L
ETH inf

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Abstraction techniques for
Floating-Point Arithmetic

Angelo Brillout!, Daniel Kroening? and Thomas Wahl?

1ETH Zurich, 20xford University

© Department of Computer Science | ETH Zirich Tuesday, 17 November 2009

ek & "
Floating-Point Arithmetic (FPA)

= Used for embedded and safety critical systems

= Finite representation of real numbers

- Rounding
- Deviation causes unintuitive results
- Deviation can change control flow

—>Behavior of floating-point programs hard to
predict

Tuesday, 17 November 2009 Department of Computer Science

Contributions

- New effective approximation techniques
= QOver- and underapproximation for FPA
- Bit-precise

-> Precise and sound decision procedure for FPA:

- Based on CBMC model checking engine
= SAT solver as the back-end

Tuesday, 17 November 2009 Department of Computer Science

Eidgenéssische Technische Hochschule Ziirich

= Numerical representation of a subset of the reals

Floating-Point Arithmetic (FPA)

= Floating-point format: IEEE-754 standard

- Triple(s, e, f) stands for the number (—1)*- f-2¢
- Represented by a bit-vector

S

€r—1

—
1

o fo - fo
> < >

r

" Representable numbers F,

= Floating-point operations e ® ©
- Differ from real arithmetic. E.g.:

Tuesday, 17 November 2009

(a®b)Bc£ad (bdc)

Department of Computer Science

\)
Eidgenéssische Technische Hochschule Ziirich \ \
Swiss Federal Institute of Technology Zurich A\ Ve
N

Floating-Point Arithmetic (FPA)

= Result of FP-operation not always representable

—> Approximations:
z], = max{felF,:f- x}, and
z], = min{felF,: f>xz}.

. [z]p [z]p
- Rounding function:
po(x) S {ijpa ’_x_‘p}

= Rounding based on least significant bits of fraction

Tuesday, 17 November 2009 Department of Computer Science

\)
Eidgenéssische Technische Hochschule Ziirich \ \
Swiss Federal Institute of Technology Zurich A\ Ve
N

Floating-Point Arithmetic (FPA)

= Floating-point operations defined as:

T ©, Y :=rdy(xoy)

= Verification of FPA programs:

= Naive method: Bit-vector model of an FPU and bit-
blasting

- BMC (Unrolling, Bit-blasting, SAT-solving)

- Does not scale for FPA

Tuesday, 17 November 2009 Department of Computer Science

Eidgenéssische Technische Hochschule Ziirich

FPA Verification

= FPU-Implementation of Add/Sub

Mg Eg .
™ 'Z m. | A —m,
Sq— O m, | m Ss d Z
)] o - D Er
My ——] LLL SN R O
< ’ =
y— 5 | 3 Z
Sp——™ Sb - >
1 =
E =
o e

= Align: mantissa shifted, rendering exponents equal
= Add/Sub: resulting mantissas are added/subtracted
= Round: shortening mantissa to obtain a number in [,

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

= FPU-Implementation of Add/Sub

mg —™ Eg -
Ca ™ Z me - D
Sp ™ 9 m::._ - m - - %
My —— |J mE‘ - -
, Z >
Cp—™ -<1: S?] Cd
S _ A
Sp——™ = _<t
Precision || ALIGN | ADD/SuB | RounD || Total
p=>5 295 168 572 1035
p =23 687 420 1447 || 2554
p = 52 1404 826 2923 5153

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

* FPU-Implementation of Mul/Div

€a
€h

ADD/SUB

Sﬂ?

L_%
S g
ROUND
N
& 3

MuUL/D1v
rd

= Add/Sub: exponents added/subtracted (Mul/Div)

= Mul/Div: mantissas multiplied/divided (Mul/Div)

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

* FPU-Implementation of Mul/Div

= al
€a =)
ey 4
la
a
< a —m
“ Z
. L O |,
dﬂ'L‘ Sm O
- Y,
Sg = Sr
ma S
il
Sh —
Ty z '*E
Precision || MuL/Div | ADD/SUB | ROUND || Total
p=>5 280 94 674 1048
p =23 3898 94 2258 6550
p = 52 19268 94 5742 || 25104

Tuesday, 17 November 2009

Department of Computer Science

Eidgenéssische Technische Hochschule Ziirich

FPA Verification

Computer Science

- Need for approximate FP-operations

Can we approximate FP-operations by reducing
the precisionp ?

Tuesday, 17 November 2009 Department of Computer Science

Approximation techniques

* Reducing the precision p’ < p
- Least significant bits are lost

= Overapproximation by open rounding:
rdpp (X) == [|X]p, [X]p] N

= New FP-operations

XGpp Y i=rdpp (X oY)

= Replace®, by ®, , for some precisionp’ < p

Tuesday, 17 November 2009 Department of Computer Science

Approximation techniques

= Qverapproximation: visualization
rdpy({z}) = [|z]p, [2]p] N T,

. L.xJ p’

@ @ o—o

precision p/ < p

mp,p’({w}) — {.7.7.7.7.}

Department of Computer Science

Approximation techniques

* Reducing the precision p’ < p
- Least significant bits are lost

= Underapproximation by inhibiting rounding:
@p,p/(X) = XﬂFp/

= New FP-operations

X© Y—Td (XOY)

—~p,p’

" Replace ©,by @, ,for some precisionp’ < p

Tuesday, 17 November 2009 Department of Computer Science

Approximation techniques

= Underapproximation: visualization
rd, »({z}) = {2} NFy

precision p° < p

rd

p,p’

({z}) ={z} if x € F, 0 otherwise

Tuesday, 17 November 2009 Department of Computer Science

Alternating abstractions for FPA

= QOver-approximation

- Permits more execution traces than original program
= SAT: no conclusion, UNSAT: assertions OK

= Under-approximation

- Permits less execution traces than original program
= SAT: assertion violated, UNSAT: no conclusion

= Refinement: increase p

-> Alternation yields complete procedure

Tuesday, 17 November 2009 Department of Computer Science

X - -
% f | Informatik
'l Computer Science

Alternating abstractions for FPA
|
Select small precision P

!

o
Generate Underapproximation ¢
(increase p using o)
yes SAT, yes Qcsat-
oass. isfies ¢

_UNSAT, _ mo

-

proof P

Generate Overrapproximation
(increase pusing P)

Tuesday, 17 November 2009 Department of Computer Science

Alternating abstractions for FPA

Refinement for FPA:

= Spuriously SAT:
r result of ©y, . If r £ ©,, then increase precision

= Spuriously UNSAT:
- Recall:

ﬁp,p’(X) = Xﬂ]Fp/

- If the constraint X NI,y occursin P,
then increase precision

Tuesday, 17 November 2009 Department of Computer Science

Summary

= Model Checking with FPA
= Effective over- and underapproximation hard to find
= Slow (model checking)
v Fully automatic
v Provides counterexample

- Implemented in CBMC

Tuesday, 17 November 2009 Department of Computer Science

Eidgenéssische Technische Hochschule Ziirich

State of the Art

= Proof assistants
v Very powerful
= Require interaction
= No counterexample

= Interval arithmetic [1,2] +[4,6] =[5, §]
v Fully automated
= Too coarse
= No counterexample

Tuesday, 17 November 2009 Department of Computer Science

Issues

= E.g.the formula(a®b) ®c#a® (bdc) is SAT
- Every overapproximation based on © is SAT
- Every underapproximation based on © is UNSAT

- Some formulae do not have effective over- or
underapproximations

Tuesday, 17 November 2009 Department of Computer Science

Conclusion

= New algorithm for iteratively approximating

complex FPA —formulae

- New under- and over-approximations for FP-
operations

= Ability to generate counterexamples
- Debugging
- Automated test-vector generation

= Promising experiments, future work

Thank you!

Tuesday, 17 November 2009 Department of Computer Science

