
Tuesday, 17 November 2009

Abstraction techniques for

Floating-Point Arithmetic

Angelo Brillout1, Daniel Kroening2 and Thomas Wahl2

1ETH Zurich, 2Oxford University

© Department of Computer Science | ETH Zürich

Tuesday, 17 November 2009 Department of Computer Science

Floating-Point Arithmetic (FPA)

 Used for embedded and safety critical systems

 Finite representation of real numbers

Rounding

Deviation causes unintuitive results

Deviation can change control flow

Behavior of floating-point programs hard to

predict

2

Tuesday, 17 November 2009 Department of Computer Science

Contributions

 New effective approximation techniques

 Over- and underapproximation for FPA

 Bit-precise

 Precise and sound decision procedure for FPA:

 Based on CBMC model checking engine

 SAT solver as the back-end

3

Tuesday, 17 November 2009 Department of Computer Science 4

Floating-Point Arithmetic (FPA)

 Numerical representation of a subset of the reals

 Floating-point format: IEEE-754 standard

 Triple stands for the number

 Represented by a bit-vector

 Representable numbers

 Floating-point operations

 Differ from real arithmetic. E.g.:

©ª­®

(a© b)© c 6= a© (b© c)

(¡1)s ¢ f ¢ 2e(s; e; f)

s er¡1 ¢ ¢ ¢ e0 f0 ¢ ¢ ¢ fp¡1

Ã! Ã¡¡¡¡¡¡¡¡¡¡! Ã¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡!
1 r p

Fp

Tuesday, 17 November 2009 Department of Computer Science

Floating-Point Arithmetic (FPA)

 Result of FP-operation not always representable

 Approximations:

 Rounding function:

 Rounding based on least significant bits of fraction

bxcp := maxff 2 Fp : f · xg ; and

dxep := minff 2 Fp : f ¸ xg :

rdp(x) 2 fbxcp; dxepg

bxcp dxep
x

Tuesday, 17 November 2009 Department of Computer Science

Floating-Point Arithmetic (FPA)

 Floating-point operations defined as:

 Verification of FPA programs:

 Naïve method: Bit-vector model of an FPU and bit-

blasting

 BMC (Unrolling, Bit-blasting, SAT-solving)

 Does not scale for FPA

6

x}p y := rdp(x ± y)

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 FPU-Implementation of Add/Sub

 Align: mantissa shifted, rendering exponents equal

 Add/Sub: resulting mantissas are added/subtracted

 Round: shortening mantissa to obtain a number in

7

Fp

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 FPU-Implementation of Add/Sub

8

Precision Align Add/Sub Round Total

p = 5 295 168 572 1035

p = 23 687 420 1447 2554

p = 52 1404 826 2923 5153

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 FPU-Implementation of Mul/Div

 Add/Sub: exponents added/subtracted (Mul/Div)

 Mul/Div: mantissas multiplied/divided (Mul/Div)

9

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 FPU-Implementation of Mul/Div

10

Precision Mul/Div Add/Sub Round Total

p = 5 280 94 674 1048

p = 23 3898 94 2258 6550

p = 52 19268 94 5742 25104

Tuesday, 17 November 2009 Department of Computer Science

FPA Verification

 Need for approximate FP-operations

Can we approximate FP-operations by reducing

the precision ?

11

p

Tuesday, 17 November 2009 Department of Computer Science

Approximation techniques

 Reducing the precision

Least significant bits are lost

 Overapproximation by open rounding:

 New FP-operations

 Replace by for some precision

12

rdp;p0(X) := [bXcp0; dXep0] \ Fp

X}p;p0 Y := rdp;p0(X ± Y)

}p;p0}p p0 < p

p0 < p

Tuesday, 17 November 2009 Department of Computer Science

 Overapproximation: visualization

precision pp0 < p

Approximation techniques

13

rdp;p0(fxg) = [bxcp0; dxep0] \ Fp

x

bxcp0 dxep0

rdp;p0(fxg) = f ; ; ; ; g

Tuesday, 17 November 2009 Department of Computer Science

Approximation techniques

 Reducing the precision

Least significant bits are lost

 Underapproximation by inhibiting rounding:

 New FP-operations

 Replace by for some precision

14

}
p;p0}p p0 < p

rdp;p0(X) := X \Fp0

X}
p;p0 Y := rdp;p0(X ± Y)

p0 < p

Tuesday, 17 November 2009 Department of Computer Science

 Underapproximation: visualization

precision p0 < pp

Approximation techniques

15

rdp;p0(fxg) = fxg \Fp0

rdp;p0(fxg) = fxg if x 2 Fp0 , ; otherwise

x

Tuesday, 17 November 2009 Department of Computer Science

Alternating abstractions for FPA

 Over-approximation

 Permits more execution traces than original program

 SAT: no conclusion, UNSAT: assertions OK

 Under-approximation

 Permits less execution traces than original program

 SAT: assertion violated, UNSAT: no conclusion

 Refinement: increase

 Alternation yields complete procedure

16

p

Tuesday, 17 November 2009 Department of Computer Science

Alternating abstractions for FPA

17

Generate Underapproximation

Select small precision

Á

SAT,

ass. ®

Á

yes yes

UNSAT,

proof P

Generate Overrapproximation

SAT

?

SAT

?

p

yes

(ass.)®

(increase using)Pp

(increase using)p ®

Á

Á

sat-

isfies

?

Á

®

valid for

?

P
Á

no

(proof)

no

no

P

®

Tuesday, 17 November 2009 Department of Computer Science

Alternating abstractions for FPA

Refinement for FPA:

 Spuriously SAT:

result of . If then increase precision

 Spuriously UNSAT:

 Recall:

 If the constraint occurs in ,

then increase precision

18

}p;p0r r 6= }p

X \ Fp0 P

rdp;p0(X) := X \Fp0

Tuesday, 17 November 2009 Department of Computer Science

Summary

 Model Checking with FPA

 Effective over- and underapproximation hard to find

 Slow (model checking)

 Fully automatic

 Provides counterexample

 Implemented in CBMC

19

Tuesday, 17 November 2009 Department of Computer Science

State of the Art

 Proof assistants

 Very powerful

 Require interaction

 No counterexample

 Interval arithmetic

 Fully automated

 Too coarse

 No counterexample

20

[1;2] + [4;6] = [5;8]

Tuesday, 17 November 2009 Department of Computer Science

Issues

 E.g. the formula is SAT

 Every overapproximation based on is SAT

 Every underapproximation based on is UNSAT

 Some formulae do not have effective over- or

underapproximations

21

(a© b)© c 6= a© (b© c)

}
}

Tuesday, 17 November 2009 Department of Computer Science

Conclusion

 New algorithm for iteratively approximating

complex FPA –formulae

 New under- and over-approximations for FP-

operations

 Ability to generate counterexamples

 Debugging

 Automated test-vector generation

 Promising experiments, future work

Thank you!

22

