| IBM Corporation

Formal Verification of Correctness and
Performance of Random Priority-based Arbiters

Krishnan Kailas (IBM T J Watson Research Center, NY)
Viresh Paruthi (IBM Systems & Technology Division, TX)
Brian Monwai (University of Washington, Seattle)

November 17, 2009

Formal Methods in Computer Aided Design (FMCAD 2009), Austin, TX

© 2009 IBM Corporation

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Outline

= Arbiters

= Correctness properties and performance
= Related work

= Random priority based arbiters

= Complete random sequences

= Verification method

= Results

2 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Arbiters

= Used for restricting access requests to shared reso urces

— when there are more number of requests than the maximum
number requests that can be satisfied concurrently.

= Eg: access to cache directory, shared bus, etc.

—» —»
requests . Arbiter . ' grants
— >

= Arbitration of large number of requests is sometime s done
In multiple stages as reduction trees

3 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Correctness Properties of Arbiters

= Mutual exclusion property

— At most N requests can be granted concurrently

= Liveness property
— Any request should eventually get a grant

— Can be used to prove arbitration logic is deadlock free

4 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Correctness and Performance

= Proving liveness property is not sufficient
= Example:
— Design specs: worst-case cache access latency = 100 cycles
— Cache latency = directory access time + cache array access time

— a cache directory access request will eventually get a grant after
500 cycles

— Satisfies the liveness property, but violates the design specification!

= Request-to-grant delay is an important design speci fication

5 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Correctness and Performance

* Request-to-grant delay is an important design speci fication

Must prove that the arbiter satisfies the design sp ecifications

Accurate request-to-grant delay bounds are crucial for
— timer models used for performance verification

— avoiding “performance bugs”

Solution: bounded liveness property checking

6 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Correctness Properties of Arbiters

= Mutual exclusion property

— At most N requests can be granted concurrently

= Liveness property
— Any request should eventually get a grant

— Can be used to prove arbitration logic is deadlock free

= Bounded liveness property
— Any request should get a grant within a bounded time
— Subsumes liveness property

¥ | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Related Work (liveness property checking)

= Large body of research on specifying liveness proper ties
using temporal logic and model checking

= Practical approaches to liveness checking by casting the
problem as a safety property checking

— Biere, Artho, and Schuppan, “Liveness Checking as Safety,”
FMICS’02, 2002.

— Baumgartner and Mony, “Scalable Liveness Checking via
Property-Preserving Transformations,” DATE 2009

= Formal notion of bounded fairness

— KTL and k-fairness: Dershowitz,Jayasimha,Park, “Bounded
Fairness”, LNCS 2772, 2003.

8 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Related Work (arbiter verification)

= Formal verification of high-level models of arbiter s, and RTL
designs containing arbiters using model checking to ols (VIS,
RuleBase, SixthSense).

— Wasaki, “A Formal Verification Case Study for IEEE-P.896 Bus
Arbiter Using A Model Checking Tool,” IJCSNS, 2007.

— Goel and Lee, “Formal Verification of an IBM CoreConnect
Processor Local Bus Arbiter Core,” DAC 2000.

— Le, Gloekler, and Baumgartner, “Formal Verification of a
Pervasive Interconnect Bus System in a High-Performance
Microprocessor,” DATE 2007.

= None of the previous approaches...

— verify random-priority based arbitration

— were not tackling performance aspects, nor reasoning about the
fairness scheme.

9 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Arbiters and priority functions

= Which request should get grant first?
= Fairness of arbitration policy is determined by a p riority function
= Several priority functions:
— Fixed: certain requests always have higher priority than others
— FIFO: requests are prioritized based on arrival time
— Round-robin : strict rotation of priority assignment
— Random : any request can have the highest priority at random

10 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Random priority arbitration

= Any request can become the highest priority request at random

= Eg:request igetsitsturnattime twhenrandom number r(t) = f(i)

Requests
Wy
Random
number » Arbiter
generator r(t)

A

Grants

= Goal: provide unbiased _ service to all _ requests

= Unfortunately random number generators have a large state space
— makes the verification problem challenging / hard

11 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Why random priority-based arbiters?

= Relatively less logic compared to
FIFO and round-robin arbiters

= Amortization of logic: one random
number generator catering several

local arbiters on chip W
Arbiter
rO(t)_> 0
e L
number > 1
generator r(0)
ra(t) “) *
. Arbiter
= Sometimes it is hard to find a 2
“good” arbitration policy... Wy

12 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Random numbers

= Main properties of random numbers

— Predictability

* Must be highly unpredictable
» No repeating sequences

— Frequency distribution

« Uniform frequency distribution: Each random number must have the
same frequency in an infinitely long sequence

= True random numbers are hard to generate =» pseudo-random
number generators

— LFSR (linear feedback shift register)

= Pseudo-random number generators typically focus on the
predictability and distribution properties of rando m numbers

13 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

“Desirable” properties of random-numbers

= “pad” vs. “good” random number generator characteristics

J.Ikeda,“Random number generator which can generate random number based on a uniform distribution,” US22159590A1

SINGLE COUNTER (THE EQUIVALENT OF 65000 CPS) TWO COUNTERS, BIT REPLACEMENT (THE EQUIVALENT OF 65000 CPS)
T e e L Heeennneees e oeeseooei
s -:1:‘. . E i 14 = ' ’ 1 1]
.- x -;':g:.\ i
o r El'u.':"'i. :-- | | , : §
300 —-""——'--"'%’:*'-‘-.":':-:'f}}h.‘:;;""'"' - I : "‘i‘ 300 N :"-'_.' :‘“,_._ '_};'_,_:"-'_.'_‘“.T_;f-'.'-';;.':‘: ‘_'-"E":'A'-"'.:"_"'.'."E‘_'-' '-'_.‘.'-'.' :T::
I ! a* 'I-’.'.*;‘_. A -
e i 2
L e Seta W ul
= a S . weme = L . : . ' . ! R ! . . 2
3 Teeme D 900 [ta st ettt T T et et e L
& 200 - “-";r.-m-'_"\‘\s\.'r':r ':‘l‘ “““““““]if " L] BT - L H ¥ :’o £ L > 5":“
e | e . L
*a ; :'.l. !::'.: l:. -: :
- i : Pt el i : : : : 5
100 fmsmssmesnmememsfusmsamn s cnefon “f'““".“":""‘ H 100 —---------- R LR EEE R EEEtE R ey
- H ! ; F : . . H ._
0 = 1 0 . 1] i r ll T
0 50 100 150 200 250 0 50 100 150 200 250
RANDOM NUMBER CODE RANDOM NUMBER CODE

= Different applications (communication, cryptography, games, arbitration)
requires different notions of randomness

= What property of random number generators is import ant for arbiters?

14 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Fairness property of random number sequence

= A “missing” random number in the sequence can
delay a request until it shows up

= Request-to-grant delay is determined by how long
the request needs to wait until the “missing”
random number arrives

.. 152142142525256314252521004631425256/214...

T T

t=0 ﬁeq“fistsl t =36
Random
number » Arbiter
generator rt)
Grants

15 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Fairness property of random number sequence

= A “missing” random number in the sequence can
delay a request until it shows up

= Request-to-grant delay is determined by how long
the request needs to wait until the “missing”
random number arrives

..7?2 142 14252525631425252100463142525632 14...

v
complete random sequence

16 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Complete Random Sequence

= A Complete Random Sequence (CRS) in a random number
sequence is a contiguous sequence of random numbers that has all
the possible unigue random numbers at least once.

17 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Complete Random Sequence

= A Complete Random Sequence (CRS) in a random number
sequence is a contiguous sequence of random numbers that has all
the possible unigue random numbers at least once.

— Shortest CRS has 2N numbers — exactly one copy of each
unique number

— Longest CRS may be infinitely long

— CRS may be used to characterize the fairness property of
random number sequence and the random number generator
(eg. LFSR)

18 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Complete Random Sequence

= A Complete Random Sequence (CRS) in a random number
sequence is a contiguous sequence of random numbers that has all
the possible unigue random numbers at least once.

— Shortest CRS has 2N numbers — exactly one copy of each
unique number

— Longest CRS may be infinitely long

— CRS may be used to characterize the fairness property of
random number sequence and the random number generator
(eg. LFSR)

= Bounded fairness property can be specified in terms of the length of
CRS (or the number of cycles needed to generate a CRS)

— Eg: if the max length of CRS is L, then any requests will be
granted within L cycles

= A request may be starved for multiple CRSes — a property of arbiter

19 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Bounded liveness In terms of CRS

= Request-to-grant delay is bounded by:
C * max(length of a CRS) , and
C * min(length of a CRS)

where C is the number of CRSes are needed for any
request to get grant

= |n order to satisfy bounded liveness property,
request-to-grant delay must be less than a constant, the
worst-case request-to-grant delay (a design specification).

20 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Checking for bounded liveness (1)

= Number of CRSes needed to get grantisa property of the
arbiter design

— Nondeterministic input can be used in lieu of the random number
generator logic

— | Reduces the complexity of FV testbench (no LFSR logic)

— Easy to obtain proofs or counter-examples

21 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Checking for bounded liveness (2)

= Number of CRSes needed to get grantisa property of the
arbiter design

— Nondeterministic input can be used in lieu of the random number
generator logic

— | Reduces the complexity of FV testbench (no LFSR logic)

— Easy to obtain proofs or counter-examples

= Max/min length of CRS is a property of the random number
generator logic

— this parameter can be independently measured

Reduces the complexity of FV testbench (no arbiter logic)

— Detect CRS in the sequences generated by LFSR logic

— lteratively determine longest and shortest CRS

22 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Checking for bounded liveness (3)

Requests
Random
number —~ > Arbiter
generator A
lRequest pending l l l
Grants

Fairness checker
logic

= Step 1: Determine request-to-grant delays in terms of CRSes
— Basic idea: prove that request cannot be starved longer than C CRSes

= Step 2: Determine the length of (or time taken to generate) a CRS
= Step 3: compute request-to-grant delays bounds in terms of clock cycles
— Request-to-grant delay = (largest value of C) x (length of a CRS in cycles)

23 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Detecting CRSes in random number seguences

Random N N
Number __, N to 2 —] 2" bit
Generator decoder | = |latch — CRS found
output
Reset |

= Set | th bit of the latch when the random number | is the
iInput of the decoder

= CRS found =1 when all 2N bits of the latch are set

24 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Step 1: Determining request-to-grant delays in CRS

Non-deterministic
input (in lieu of ___| Nto2" f—2%bit —"\ >kbit —{ Count=C
random number decoder | = |latch| = |/ counter| = Jcomparator
generator output)

Reset Reset

Request
pending DC
= Count the number CRSes while the request is pending

= Bounded liveness as an iterative safety property che ck:
— request_pending AND (number_of CRSes =C) == TRUE
— Find the largest value of C iteratively, where C < (2K — 1)
— Kk iterations (binary search for selecting values of C)

25 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Step 2: Determine bounds of the CRS length (1)

= Take random fixed length (L) samples of random number sequences
— A nondeterministic signal starts the sampling window

= Use a decision procedure to prove that the any sample of fixed

Basic idea:

length L contains exactly one CRS

= Vary the length of sampling window L

24%) | FMCAD 2009

Random start
window signal

window width (L)

clock

Fixed width
pulse
generator

random interval

[1

Sampling window
gating signal
(fixed width)

[]

<—fixed width sampling window (L)—

_ |

Ly

Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Step 2: Determine bounds of the CRS length (2)

Random Number N N,
Generator output :)— decoder Lf Lo :)— CRS found

_ . |7 TReset
Sampling window

gating signal

Logic for checking the fairness of random number ge nerator

= The smallest and largest values of L can be determined by iteratively
checking for “CRS found” is TRUE / FALSE

= Length of sampling window L is varied in each proof step

= For more accurate results, find length of C * CRSes instead of one CRS.

= A potential pitfall: some arbiters may not use the random numbers in
consecutive cycles. Must look for CRSes in the “sampled sequence” as
seen by the arbiter.

27 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Experimental evaluation

= Arbiter designs used as benchmarks are taken from a set
of industrial designs

—cache directory port arbitration logic

—command arbitration logic of an on-chip interconnection
network controller

= 3 types of FV testbenches for bounded fairness checking
—“Any”. Can any request be starved?
—“Multiple”. Can multiple requests be starved?
—“Bug”: an arbiter design with a bug

= Used a 2-bit counter for counting the number of CRSes in
all cases except in “bug” (larger counter)

28 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Experimental Setup

= IBM’s SixthSense (semi-) formal verification tool

— Transformation-based verification approach
= Machine: 1.65 GHz POWERS5+ processor, 384 GB memory
= Time out of 24 Hrs. for all experiments

= “Traditional” runs
— Included the both arbiter and LFSR logic in the FV testbench

— Used a 6 or 9-bit counter to check for request-to-grant delays:
* (count < max_request_to grant_delay) == TRUE

29 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Experimental results
Traditional : :
Design Testbench Type Problem Size Total Time | Peak Memory * Problem S|Z.e In AlG .
ANDs | Registers | (h:m:s) (GB) E:e(gges?jnta}[tlon aftde[jn}ltlal
Any 2049 395 24:00:00 6.2 Irie UCh|0|gI ar! elore
8to]l ARB_RC Multiple 3006 576 24:00:00 53 unroliing the design
Bug 2880 554 24:00:00 16.9 :
Any 726 478 34:00:00 76 = FV testbench consists of
4t01 ARB_SN Multiple 3303 632 23:45:00 25 DUV, driver, and checker
Any 3852 770 17:33:07 18.1
10to]PBARB Multiple 3855 770 24:00:00 5.2

= Number of CRSes: 1 -7
= Length of CRS: 10’s — 100’s of cycles
= 16-stage LFSR: 216 “random” states; many more state transitions...

30 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Experimental results

Traditional CRS-based
Design Testbench Type Problem Size Total Time | Peak Memory Problem Size Total Time | Peak Memory

ANDs | Registers (h:m:s) (GB) ANDs | Registers (h:m:s) (GB)
Any 2049 395 24:00:00 6.2 1738 333 0:0:27 0.071
8tolARB_RC Multiple 3006 576 24:00:00 53 2625 513 0:01:43 0.091
Bug 2880 554 24:00:00 16.9 2427 464 0:0:06 0.043
Any 2226 4238 24:00:00 7.6 1284 302 0:2:40 0.144
4tolARB_SN Multiple 3303 632 23:45:00 PR 1971 455 0:7:03 0.168
Any 3852 770 17:33:07 18.1 2133 394 0:18:53 0.02

10to| PBARB Multiple 3855 770 24:00:00 15.2 3453 682 1:23:40 i

= Number of CRSes: 1 -7
= Length of CRS: 10’s — 100’s of cycles
= 16-stage LFSR: 216 “random” states; many more state transitions...

= FV testbench for computing length of CRS (verification step 2)
— Problem size (approx): 3000 ANDs, 600 REGs
— Runtime: 1.2 hrs avg. (few Secs to 6+ hrs)

= CRS-based method significantly reduces the FV testb ench complexity
— Made the problem amenable for FV

31 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Other applications

= Accurate modeling of request-to-grant delays for
performance verification

= Tuning pseudo random number generators
— Selecting different set of tap points to reduce CRS length

— Avoiding “interferences” due to tap points derived from
same random number generator

32 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Provably fair random number generator

Random
number
generator
(eg. LFSR)

Requests

Fairness
checker and
correction logic

bounded fairness guarantees

33 | FMCAD 2009

. Arbiter

Grants

An “add-on logic” for any random number generator to provide

Basic idea: insert “missing” numbers to complete CRS in bounded time
A “byproduct” of formal verification of arbiter designs! ©

Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Summary

= Our method effectively decouples the fairness logic from the
actual arbitration logic, allowing checking the bou nded
liveness and fairness properties of each independent ly.

= Uses the notion of CRS to quantify the fairness pro perties of
pseudo-random number generators and arbiters

= Can be applied to the verification of RTL directly ensuring
correctness of the real logic, and does not require building
any specialized models.

— Used to verify arbiters in IBM microprocessor designs
— Detected a number of bugs and verified the fixes

= Can be used for proving deadlock-free operation of arbiters
as well as accurately computing request-to-grant de lays

34 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Thank you!

35 | FMCAD 2009 Krishnan Kailas

Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Randomness, Random number generators, ...

“Any one who considers arithmetical methods of
producing random digits is, of course, in a state o f
sin. For, as has been pointed out several times,

there is no such thing as a random number— there

are only methods to produce random numbers, and

a strict arithmetic procedure of course is not such

a method.”

— “Various techniques used in connection with random digits” by
John von Neumann in Monte Carlo Method (1951).

30 | FMCAD 2009 Krishnan Kailas

