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Challenge: verifiably correct crypto

 From NIST’s 2008 Annual Report (pg 15)
• 48% of crypto-modules, and 27% of crypto-algorithms

had flaws.
• Without evaluation, about 50-50 chance of buying

correct crypto
 Critical for information security
 Major goals:

• Create verifiably correct crypto
• Prove existing implementations correct

 Focus on algorithms (not waveform)
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Approach:
Specifications and Formal Methods

 Executable specification language
• Language tailored to the crypto domain
• Designed with feedback from cryptographers

 Execution and Validation Tools
• Tool suite for different implementation and

verification applications
• In use by crypto-implementers
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One Specification - Many Uses
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Cryptol Project Mission: To reduce the cost (in both time and
money) of developing and certifying cryptographic applications

Cryptol
Specification

A Domain Specific Language
• Precise, Declarative Semantics
• High level design exploration
• Executable

Automated Synthesis down to FPGA and VHDL verification
• Evidence producing translation technique
• Verifying both generated and 3rd party VHDL
• SAT based equivalence checking

Property specification and verification
• SAT/SMT based property verification
• Push button assurance
• Semi-automatic theorem proving (via Isabelle/HOL)
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Cryptol Programs

 File of mathematical definitions
• Strong static typing, with type inference
• Heavily influenced by functional languages (Haskell in particular)

 Definitions are computationally neutral
• Think equations, not programming.
• No assignments, no side effects.

x : [4][32];
x = [23 13 1 0];

F : ([16],[16]) -> [16];
F (x,x’) = 2 * x + x’;
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blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*k]) -> [128]

Expressive Type system

For all k …between
2 and 4

First input is
a sequence
of 128 bits

Second input
is a sequence
of 128, 192,
or 256 bits

Output is a
sequence of

128 bits

From the Advanced Encryption Standard definition†

†http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
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Language overview

 Bit-vectors as main data type
 Strong type system, with size and parametric polymorphism

• Based on Hindley-Milner type inference
• Extended with arithmetic predicates

 Pure
• No side effects, no I/O
• Waveform code is not our target

 Associated verification system
• Functional correctness properties directly specifiable in code
• Symbolic simulation + equivalence checking

 Cryptol is a happy marriage of research in:
• Functional programming
• (Automated) formal methods
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Generating and verifying FPGAs

 Cheaper to deploy in quantity

 Lack of trust in commodity hardware
• Evaluators can see as much of the solution as possible
• Do not have to ship designs off-shore

 Natural match between Cryptography and FPGAs
• Highly-parallel stream processing

 And FPGAs are fast…
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Refine spec
for a specific

target

Strategy
 Maintain functional equivalence with the reference specification

throughout the tool chain
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FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor toolsInput to tool

Feedback to designer

Specification

Source files 

Cryptol in the Development Process:
Hand-written VHDL

A VHDL-FPGA engineer:
 Studies the reference

specification to gain
understanding

 Crafts a VHDL
implementation by hand

 Uses the equivalence
checker to certify

 Counter-examples are
priceless!

Cryptol
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 Symbolic
evaluator

Synthesis
Reference

model
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implementation

 Equivalence
checker

Symbolic
evaluator
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model

Netlist Bitfile
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Some Verification Results

 NIST Hash Competition (Skein)
• Men Long (Intel)
• Stefan Tillich (TU Graz)

 NIST AES Competition
• Reference C
• Optimized C
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NIST Hash Competition
 “NIST has opened a public competition to develop a new

cryptographic hash algorithm, which converts a variable length
message into a short “message digest” that can be used for digital
signatures, message authentication and other applications.”

 51 submissions
 Galois has verified VHDL implementations of some

• Against Cryptol “golden” specs

 We’ll look at Skein verification in detail:

            http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
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Verification Process

1. Develop a specification
2. Understand the implementation
3. Match the type signature of the implementation

and specification
4. Use Cryptol to generate AIGs for both the

implementation and specification
5. Call the equivalence checker
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Develop a Specification
encrypt256 : [256] -> [256];

encrypt256 (key_tweak_pt) = vn + kn

  where {

   // Threefish-256 has 72 rounds:

   nr  = 72;

   nw  = 4;

   …

   key_words : [4][64];

   key_words = split(join key);

   tw_words : [2][64];

   tw_words = split(join tweak);

   pt_words : [nw][64];

   pt_words = split(join pt);

  };

                http://www.galois.com/blog/2009/01/23/a-cryptol-implementation-of-skein/
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Understanding the Implementation
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extern vhdl("datatype.vhd”, "skein_mixcolumn.vhd", "skein_round.vhd”,

            "skein_shiftrow.vhd“, "skein_add_round_key.vhd”, "skein.vhd“,

             skein, clock=clk, reset=resetn, invertreset)

extern_menLong : [inf](start:Bit, data_in_L:[256], hash_iv_L:[256],

                       tweak_L:[128]) ->

                 [inf](done:Bit, data_out_L:[256]);

 Very closely matches the VHDL implementation
 Imports are done as stream processors
 Details such as start/reset signals are still present
 The imported function becomes a first-class citizen!

Import the VHDL to Cryptol
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menLongVHDL : [256] -> [256];

menLongVHDL inp = res

  where { wait     = (False, inp, zero, zero);

          start    = (True, inp, zero, zero);

          rest     = [wait] # rest;

          (_, res) = extern_menLong([wait start] # rest) @ 74;

        };

 Put a “functional” view over the imported VHDL
 Signal and timing details are resolved
 Matches the signature of the reference spec
 Compare with:
extern_menLong : [inf](start:Bit, data_in_L:[256], hash_iv_L:[256],

                       tweak_L:[128]) ->

                 [inf](done:Bit, data_out_L:[256]);

Match the Type Signatures
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Use the equivalence checker

 Generate AIGs from:
• Reference Cryptol implementation
• Imported VHDL implementation

 Symbolic simulation based technique
• Both for Cryptol and Netlist descriptions

 Call an external SAT solver
• Potential models become “bugs” found

 Cryptol mediates the interaction
• No specific knowledge of external tools needed
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Men Long Equivalence Check

 VHDL Implementation of the Skein UBI Block
 Skein UBI Block AIG Sizes

• Cryptol Reference, 118156 nodes
• Men Long, 653963 nodes

 Found one ambiguity issue
 Used ABC (UC Berkeley) Equivalence Checker
 In ~1 hr VHDL code proved equivalent to spec
 Quite good for 256 bits of input

• 2256 is a big number!
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Stefan Tillich Equivalence Check

 Full Skein VHDL Implementation
 Skein AIG Sizes (256 bits input/output)

• Cryptol Reference, 301342 nodes
• Stefan Tillich, 900496 nodes

 Used ABC (UC Berkeley) Equivalence Checker
 Time: ~17.5h
 VHDL code is equivalent to Cryptol spec.
                            http://www.iaik.tugraz.at/content/research/
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Synthesis from Cryptol

 High-level design exploration helps
• Much easier to code in Cryptol than in VHDL

 Experiment: Synthesized core Threefish rounds
 Speed comparison:

 Further optimizations certainly possible

1 Gb/s
Cryptol

1.75 Gb/s0.409 Gb/s
TillichMen Long
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Why does this work?

 SAT based equivalence checking is an ideal fit for crypto
 Properties of symmetric-key encryption algorithms:

• Very regular structure; no fancy operations
 AES can be implemented just using array-lookup and XOR

• No data-dependent control flow, to avoid timing attacks
 Means no if-then-else splits!

• All loops have upper bounds known statically

 SAT-sweeping very effective
• Simulation based node-equivalence guesses are likely to be very

accurate

 Bottom line: symmetric-key crypto is mostly bit-shuffling, and SAT is
good at that

 NB. Doesn’t apply to ECC (Elliptic-Curve Cryptography)
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Beyond equivalence checking

 Equivalence checking shows functional equivalence
• The input/output behaviors are “precisely the same”
• Or, they both have the exact same bugs..

 Property verification goes further
• Allows “correctness” properties to be specified and proved

automatically
 Classic crypto example:

• For all values of key and plain-text, encryption followed by the
decryption using the same key returns the plain-text

• In Cryptol:
  theorem encDec: {key, pt}. dec (key, enc(key, pt)) == pt;

 Cryptol theorems are first class citizens of the language
• Not just documentation!
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Other Cryptol Assurance tools

 “Quickcheck” property-based testing
• User gives a property, Cryptol automatically tests it on random inputs.

 Safety checking
• Automatically checks that a Cryptol function will never raise an exception
• Some possible exceptions: Divide-by-zero, Out-of-bounds array access,

assertion failures
 SMT based property verification

• Allows direct use of arrays
• Uninterpreted functions (QF_AUFBV)

 Semi-automatic theorem proving
• Translator from Cryptol to Isabelle theorem prover
• User can specify arbitrary Cryptol properties, but proof may need human

guidance
 Last two are essential for non-symmetric key systems

• ECC (esp. large word multiplication) is a soft-spot for SAT
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Questions?

www.cryptol.net

Contact: cryptol@galois.com


