Automatic Generation of Local Repairs for Boolean Programs

Roopsha Samanta,
Jyotirmoy V. Deshmukh and E. Allen Emerson

The University of Texas at Austin

November 20, 2008
Outline

- Motivation
- Solution Framework
- The Algorithm
- Conclusions
Roopsha Samanta

Automatic Generation of Local Repairs for Boolean Programs
The road to correct programs . . .

- **Program synthesis**
 - Correct by construction
 - Detailed specification
 - Hard
 - Also, legacy code?

- **Program verification**
 - Program design + verification + fault localization + repair
The road to correct programs . . .

- Program *synthesis*
 - Correct by construction
 - Detailed specification
 - Hard
 - Also, legacy code?

- Program *verification*
 - Program design + *verification* + *fault localization* + repair
 - Lengthy, iterative cycle
 - Long, unreadable error traces
 - Essentially manual debugging
The road to correct programs ...

- Program *synthesis*
 - Correct by construction
 - Detailed specification
 - Hard
 - Also, legacy code?

- Program *verification*
 - Program design + *verification* + *fault localization* + repair
 - Lengthy, iterative cycle
 - Long, unreadable error traces
 - Essentially manual debugging

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 4 / 35
The road to correct programs . . .

- Program *synthesis*
 - Correct by construction
 - Detailed specification
 - Hard
 - Also, legacy code?

- Program *verification*

- Program design + *verification* + *fault localization* + *repair*
 - Lengthy, iterative cycle
 - Long, unreadable error traces
 - Essentially manual *debugging*
The road to correct programs . . .

- Program synthesis
 - Correct by construction
 - Detailed specification
 - Hard
 - Also, legacy code?

- Program verification

- Program design + verification + fault localization + repair
 - Lengthy, iterative cycle
 - Long, unreadable error traces
 - Essentially manual debugging
The road to correct programs . . .

- Program *synthesis*
 - Correct by construction
 - Detailed specification
 - Hard
 - Also, legacy code?

- Program *verification*

- Program design + *verification* + *fault localization* + *repair*
 - Lengthy, iterative cycle
 - Long, unreadable error traces
 - Essentially manual *debugging*
The road to correct programs . . .

- **Program synthesis**
 - Correct by construction
 - Detailed specification
 - Hard
 - Also, legacy code?

- **Program verification**
 - Program design + *verification* + *fault localization* + *repair*
 - Lengthy, iterative cycle
 - Long, unreadable error traces
 - Essentially manual *debugging*
The repair problem

Given a program \mathcal{P} and a specification Φ such that $\mathcal{P} \not\models \Phi$, transform \mathcal{P} to \mathcal{P}' such that $\mathcal{P}' \models \Phi$
A specialization . . .

- Program model: sequential Boolean programs [BallRaja00]
- Specifications: Hoare-style pre-conditions, post-conditions
- Permissible faults/repairs: incorrect Boolean expressions
Iterative (predicate) abstraction-refinement

\[\mathcal{P}_C \vdash \Phi \quad \text{Correct!} \]
\[\mathcal{P}_C \nvdash \Phi \quad \text{Bug!} \]

Feasible Error Trace?

Yes

No

Refine \(\mathcal{P}_A \)

Theorem Prover

No

Model Checking

\(\mathcal{P}_A \vdash \Phi \) ?

Yes

No

Predicate Abstraction
Iterative (predicate) abstraction-refinement

- **Predicate Abstraction**: $P_C \models \Phi$
- **Model Checking**: $P_A \models \Phi$?
- **Feasible Error Trace?**: $P_C \not\models \Phi$
- **Theorem Prover**: No
- **Refine P_A**

Diagram Flow:
1. **Boolean program** P_C is first subjected to **Predicate Abstraction** to get P_A.
2. **Model Checking** is then performed on P_A to check if $P_A \models \Phi$?
3. If $P_A \models \Phi$, then the program is **Correct!**
4. If $P_A \not\models \Phi$, then there is a **Bug!** and the process moves to **Feasible Error Trace?**.
5. If feasible, the program is still **Bug!** and the process moves to **Theorem Prover**.
6. If **Theorem Prover** returns no feasible error trace, the program is refined using P_A. If feasible, it returns a feasible error trace.
7. The refined program is then subjected to **Model Checking** again on P_A to see if $P_A \models \Phi$.
8. If $P_A \models \Phi$, then the final program is **Correct!**.
What are Boolean programs?

- Abstractions of concrete programs
- Boolean variables
- Similar control flow
 - Conditionals, loops, procedures
- Nondeterminism
 - Some expressions may evaluate to either \textit{true} or \textit{false}
Example C program and Boolean program

```c
while (x>0){
    x := x-1;
}
```

```c
p : x > 0
while (p){
    p := nd(0,1);
}
```
Why Boolean programs?

- Used as program abstractions for software verification
- e.g., SLAM, BLAST, etc.
Repair of software programs

- Predicate Abstraction
- Model Checking
- Theorem Prover
- Refine P_A
- Repair P_A
- Repair

Boolean program

Correct! Bug!

$P_c \models \Phi$ Correct!

$P_c \not\models \Phi$ Bug!

Feasible Error Trace?

$P_A \models \Phi$?

Yes

No

Translate to P_c

$P'_c \models \Phi$ Correct!
Why Boolean programs?

- Used as program abstractions for software verification
 - e.g., SLAM, BLAST, etc.
- Could be used to model some Boolean circuits
Program Syntax

- **Prog** $P = (V, \text{main}, F)$
 - $V = \{v_1, v_2, \ldots, v_t\}$: Boolean vars
 - main $= (S, V)$, $S: s_1; s_2; \ldots; s_n$: stmts
 - F: functions, $f = (S_f, V_f, l)$

- **Expr** E: Boolean expr $+$ nd($0, 1$)
 - e.g., $v_2 \land \text{nd}(0, 1)$

- **Prog stmt** s_i: function call or return or,
 - assignment: $v_j := E$
 - conditional: if (G) S_{if} else S_{else}
 - loop: while (G) S_{body}
Program Syntax

- **Prog** \(P = (V, \text{main}, F) \)
 - \(V = \{v_1, v_2, \ldots, v_t\} \): Boolean vars
 - \(\text{main} = (S, V) \), \(S: s_1; s_2; \ldots; s_n \): stmts
 - \(F \): functions, \(f = (S_f, V_f, l) \)

- **Expr** \(E \): Boolean expr + \(\text{nd}(0, 1) \)
 - e.g., \(v_2 \land \text{nd}(0, 1) \)

- **Prog** stmt \(s_i \): function call or return or,
 - assignment: \(v_j := E \);
 - conditional: \(\text{if } (G) \ S_i \text{ else } S_{\text{else}} \);
 - loop: \(\text{while } (G) \ S_{\text{body}} \)
Program Syntax

- \(\textbf{Prog} \) \(P = (V, \text{main}, F) \)
 - \(V = \{v_1, v_2, \ldots, v_t\} \): Boolean vars
 - main = \((S, V), S: s_1; s_2; \ldots; s_n: \text{stmts} \)
 - \(F \): functions, \(f = (S_f, V_{f,l}) \)
- \(\textbf{Expr} \) \(E \): Boolean expr + \(\text{nd}(0, 1) \)
 - e.g., \(v_2 \land \text{nd}(0, 1) \)
- \(\text{Prog stmt} \) \(s_i \): function call or return or,
 - assignment: \(v_j := E \);
 - conditional: \(\text{if } (G) \ S_{\text{if}} \ \text{else} \ S_{\text{else}}; \)
 - loop: \(\text{while } (G) \ S_{\text{body}}; \)
Example Boolean program and its state diagram

swap(x, y) {
 x := x ⊕ y;
 y := x ∧ y;
 x := x ⊕ y;
}

\[\begin{array}{c}
\begin{array}{cccc}
& 00 & 01 & 10 & 11 \\
\text{s}_0 & \text{o}_0 & \text{o}_1 & \text{o}_2 & \text{o}_3 \\
\text{s}_1 & \text{o}_1 & \text{o}_2 & \text{o}_3 & \text{o}_4 \\
\text{s}_2 & \text{o}_2 & \text{o}_3 & \text{o}_4 & \text{o}_5 \\
\end{array}
\end{array}\]
Specification

Total correctness: $\langle \varphi \rangle P \langle \psi \rangle$

- Pre-condition φ: init states of P
- Post-condition ψ: desired final states

P is correct iff execution of P, begun in any state in φ, terminates in a state in ψ, for all choices that P might make.
Specification

Total correctness: \(\langle \varphi \rangle P \langle \psi \rangle \)

- Pre-condition \(\varphi \): init states of \(P \)
- Post-condition \(\psi \): desired final states

\(P \) is correct iff execution of \(P \), begun in any state in \(\varphi \), terminates in a state in \(\psi \), for all choices that \(P \) might make.
Example Boolean program with its specification

\[\varphi : true \]
\[
\begin{align*}
x &:= x \oplus y; \\
y &:= x \land y; \\
x &:= x \oplus y;
\end{align*}
\]

\[\psi : y(f) \equiv x(0) \land x(f) \equiv y(0) \]
Fault/repair model

- Extra statement (needs deletion)
- Assignment: faulty LHS or RHS
- Conditional: faulty G or faulty statement in S_{if} or S_{else}
- Loop: faulty G or faulty statement in S_{body}

Our algorithm seeks to repair only the above kinds of faults.
Fault/repair model

- Extra statement (needs deletion)
- Assignment: faulty LHS or RHS
- Conditional: faulty G or faulty statement in S_{if} or S_{else}
- Loop: faulty G or faulty statement in S_{body}

Our algorithm seeks to repair only the above kinds of faults.
Algorithm sketch

- **Annotation:**
 - Propagate φ and ψ through statements

- **Repair:**
 - Use annotations to inspect statements for repairability
 - Generate repair if possible
Program annotation

\(\varphi_0 : \text{true} \)

Incorrect Program

\[
\begin{align*}
S_0: \ x' & := x(0) \oplus y(0); \\
S_1: \ y' & := x \land y; \\
S_2: \ x(f) & := x \oplus y;
\end{align*}
\]

\(\psi_3 : x(f) \equiv y(0) \land y(f) \equiv x(0) \)
Program annotation

Incorrect Program

\[\varphi_0 : \text{true} \]

\[S_0 : x' := x(0) \oplus y(0); \]
\[S_1 : y' := x \land y; \]
\[S_2 : x(f) := x \oplus y; \]

\[\psi_3 : x(f) \equiv y(0) \land y(f) \equiv x(0) \]

Post-condition propagation
Program annotation

\(\varphi_0 : true \)

Incorrect Program

\[S_0 : x' := x(0) \oplus y(0); \]
\[S_1 : y' := x \land y; \]
\[S_2 : x(f) := x \oplus y; \]

\[\psi_2 \]
\[\psi_3 : x(f) \equiv y(0) \land y(f) \equiv x(0) \]

Post-condition propagation
Program annotation

\[\varphi_0 : \text{true} \]

Incorrect Program

\[S_0 : x' := x(0) \oplus y(0); \]
\[S_1 : y' := x \land y; \]
\[S_2 : x(f) := x \oplus y; \]

\[\psi_1 \]
\[\psi_2 \]
\[\psi_3 : x(f) \equiv y(0) \land y(f) \equiv x(0) \]

Post-condition propagation
Program annotation

\(\varphi_0 : \text{true} \)

Incorrect Program

\[
\begin{align*}
S_0 &: \quad x' := x(0) \oplus y(0) \\
S_1 &: \quad y' := x \land y \\
S_2 &: \quad x(f) := x \oplus y)
\end{align*}
\]

\(\psi_0 \)
\(\psi_1 \)
\(\psi_2 \)
\(\psi_3 : x(f) \equiv y(0) \land y(f) \equiv x(0) \)

Post-condition propagation
Program annotation

Pre-condition propagation

\(\varphi_0 : \text{true} \)

Incorrect Program

\[s_0 : x' := x(0) \oplus y(0) ; \]
\[s_1 : y' := x \land y ; \]
\[s_2 : x(f) := x \oplus y ; \]

Post-condition propagation

\(\psi_0 \)
\(\psi_1 \)
\(\psi_2 \)
\(\psi_3 : x(f) \equiv y(0) \land y(f) \equiv x(0) \)
Pre-condition propagation

\(\varphi_0 : \text{true} \)
\(\varphi_1 \)
\(\varphi_2 \)
\(\varphi_3 \)

Incorrect Program

\(s_0 : x' := x(0) \oplus y(0); \)
\(s_1 : y' := x \land y; \)
\(s_2 : x(f) := x \oplus y; \)

Post-condition propagation

\(\psi_0 \)
\(\psi_1 \)
\(\psi_2 \)
\(\psi_3 : x(f) \equiv y(0) \land y(f) \equiv x(0) \)
Backward propagation of ψ_i through s_i

Weakest pre-condition $wp(s_i, \psi_i)$:
Set of all input states from which s_i is guaranteed to terminate in ψ_i for all choices made by s_i.

To propagate ψ_i back through s_i, compute $wp(s_i, \psi_i)$.
Details . . .

Assignments: \(v_j := E; \)
\(\psi_{i-1} = \psi_i[v_j \rightarrow E, \text{for each } m \neq j, v'_m \rightarrow v_m] \)

Rule for sequential composition:
\(wp((s_{i-1}; s_i), \psi_i) = wp(s_{i-1}, wp(s_i, \psi_i)) \)

Conditionals: \(\text{if } (G) \ S_{if} \text{ else } S_{else}; \)
\(\psi_{i-1} = (G \Rightarrow wp(S_{if}, \psi_i)) \land (\neg G \Rightarrow wp(S_{else}, \psi_i)) \)

Loops: \(\text{while } (G) \ S_{body}; \)
\(\psi_{i-1} = (\psi_i \land \neg G) \lor \bigvee_{l=1}^{L} wp(S_{body}, Y_{l-1} \land \neg G) \)
where, \(Y_0 = \psi_i, Y_k = wp(S_{body}, Y_{k-1} \land \neg G) \)
Forward propagation of φ_{i-1} through s_i

Strongest post-condition $sp(s_i, \varphi_{i-1})$:
Smallest set of output states in which s_i is guaranteed to terminate, starting in φ_{i-1}, for all choices that s_i might make.

To propagate φ_{i-1} forward through s_i, compute $sp(s_i, \varphi_{i-1})$.

Example program annotation

Pre-condition propagation

\[\varphi_0: \text{true} \]

\[\varphi_1: x' \equiv (x(0) \oplus y(0)) \land y' \equiv y(0) \]

\[\varphi_2: x' \equiv (x(0) \oplus y(0)) \land y' \equiv (\neg x(0) \land y(0)) \]

\[\varphi_3: x' \equiv (x(0) \land \neg y(0)) \land y' \equiv (\neg x(0) \land y(0)) \]

Incorrect Program

\[x' := x(0) \oplus y(0); \]

\[y' := x \land y; \]

\[x(f) := x \oplus y; \]

Post-condition propagation

\[\psi_0: y(0) \equiv (x(0) \land \neg y(0)) \land x(0) \equiv (\neg x(0) \land y(0)) \]

\[\psi_1: y(0) \equiv (x \land \neg y) \land x(0) \equiv (x \land y) \]

\[\psi_2: y(0) \equiv x \oplus y \land x(0) \equiv y \]

\[\psi_3: x(f) \equiv y(0) \land y(f) \equiv x(0) \]

Roopsha Samanta
Automatic Generation of Local Repairs for Boolean Programs
Local Hoare triples

\[S_0: x' := x(0) \oplus y(0); \]
\[S_1: y' := x \land y; \]
\[S_2: x(f) := x \oplus y; \]
Local Hoare triples

Local Hoare triple: $\langle \varphi_0 \rangle s_0 \langle \psi_1 \rangle$

φ_0

$s_0: x' := x(0) \oplus y(0)$

φ_1

$s_1: y' := x \land y$

φ_2

$s_2: x(f) := x \oplus y$

φ_3

ψ_0

ψ_1

ψ_2

ψ_3
Local Hoare triples

Local Hoare triple: $\langle \varphi_0 \rangle s_0 \langle \psi_1 \rangle$

$s_0: x' := x(0) \oplus y(0)$;

Local Hoare triple: $\langle \varphi_2 \rangle s_2 \langle \psi_3 \rangle$

$s_2: x(\neg f) := x \oplus y$;

$s_1: y' := x \wedge y$;
A key lemma

\[\langle \varphi \rangle P \langle \psi \rangle \text{ false} \iff \text{all local Hoare triples } \text{false}. \]

All local Hoare triples \text{false} \iff \text{some local Hoare triple } \text{false}.\]
What does this lemma mean for us?

If for some i, s_i can be fixed to make $\langle \varphi_{i-1} \rangle s_i \langle \psi_i \rangle$ true, then we have found P' such that $\langle \varphi \rangle P' \langle \psi \rangle$!

This is the basis for our repair algorithm.
What does this lemma mean for us?

If for some i, s_i can be fixed to make $\langle \varphi_{i-1} \rangle s_i \langle \psi_i \rangle$ true, then we have found P' such that $\langle \varphi \rangle P' \langle \psi \rangle$!

This is the basis for our repair algorithm.
Sketch of repair algorithm

- Choose promising order
 - Query stmts in turn for repairability
 - If yes, Repair stmt, return modified program
 - If not, move to next stmt
 - If Query fails for all stmts, report failure
Sketch of repair algorithm

- Choose promising order
- **Query** stmts in turn for repairability
 - If yes, **Repair** stmt, return modified program
 - If not, move to next stmt
- If **Query** fails for all stmts, report failure
Sketch of repair algorithm

- Choose promising order
- **Query** stmts in turn for repairability
 - If yes, **Repair** stmt, return modified program
 - If not, move to next stmt
- If **Query** fails for all stmts, report failure
Sketch of repair algorithm

- Choose promising order
- Query stmts in turn for repairability
 - If yes, Repair stmt, return modified program
 - If not, move to next stmt
- If Query fails for all stmts, report failure
Sketch of repair algorithm

- Choose promising order
- **Query** stmts in turn for repairability
 - If yes, **Repair** stmt, return modified program
 - If not, move to next stmt
- If **Query** fails for all stmts, report failure
Query for assignment statement

- Let $\hat{s}_i: v_j := \text{expr}$ be potential repair for s_i
- Use variable z to denote expr to enable formulation of Quantified Boolean Formula (QBF)

Query returns yes iff following QBF is true for some j:
$$\forall v_1(0) \forall v_2(0) \ldots \forall v_t(0) \exists z \ \varphi_{i-1} \Rightarrow \hat{\psi}_{i-1,j}$$
Query for assignment statement

- Let $\hat{s}_j \colon v_j := \text{expr}$ be potential repair for s_i
- Use variable z to denote expr to enable formulation of Quantified Boolean Formula (QBF)

Query returns yes iff following QBF is true for some j:
\[
\forall v_1(0) \forall v_2(0) \ldots \forall v_t(0) \exists z \ \varphi_{i-1} \Rightarrow \hat{\psi}_{i-1,j}
\]
Repair for assignment statement

- Let m^{th} QBF be true
 - Thus, $\hat{s}_i: v_m := z$

How do we obtain z in terms of variables in V?

$$\forall v_1(0) \forall v_2(0) \ldots \forall v_t(0) \exists z \quad \varphi_{i-1} \Rightarrow \hat{\psi}_{i-1,m}$$

$z = T|_{z=1}$ is a witness to QBF validity
Repair for assignment statement

- Let \(m^{th} \) QBF be true
- Thus, \(\hat{s}_i : v_m := z \);
- How do we obtain \(z \) in terms of variables in \(\forall \)?

\[
\forall v_1(0) \land \forall v_2(0) \ldots \land \forall v_t(0) \exists z \quad \varphi_{i-1} \Rightarrow \psi_{i-1,m}
\]

\[
z = T|_{z=1} \text{ is a witness to QBF validity}
\]
Repair for assignment statement

- Let m^{th} QBF be true
- Thus, \hat{s}_i: $v_m := z$

How do we obtain z in terms of variables in \forall?

$$\forall v_1(0) \forall v_2(0) \ldots \forall v_t(0) \exists z \varphi_{i-1} \Rightarrow \hat{\psi}_{i-1,m}$$

$z = T|_{z=1}$ is a witness to QBF validity
Example

Pre-condition propagation

\(\varphi_0: \text{true} \)

\(\varphi_1: x' \equiv (x(0) \oplus y(0)) \land \\
 y' \equiv y(0) \)

\(\varphi_2: x' \equiv (x(0) \oplus y(0)) \land \\
 y' \equiv (\neg x(0) \land y(0)) \)

\(\varphi_3: x' \equiv (x(0) \land \neg y(0)) \land \\
 y' \equiv (\neg x(0) \land y(0)) \)

Incorrect Program

\[x' := x(0) \oplus y(0); \]

\[y' := x \land y; \]

\[x(f) := x \oplus y; \]

Post-condition propagation

\[\psi_0: y(0) \equiv (x(0) \land \neg y(0)) \land \\
 x(0) \equiv (\neg x(0) \land y(0)) \]

\[\psi_1: y(0) \equiv (x \land \neg y) \land \\
 x(0) \equiv (x \land y) \]

\[\psi_2: y(0) \equiv x \oplus y \land \\
 x(0) \equiv y \]

\[\psi_3: x(f) \equiv y(0) \land \\
 y(f) \equiv x(0) \]

QBF for \(\hat{s}_2: \forall x(0) \forall y(0) \exists z \quad \varphi_1 \Rightarrow \hat{\psi}_{1,y} = \text{true} \)

Synthesized repair: \(\overline{y'} := x \oplus y; \)
Complexity

Worst-case complexity is exponential in \# Boolean predicates

In practice, most computations are efficient using BDDs

- Symbolic storage
- Efficient manipulation of pre-/post-conditions
- Efficient computation of fix-points
- Easy QBF validity checking
- Easy cofactor computation
Complexity

Worst-case complexity is exponential in \# Boolean predicates

In practice, most computations are efficient using BDDs

- Symbolic storage
- Efficient manipulation of pre-/post-conditions
- Efficient computation of fix-points
- Easy QBF validity checking
- Easy cofactor computation
Extant work

- Error localization based on analyzing error traces: [Zeller02], [Ball+03], [Shen+04], [Groce05]
- Repair of Boolean programs: [Griesmayer+06]
- Sketching: [Solar-Lezama+06]
- Repair of circuits using QBFs: [StaberBloem07]
- Dynamic repair of data structures: [DemskyRinard03]
Contributions

- Novel application of Hoare logic
- Identification of program model, fault model and specification logic for tractable repair algorithm
- Framework for repair without prior fault localization
- Exponentially lower complexity than existing algorithm ([Griesmayer+06]) for our fragment
Contributions

- Novel application of Hoare logic
- Identification of program model, fault model and specification logic for tractable repair algorithm
- Framework for repair without prior fault localization
- Exponentially lower complexity than existing algorithm ([Griesmayer+06]) for our fragment
Contributions

- Novel application of Hoare logic
- Identification of program model, fault model and specification logic for tractable repair algorithm
- Framework for repair without prior fault localization
- Exponentially lower complexity than existing algorithm ([Griesmayer+06]) for our fragment
Contributions

- Novel application of Hoare logic
- Identification of program model, fault model and specification logic for tractable repair algorithm
- Framework for repair without prior fault localization
- **Exponentially lower complexity** than existing algorithm ([Griesmayer+06]) for our fragment
The road ahead . . .

- More general fault models
 - e.g., swapped statements, multiple incorrect expressions
- Boolean programs with arbitrary recursion
- Bit-vector programs
 - VHDL or Verilog programs
 - Software programs with small integer domains
Roopsha Samanta
Automatic Generation of Local Repairs for Boolean Programs
Post-condition propagation

Assignments:
\(E \) contains \(nd(0, 1) \):
Compute conjunction of wps over \(v'_j := E|_0 \) and \(v'_j := E|_1 \)

Conditionals: \(G = nd(0, 1) \):
Compute \(wp(S_{if}, \psi_i) \land wp(S_{else}, \psi_i) \)

Loops: \(G = nd(0, 1) \):
\(\psi_{i-1} = false \), or,
\(\psi_{i-1} = \land_{i=0}^{l'} Z_l \)
\(Z_0 = \psi_i, Z_k = wp(S_{body}, Z_{k-1}) \)
Proof of lemma

\[\phi, S_1, S_2, S_3, \psi, \text{i.e., Desired Final State} \]

Initial State

Final State
Proof

\(\phi \), i.e., Given Initial State

Image/sp

\(S_1 \)

\(S_2 \)

\(S_3 \)

Preimage/wlp

\(S_1^{-1} \)

\(S_2^{-1} \)

\(S_3^{-1} \)

\(\psi \), i.e., Desired Final State
Proof

![Proof Diagram]

\[S_3 \]
Functions

Non-recursive and tail-recursive functions

- Compute functions summaries
- Compute forward summary by sp propagation thru f
- Assume initial pre-condition is $\bigwedge_y (\text{arg}_y \equiv x_y)$
- Compute backward summary by wp propagation thru f
- Assume final post-condition is the return value
- Use summaries for propagation thru the call-site of f
- To repair, replace suspect expression by z
- Reannotate program before solving for z