
© 2009 Galois, Inc. All rights reserved.1

Hardware/Software
Co-verification of Cryptographic

Algorithms using Cryptol
Levent Erkök, Magnus Carlsson, Adam Wick

 November 18th, 2009
FMCAD’09, Austin TX

The Cryptol team, past and present:
Sally Browning, Magnus Carlsson, Levent Erkök, Sigbjorn Finne,
Andy Gill, Fergus Henderson, John Launchbury, Jeff Lewis, Lee
Pike, John Matthews, Thomas Nordin, Mark Shields, Joel Stanley,
Frank Seaton Taylor, Jim Teisher, Philip Weaver, Adam Wick

© 2009 Galois, Inc. All rights reserved.2

Challenge: verifiably correct crypto

 From NIST’s 2008 Annual Report (pg 15)
• 48% of crypto-modules, and 27% of crypto-algorithms

had flaws.
• Without evaluation, about 50-50 chance of buying

correct crypto
 Critical for information security
 Major goals:

• Create verifiably correct crypto
• Prove existing implementations correct

 Focus on algorithms (not waveform)

© 2009 Galois, Inc. All rights reserved.3

Approach:
Specifications and Formal Methods

 Executable specification language
• Language tailored to the crypto domain
• Designed with feedback from cryptographers

 Execution and Validation Tools
• Tool suite for different implementation and

verification applications
• In use by crypto-implementers

© 2009 Galois, Inc. All rights reserved.4

One Specification - Many Uses

Design Validate

Build

Domain-specific design capture

w0=u-I*I modp + u-I*wl mod p
s=f * (w0 +pw2) (mod q)

Assured implementation

Verify crypto
implementations

Models and
test cases

Special purpose
processor

FPGA(s)

C or
Haskell

Target
HW code

Cryptol
tools

Cryptol
interpreter

© 2009 Galois, Inc. All rights reserved.5

Cryptol Project Mission: To reduce the cost (in both time and
money) of developing and certifying cryptographic applications

Cryptol
Specification

A Domain Specific Language
• Precise, Declarative Semantics
• High level design exploration
• Executable

Automated Synthesis down to FPGA and VHDL verification
• Evidence producing translation technique
• Verifying both generated and 3rd party VHDL
• SAT based equivalence checking

Property specification and verification
• SAT/SMT based property verification
• Push button assurance
• Semi-automatic theorem proving (via Isabelle/HOL)

© 2009 Galois, Inc. All rights reserved.6

Cryptol Programs

 File of mathematical definitions
• Strong static typing, with type inference
• Heavily influenced by functional languages (Haskell in particular)

 Definitions are computationally neutral
• Think equations, not programming.
• No assignments, no side effects.

x : [4][32];
x = [23 13 1 0];

F : ([16],[16]) -> [16];
F (x,x’) = 2 * x + x’;

© 2009 Galois, Inc. All rights reserved.7

blockEncrypt : {k} (k >= 2, 4 >= k) => ([128], [64*k]) -> [128]

Expressive Type system

For all k …between
2 and 4

First input is
a sequence
of 128 bits

Second input
is a sequence
of 128, 192,
or 256 bits

Output is a
sequence of

128 bits

From the Advanced Encryption Standard definition†

†http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

© 2009 Galois, Inc. All rights reserved.8

Language overview

 Bit-vectors as main data type
 Strong type system, with size and parametric polymorphism

• Based on Hindley-Milner type inference
• Extended with arithmetic predicates

 Pure
• No side effects, no I/O
• Waveform code is not our target

 Associated verification system
• Functional correctness properties directly specifiable in code
• Symbolic simulation + equivalence checking

 Cryptol is a happy marriage of research in:
• Functional programming
• (Automated) formal methods

© 2009 Galois, Inc. All rights reserved.9

Generating and verifying FPGAs

 Cheaper to deploy in quantity

 Lack of trust in commodity hardware
• Evaluators can see as much of the solution as possible
• Do not have to ship designs off-shore

 Natural match between Cryptography and FPGAs
• Highly-parallel stream processing

 And FPGAs are fast…

© 2009 Galois, Inc. All rights reserved.10

Refine spec
for a specific

target

Strategy
 Maintain functional equivalence with the reference specification

throughout the tool chain

Reference
Specification

Reference
Model

Target
Model

Crypto
Developer

Target
Specification

Create an FPGA
implementation from the

target specification

IP Core
Generator

VHDL

Equivalence
Checker

Equivalence
Evidence

Place and
 Route

Netlist
Model

Synthesis

Place&Route
Model

Bit Gen

Bitfile
Model

BitfileNetlistNetlist

Key

Xilinx tools

Galois tools

Data files

Cryptol files

Input to tool

Input to designer

Formal Models

SPIR
Model

SPIR

© 2009 Galois, Inc. All rights reserved.11

FPGA Vendor tools

Galois tools

Data files produced by Cryptol tools

Data files produced by vendor toolsInput to tool

Feedback to designer

Specification

Source files

Cryptol in the Development Process:
Hand-written VHDL

A VHDL-FPGA engineer:
 Studies the reference

specification to gain
understanding

 Crafts a VHDL
implementation by hand

 Uses the equivalence
checker to certify

 Counter-examples are
priceless!

Cryptol
reference

specification

 Symbolic
evaluator

Synthesis
Reference

model

handwritten
VHDL

implementation

 Equivalence
checker

Symbolic
evaluator

Netlist
model

Netlist Bitfile

© 2009 Galois, Inc. All rights reserved.12

Some Verification Results

 NIST Hash Competition (Skein)
• Men Long (Intel)
• Stefan Tillich (TU Graz)

 NIST AES Competition
• Reference C
• Optimized C

© 2009 Galois, Inc. All rights reserved.13

NIST Hash Competition
 “NIST has opened a public competition to develop a new

cryptographic hash algorithm, which converts a variable length
message into a short “message digest” that can be used for digital
signatures, message authentication and other applications.”

 51 submissions
 Galois has verified VHDL implementations of some

• Against Cryptol “golden” specs

 We’ll look at Skein verification in detail:

 http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

© 2009 Galois, Inc. All rights reserved.14

Verification Process

1. Develop a specification
2. Understand the implementation
3. Match the type signature of the implementation

and specification
4. Use Cryptol to generate AIGs for both the

implementation and specification
5. Call the equivalence checker

© 2009 Galois, Inc. All rights reserved.15

Develop a Specification
encrypt256 : [256] -> [256];

encrypt256 (key_tweak_pt) = vn + kn

 where {

 // Threefish-256 has 72 rounds:

 nr = 72;

 nw = 4;

 …

 key_words : [4][64];

 key_words = split(join key);

 tw_words : [2][64];

 tw_words = split(join tweak);

 pt_words : [nw][64];

 pt_words = split(join pt);

 };

 http://www.galois.com/blog/2009/01/23/a-cryptol-implementation-of-skein/

© 2009 Galois, Inc. All rights reserved.16

Understanding the Implementation

© 2009 Galois, Inc. All rights reserved.17

extern vhdl("datatype.vhd”, "skein_mixcolumn.vhd", "skein_round.vhd”,

 "skein_shiftrow.vhd“, "skein_add_round_key.vhd”, "skein.vhd“,

 skein, clock=clk, reset=resetn, invertreset)

extern_menLong : [inf](start:Bit, data_in_L:[256], hash_iv_L:[256],

 tweak_L:[128]) ->

 [inf](done:Bit, data_out_L:[256]);

 Very closely matches the VHDL implementation
 Imports are done as stream processors
 Details such as start/reset signals are still present
 The imported function becomes a first-class citizen!

Import the VHDL to Cryptol

© 2009 Galois, Inc. All rights reserved.18

menLongVHDL : [256] -> [256];

menLongVHDL inp = res

 where { wait = (False, inp, zero, zero);

 start = (True, inp, zero, zero);

 rest = [wait] # rest;

 (_, res) = extern_menLong([wait start] # rest) @ 74;

 };

 Put a “functional” view over the imported VHDL
 Signal and timing details are resolved
 Matches the signature of the reference spec
 Compare with:
extern_menLong : [inf](start:Bit, data_in_L:[256], hash_iv_L:[256],

 tweak_L:[128]) ->

 [inf](done:Bit, data_out_L:[256]);

Match the Type Signatures

© 2009 Galois, Inc. All rights reserved.19

Use the equivalence checker

 Generate AIGs from:
• Reference Cryptol implementation
• Imported VHDL implementation

 Symbolic simulation based technique
• Both for Cryptol and Netlist descriptions

 Call an external SAT solver
• Potential models become “bugs” found

 Cryptol mediates the interaction
• No specific knowledge of external tools needed

© 2009 Galois, Inc. All rights reserved.20

Men Long Equivalence Check

 VHDL Implementation of the Skein UBI Block
 Skein UBI Block AIG Sizes

• Cryptol Reference, 118156 nodes
• Men Long, 653963 nodes

 Found one ambiguity issue
 Used ABC (UC Berkeley) Equivalence Checker
 In ~1 hr VHDL code proved equivalent to spec
 Quite good for 256 bits of input

• 2256 is a big number!

© 2009 Galois, Inc. All rights reserved.21

Stefan Tillich Equivalence Check

 Full Skein VHDL Implementation
 Skein AIG Sizes (256 bits input/output)

• Cryptol Reference, 301342 nodes
• Stefan Tillich, 900496 nodes

 Used ABC (UC Berkeley) Equivalence Checker
 Time: ~17.5h
 VHDL code is equivalent to Cryptol spec.
 http://www.iaik.tugraz.at/content/research/

© 2009 Galois, Inc. All rights reserved.22

Synthesis from Cryptol

 High-level design exploration helps
• Much easier to code in Cryptol than in VHDL

 Experiment: Synthesized core Threefish rounds
 Speed comparison:

 Further optimizations certainly possible

1 Gb/s
Cryptol

1.75 Gb/s0.409 Gb/s
TillichMen Long

© 2009 Galois, Inc. All rights reserved.23

Why does this work?

 SAT based equivalence checking is an ideal fit for crypto
 Properties of symmetric-key encryption algorithms:

• Very regular structure; no fancy operations
 AES can be implemented just using array-lookup and XOR

• No data-dependent control flow, to avoid timing attacks
 Means no if-then-else splits!

• All loops have upper bounds known statically

 SAT-sweeping very effective
• Simulation based node-equivalence guesses are likely to be very

accurate

 Bottom line: symmetric-key crypto is mostly bit-shuffling, and SAT is
good at that

 NB. Doesn’t apply to ECC (Elliptic-Curve Cryptography)

© 2009 Galois, Inc. All rights reserved.24

Beyond equivalence checking

 Equivalence checking shows functional equivalence
• The input/output behaviors are “precisely the same”
• Or, they both have the exact same bugs..

 Property verification goes further
• Allows “correctness” properties to be specified and proved

automatically
 Classic crypto example:

• For all values of key and plain-text, encryption followed by the
decryption using the same key returns the plain-text

• In Cryptol:
 theorem encDec: {key, pt}. dec (key, enc(key, pt)) == pt;

 Cryptol theorems are first class citizens of the language
• Not just documentation!

© 2009 Galois, Inc. All rights reserved.25

Other Cryptol Assurance tools

 “Quickcheck” property-based testing
• User gives a property, Cryptol automatically tests it on random inputs.

 Safety checking
• Automatically checks that a Cryptol function will never raise an exception
• Some possible exceptions: Divide-by-zero, Out-of-bounds array access,

assertion failures
 SMT based property verification

• Allows direct use of arrays
• Uninterpreted functions (QF_AUFBV)

 Semi-automatic theorem proving
• Translator from Cryptol to Isabelle theorem prover
• User can specify arbitrary Cryptol properties, but proof may need human

guidance
 Last two are essential for non-symmetric key systems

• ECC (esp. large word multiplication) is a soft-spot for SAT

© 2009 Galois, Inc. All rights reserved.26

Questions?

www.cryptol.net

Contact: cryptol@galois.com

