, x) \neq \text{write}(b, j, y) \)

 if we don’t have \(i = j \) and \(b \) is a free constant.
Key points: Solved forms

There are several solved situations

Three particular examples (see paper for general definition):

1. \(\text{write}(a, i, x) = \text{write}(b, j, y) \)
 if \(i = j, x = y \) and \(a \) and \(b \) are different free constants.

2. \(\text{write}(a, i, x) \neq \text{write}(b, j, y) \)
 if we don’t have \(i = j \) and \(b \) is a free constant.

3. \(\text{write}(a, i, x) \neq \text{write}(b, i, y) \)
 if we have neither \(x = y \) nor \(x \neq y \).
Key points: Solved forms(2)

We can complete our partial model as follows:
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \[\forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model we take } v_2 \neq v_1. \]
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \[\forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model we take } v_2 \neq v_1. \]

- **Arrays:** assume there is a value \(d \) different from all others.
 \[\forall \text{ array } A, \text{ if } A[i] \text{ is not defined for some } i \text{ in the partial model we take } A[i] = d \]
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model we take } v_2 \neq v_1. \)

- **Arrays:** assume there is a value \(d \) different from all others.
 \(\forall \text{ array } A, \text{ if } A[i] \text{ is not defined for some } i \text{ in the partial model we take } A[i] = d \)

- \(\text{write}(a, i, x) = \text{write}(b, j, y) \)
 if \(i = j, x = y \) and \(a \) and \(b \) are different free constants.
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model we take } v_2 \neq v_1.\)

- **Arrays:** assume there is a value \(d\) different from all others.
 \(\forall \text{ array } A, \text{ if } A[i] \text{ is not defined for some } i \text{ in the partial model we take } A[i] = d\)

- \(\text{write}(a, i, x) = \text{write}(b, j, y)\)
 if \(i = j, x = y\) and \(a\) and \(b\) are different free constants.
 Since \(a\) and \(b\) are free constants they have the same interpretation in the model.
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model we take } v_2 \neq v_1. \)

- **Arrays:** Assume there is a value \(d \) different from all others.
 \(\forall \text{ array } A, \text{ if } A[i] \text{ is not defined for some } i \text{ in the partial model we take } A[i] = d \)

- **write** \((a, i, x) = \text{write}(b, j, y)\)
 if \(i = j, x = y \) and \(a \) and \(b \) are different free constants.
 Since \(a \) and \(b \) are free constants they have the same interpretation in the model.
 which satisfies the literal
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model} \)
 \(\text{we take } v_2 \neq v_1 \).

- **Arrays:**
 \(\forall \text{ array } A, \text{ if } A[i] \text{ is not defined for some } i \text{ in the partial model} \)
 \(\text{we take } A[i] = d \)

- \(\text{write}(a, i, x) \neq \text{write}(b, j, y) \)
 \(\text{if we don’t have } i = j \text{ and } b \text{ is a free constant.} \)
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \) and \(v_2 \), if neither \(v_1 = v_2 \) nor \(v_2 \neq v_1 \) in the partial model we take \(v_2 \neq v_1 \).

- **Arrays:** assume there is a value \(d \) different from all others.
 \(\forall \) array \(A \), if \(A[i] \) is not defined for some \(i \) in the partial model we take \(A[i] = d \)

 \(\text{write}(a,i,x) \neq \text{write}(b,j,y) \)
 if we don’t have \(i = j \) and \(b \) is a free constant.
 Since we don’t have \(i = j \)
 we take \(i \neq j \) in the model and
We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model we take } v_2 \neq v_1. \)

- **Arrays:** assume there is a value \(d \) different from all others.
 \(\forall \text{ array } A, \text{ if } A[i] \text{ is not defined for some } i \text{ in the partial model we take } A[i] = d \)

- **write \((a, i, x) \neq write(b, j, y)\)**
 if we don’t have \(i = j \) and \(b \) is a free constant.
 Since we don’t have \(i = j \)
 we take \(i \neq j \) in the model and
 since \(b \) is free constant
 we take \(b[i] = d \neq x \) in the model
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \) and \(v_2 \), if neither \(v_1 = v_2 \) nor \(v_2 \neq v_1 \) in the partial model we take \(v_2 \neq v_1 \).

- **Arrays:** assume there is a value \(d \) different from all others.
 \(\forall \) array \(A \), if \(A[i] \) is not defined for some \(i \) in the partial model we take \(A[i] = d \)

- \(\text{write}(a, i, x) \neq \text{write}(b, j, y) \)
 if we don’t have \(i = j \) and \(b \) is a free constant.
 Since we don’t have \(i = j \)
 we take \(i \neq j \) in the model and
 since \(b \) is free constant
 we take \(b[i] = d \neq x \) in the model
 which satisfies the literal
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \[
 \forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model we take } v_2 \neq v_1.
 \]

- **Arrays:** assume there is a value \(d \) different from all others.
 \[
 \forall \text{ array } A, \text{ if } A[i] \text{ is not defined for some } i \text{ in the partial model we take } A[i] = d
 \]

 \[
 \text{write}(a, i, x) \neq \text{write}(b, i, y)
 \]
 if we have neither \(x = y \) nor \(x \neq y \).
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \text{ and } v_2, \) if neither \(v_1 = v_2 \) nor \(v_2 \neq v_1 \) in the partial model we take \(v_2 \neq v_1 \).

- **Arrays:** assume there is a value \(d \) different from all others.
 \(\forall \) array \(A, \) if \(A[i] \) is not defined for some \(i \) in the partial model we take \(A[i] = d \)

\[\text{write}(a, i, x) \neq \text{write}(b, i, y) \]
if we have neither \(x = y \) nor \(x \neq y \).

since we have neither \(x = y \) nor \(x \neq y \)
we take \(x \neq y \) in the model
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \[\forall v_1 \text{ and } v_2, \text{ if neither } v_1 = v_2 \text{ nor } v_2 \neq v_1 \text{ in the partial model we take } v_2 \neq v_1. \]

- **Arrays:** assume there is a value \(d \) different from all others.
 \[\forall \text{ array } A, \text{ if } A[i] \text{ is not defined for some } i \text{ in the partial model we take } A[i] = d \]

- \(\text{write}(a, i, x) \neq \text{write}(b, i, y) \)
 if we have neither \(x = y \) nor \(x \neq y \).
 since we have neither \(x = y \) nor \(x \neq y \)
 we take \(x \neq y \) in the model
 which satisfies the literal
Key points: Solved forms(2)

We can complete our partial model as follows:

- **Indexes and values:**
 \(\forall v_1 \text{ and } v_2, \) if neither \(v_1 = v_2 \) nor \(v_2 \neq v_1 \) in the partial model we take \(v_2 \neq v_1 \).

- **Arrays:** assume there is a value \(d \) different from all others.
 \(\forall \) array \(A \), if \(A[i] \) is not defined for some \(i \) in the partial model we take \(A[i] = d \).

We have several inference rules that transform literals NOT in solved form until they are (see paper for details).
Key points: Delay Ni’s introduction

Consider the following negative literal:

\[
\begin{array}{|c|c|}
\hline
a1 & i1 & x1 \\
\hline
a2 & i2 & x2 \\
\hline
a3 & \text{ } & \text{ } \\
\hline
\end{array} \neq
\begin{array}{|c|c|}
\hline
b1 & i2 & y2 \\
\hline
b2 & i1 & x1 \\
\hline
b3 & \text{ } & \text{ } \\
\hline
\end{array}
\]

With: \(i_1 \neq i_2 \land x_2 \neq y_2 \)
Key points: Delay Ni’s introduction

Consider the following negative literal:

<table>
<thead>
<tr>
<th></th>
<th>a1</th>
<th>i1</th>
<th>x1</th>
<th></th>
<th>b1</th>
<th>i2</th>
<th>y2</th>
<th>≠</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2</td>
<td>i2</td>
<td>x2</td>
<td></td>
<td>b2</td>
<td>i1</td>
<td>x1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a3</td>
<td></td>
<td></td>
<td></td>
<td>b3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With: \(i_1 \neq i_2 \land x_2 \neq y_2 \)

There is no need to add any new index \(ni \)
Avoiding case analysis between \(ni \) and the other indexes.
Consider the following negative literal:

\[
\begin{array}{c|cc}
\text{a1} & \text{i1} & \text{x1} \\
\text{a2} & \text{i2} & \text{x2} \\
\text{a3} & & \\
\text{b1} & \text{i2} & \text{x2} \\
\text{b2} & \text{i1} & \text{x1} \\
\text{b3} & & \\
\end{array}
\]

With: $i_1 \neq i_2$
Key points: Delay Ni’s introduction(2)

Consider the following negative literal:

\[
\begin{array}{|c|c|}
\hline
a1 & i1 & x1 \\
\hline
a2 & i2 & x2 \\
\hline
a3 & \multicolumn{2}{|c|}{\text{\ }} \\
\hline
\end{array} \quad \neq \quad \begin{array}{|c|c|}
\hline
b1 & i2 & x2 \\
\hline
b2 & i1 & x1 \\
\hline
b3 & \multicolumn{2}{|c|}{\text{\ }} \\
\hline
\end{array}
\]

With: \(i_1 \neq i_2 \)

We have to add a new index \(ni \), but we add it at the end.

\[
a_3 = \text{write}(a_4, ni, ed_1) \land b_3 = \text{write}(b_4, ni, ed_2)
\]

with \(ed_1 \neq ed_2, ni \neq i_1 \) and \(ni \neq i_2 \)
Key points: Delay Ni’s introduction(2)

Consider the following negative literal:

\[
\begin{array}{c|c|c}
\hline
a_1 & i_1 & x_1 \\
\hline
a_2 & i_2 & x_2 \\
\hline
a_3 & i_1 & x_2 \\
\hline
\end{array}
\]

\[\neq\]

\[
\begin{array}{c|c|c}
\hline
b_1 & i_2 & x_2 \\
\hline
b_2 & i_1 & x_1 \\
\hline
b_3 & i_1 & x_1 \\
\hline
\end{array}
\]

With: \(i_1 \neq i_2 \)

We have to add a new index \(n_i \), but we add it at the end.

\[
a_3 = \text{write}(a_4, n_i, ed_1) \land b_3 = \text{write}(b_4, n_i, ed_2)
\]

with \(ed_1 \neq ed_2 \), \(n_i \neq i_1 \) and \(n_i \neq i_2 \)
Key points: Shorter explanations

Consider the following inconsistent literal with $i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2$:

\[
\begin{array}{|c|c|c|}
\hline
a1 & i1 & x1 \\
\hline
a2 & i2 & x2 \\
\hline
a3 & i3 & x3 \\
\hline
\end{array}
\neq
\begin{array}{|c|c|c|}
\hline
b1 & i3 & x3 \\
\hline
b2 & i1 & x1 \\
\hline
b3 & i2 & x2 \\
\hline
\end{array}
\]

Inconsistency explanation: $a_1 \neq b_1 \land i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2$
Key points: Shorter explanations

Consider the following inconsistent literal with \(i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2 \):

\[
\begin{array}{ccc}
\text{a}_1 & i_1 & x_1 \\
\text{a}_2 & i_2 & x_2 \\
\text{a}_3 & i_3 & x_3 \\
\text{c} & & \\
\end{array} \not= \\
\begin{array}{ccc}
\text{b}_1 & i_3 & x_3 \\
\text{b}_2 & i_1 & x_1 \\
\text{b}_3 & i_2 & x_2 \\
\text{c} & & \\
\end{array}
\]

Inconsistency explanation: \(a_1 \neq b_1 \land i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2 \)
Key points: Shorter explanations

Consider the following inconsistent literal with \(i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2 \):

\[
\begin{array}{|c|c|}
\hline
a_1 & i_1 \neq x_1 \\
\hline
a_2 & i_2 \neq x_2 \\
\hline
a_3 & i_3 \neq x_3 \\
\hline
\end{array}
\quad \neq
\begin{array}{|c|c|}
\hline
b_1 & i_3 \neq x_3 \\
\hline
b_2 & i_1 \neq x_1 \\
\hline
b_3 & i_2 \neq x_2 \\
\hline
\end{array}
\]

Inconsistency explanation: \(a_1 \neq b_1 \land i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2 \)
Overview of the talk

- SAT Modulo Theories (SMT)
 - The Theory of Extensional Arrays
 - Solving SMT with DPLL(T)

- Handling Arrays in SMT
 - Theory instantiation for Arrays
 - A new solver for the theory of Arrays

- Key points

- Experimental evaluation

- Conclusions
Experimental evaluation

Setting used: SMT-LIB benchmarks 2007, 300 sec.

<table>
<thead>
<tr>
<th></th>
<th>YICES 1.0.10</th>
<th>YICES 1.0</th>
<th>Z3 0.1</th>
<th>CVC3 1.2</th>
<th>BARCELOGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot</td>
<td>Max</td>
<td>Tot</td>
<td>Max</td>
<td>Tot</td>
</tr>
<tr>
<td>array_ben</td>
<td>52</td>
<td>42</td>
<td>69</td>
<td>52</td>
<td>21</td>
</tr>
<tr>
<td>cvc</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>qlock2</td>
<td>49</td>
<td>5</td>
<td>50</td>
<td>6</td>
<td>114</td>
</tr>
<tr>
<td>storecomm</td>
<td>35</td>
<td>0.1</td>
<td>41</td>
<td>0.1</td>
<td>37</td>
</tr>
<tr>
<td>storeinv</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
<td>8</td>
</tr>
<tr>
<td>swap</td>
<td>970</td>
<td>130</td>
<td>581</td>
<td>60</td>
<td>1431</td>
</tr>
</tbody>
</table>

SMT competition 2008 results.

- **QF_AX:** Barcelogic winner. Z3.2 second. NO Timeouts.
- **QF_AUFLIA:** Z3.2 winner. Barcelogic second. NO Timeouts.
Conclusions

- Our solver is intuitive and still competitive.
- Completely different from previous approaches.
- Observation: there is no unique best approach.

 The more approaches we have the better

- Need of new hard benchmarks to compare and improve.
Thank you!