
IBM Corporation 

November 17, 2009
Formal Methods in Computer Aided Design (FMCAD 2009), Austin, TX

© 2009 IBM Corporation

Formal Verification of Correctness and 
Performance of Random Priority-based Arbiters

Krishnan Kailas (IBM T J Watson Research Center, NY)
Viresh Paruthi (IBM Systems & Technology Division, TX)
Brian Monwai (University of Washington, Seattle)



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas2 FMCAD 2009

Outline

� Arbiters

� Correctness properties and performance

� Related work

� Random priority based arbiters

� Complete random sequences

� Verification method

� Results



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas3 FMCAD 2009

� Used for restricting access requests to shared reso urces 

– when there are more number of requests than the maximum 
number requests that can be satisfied concurrently.

� Eg: access to cache directory, shared bus, etc.

� Arbitration of large number of requests is sometime s done 
in multiple stages as reduction trees

Arbiters

Arbiter…requests … grants



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas4 FMCAD 2009

Correctness Properties of Arbiters

� Mutual exclusion property

– At most N requests can be granted concurrently

� Liveness property

– Any request should eventually get a grant

– Can be used to prove arbitration logic is deadlock free



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas5 FMCAD 2009

Correctness and Performance

� Proving liveness property is not sufficient

� Example: 

– Design specs: worst-case cache access latency = 100 cycles

– Cache latency = directory access time + cache array access time

– a cache directory access request will eventually get a grant after 
500 cycles 

– Satisfies the liveness property, but violates the design specification!

� Request-to-grant delay is an important design speci fication



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas6 FMCAD 2009

Correctness and Performance

� Request-to-grant delay is an important design speci fication

� Must prove that the arbiter satisfies the design sp ecifications

� Accurate request-to-grant delay bounds are crucial for

– timer models used for performance verification

– avoiding “performance bugs”

� Solution: bounded liveness property checking



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas7 FMCAD 2009

Correctness Properties of Arbiters

� Mutual exclusion property

– At most N requests can be granted concurrently

� Liveness property

– Any request should eventually get a grant

– Can be used to prove arbitration logic is deadlock free

� Bounded liveness property

– Any request should get a grant within a bounded time

– Subsumes liveness property



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas8 FMCAD 2009

Related Work (liveness property checking)

� Large body of research on specifying liveness proper ties 
using temporal logic and model checking

� Practical approaches to liveness checking by casting  the 
problem as a safety property checking

– Biere, Artho, and Schuppan, “Liveness Checking as Safety,”
FMICS’02, 2002.

– Baumgartner and Mony, “Scalable Liveness Checking via 
Property-Preserving Transformations,” DATE 2009

� Formal notion of bounded fairness

– kTL and k-fairness: Dershowitz,Jayasimha,Park, “Bounded 
Fairness”, LNCS 2772, 2003.



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas9 FMCAD 2009

Related Work (arbiter verification)

� Formal verification of high-level models of arbiter s, and RTL 
designs containing arbiters using model checking to ols (VIS, 
RuleBase, SixthSense). 

– Wasaki, “A Formal Verification Case Study for IEEE-P.896 Bus 
Arbiter Using A Model Checking Tool,” IJCSNS, 2007.

– Goel and Lee, “Formal Verification of an IBM CoreConnect
Processor Local Bus Arbiter Core,” DAC 2000.

– Le, Gloekler, and Baumgartner, “Formal Verification of a 
Pervasive Interconnect Bus System in a High-Performance 
Microprocessor,” DATE 2007.

� None of the previous approaches…

– verify random-priority based arbitration
– were not tackling performance aspects, nor reasoning about the 

fairness scheme.



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas10 FMCAD 2009

� Which request should get grant first?

� Fairness of arbitration policy is determined by a p riority function

� Several priority functions: 

– Fixed : certain requests always have higher priority than others

– FIFO: requests are prioritized based on arrival time

– Round-robin : strict rotation of priority assignment

– Random : any request can have the highest priority at random

Arbiters and priority functions



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas11 FMCAD 2009

Random priority arbitration

� Any request can become the highest priority request  at random

� Eg: request i gets its turn at time t when random number r(t) = f(i)

� Goal: provide unbiased service to all requests

� Unfortunately random number generators have a large  state space

– makes the verification problem challenging / hard 



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas12 FMCAD 2009

Why random priority-based arbiters?

� Relatively less logic compared to 
FIFO and round-robin arbiters

� Amortization of logic: one random 
number generator catering several 
local arbiters on chip

� Sometimes it is hard to find a 
“good” arbitration policy…



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas13 FMCAD 2009

Random numbers

� Main properties of random numbers

– Predictability

• Must be highly unpredictable

• No repeating sequences

– Frequency distribution

• Uniform frequency distribution: Each random number must have the
same frequency in an infinitely long sequence

� True random numbers are hard to generate ���� pseudo-random 
number generators

– LFSR (linear feedback shift register)

� Pseudo-random number generators typically focus on the 
predictability and distribution properties of rando m numbers



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas14 FMCAD 2009

“Desirable” properties of random-numbers

� “bad” vs. “good” random number generator characteristics
J.Ikeda,“Random number generator which can generate random number based on a uniform distribution,” US22159590A1 

� Different applications (communication, cryptography, games, arbitration) 
requires different notions of randomness

� What property of random number generators is import ant for arbiters?



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas15 FMCAD 2009

� A “missing” random number in the sequence can 
delay a request until it shows up

� Request-to-grant delay is determined by how long 
the request needs to wait until the “missing”
random number arrives

..7521421425252563142525210046314252567214…

Fairness property of random number sequence

t = 0 t = 36



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas16 FMCAD 2009

� A “missing” random number in the sequence can 
delay a request until it shows up

� Request-to-grant delay is determined by how long 
the request needs to wait until the “missing”
random number arrives

..7521421425252563142525210046314252567214…

complete random sequence

Fairness property of random number sequence



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas17 FMCAD 2009

Complete Random Sequence

� A Complete Random Sequence (CRS) in a random number 
sequence is a contiguous sequence of random numbers that has all
the possible unique random numbers at least once.
– Shortest CRS has 2N numbers – exactly one copy of each 

unique number
– Longest CRS may be infinitely long

– CRS may be used to characterize the fairness property of 
random number sequence and the random number generator 
(eg. LFSR)

� Bounded fairness property can be specified in terms of the length of 
CRS (or the number of cycles needed to generate a CRS)
– Eg: if the max length of CRS is N, then any cache directory 

access requests will be granted within N cycles

� A request may be starved for multiple CRSes



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas18 FMCAD 2009

Complete Random Sequence

� A Complete Random Sequence (CRS) in a random number 
sequence is a contiguous sequence of random numbers that has all
the possible unique random numbers at least once.
– Shortest CRS has 2N numbers – exactly one copy of each 

unique number
– Longest CRS may be infinitely long

– CRS may be used to characterize the fairness property of 
random number sequence and the random number generator 
(eg. LFSR)

� Bounded fairness property can be specified in terms of the length of 
CRS (or the number of cycles needed to generate a CRS)
– Eg: if the max length of CRS is N, then any cache directory 

access requests will be granted within N cycles

� A request may be starved for multiple CRSes



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas19 FMCAD 2009

Complete Random Sequence

� A Complete Random Sequence (CRS) in a random number 
sequence is a contiguous sequence of random numbers that has all
the possible unique random numbers at least once.
– Shortest CRS has 2N numbers – exactly one copy of each 

unique number
– Longest CRS may be infinitely long

– CRS may be used to characterize the fairness property of 
random number sequence and the random number generator 
(eg. LFSR)

� Bounded fairness property can be specified in terms of the length of 
CRS (or the number of cycles needed to generate a CRS)
– Eg: if the max length of CRS is L, then any requests will be 

granted within L cycles

� A request may be starved for multiple CRSes – a property of arbiter



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas20 FMCAD 2009

Bounded liveness in terms of CRS

� Request-to-grant delay is bounded by:

C * max(length of a CRS) , and

C * min(length of a CRS)

where C is the number of CRSes are needed for any 
request to get grant

� In order to satisfy bounded liveness property,       
request-to-grant delay must be less than a constant, the 
worst-case request-to-grant delay (a design specification).



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas21 FMCAD 2009

Checking for bounded liveness (1)

� Number of CRSes needed to get grant is a property of the 
arbiter design

– Nondeterministic input can be used in lieu of the random number 
generator logic

– Reduces the complexity of FV testbench (no LFSR logic)

– Easy to obtain proofs or counter-examples



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas22 FMCAD 2009

Checking for bounded liveness (2)

� Number of CRSes needed to get grant is a property of the 
arbiter design

– Nondeterministic input can be used in lieu of the random number 
generator logic

– Reduces the complexity of FV testbench (no LFSR logic)

– Easy to obtain proofs or counter-examples

� Max/min length of CRS is a property of the random number 
generator logic

– this parameter can be independently measured

• Reduces the complexity of FV testbench (no arbiter logic)
– Detect CRS in the sequences generated by LFSR logic

– Iteratively determine longest and shortest CRS



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas23 FMCAD 2009

Checking for bounded liveness (3)

� Step 1 : Determine request-to-grant delays in terms of CRSes
– Basic idea: prove that request cannot be starved longer than C CRSes

� Step 2 : Determine the length of (or time taken to generate) a CRS

� Step 3 : compute request-to-grant delays bounds in terms of clock cycles

– Request-to-grant delay = (largest value of C) x (length of a CRS in cycles)



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas24 FMCAD 2009

Detecting CRSes in random number sequences

� Set j th bit of the latch when the random number j is the 
input of the decoder

� CRS found = 1 when all 2N bits of the latch are set
..
.

..
.



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas25 FMCAD 2009

Step 1: Determining request-to-grant delays in CRS

� Count the number CRSes while the request is pending

� Bounded liveness as an iterative safety property che ck:

– request_pending AND (number_of_CRSes = C)  == TRUE

– Find the largest value of C iteratively, where C < (2k – 1)

– k iterations (binary search for selecting values of C)

..
.

..
.

..
.



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas26 FMCAD 2009

Step 2: Determine bounds of the CRS length (1)

� Basic idea: 

� Take random fixed length (L) samples of random number sequences

– A nondeterministic signal starts the sampling window

� Use a decision procedure to prove that the any sample of fixed 
length L contains exactly one CRS

� Vary the length of sampling window L



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas27 FMCAD 2009

Step 2: Determine bounds of the CRS length (2)

N to 2
N

decoder
2
N
 bit 

latch

Random Number 

Generator output

Sampling window 

gating signal

Reset

CRS found

� The smallest and largest values of L can be determined by iteratively 
checking for “CRS found” is TRUE / FALSE

� Length of sampling window L is varied in each proof step

� For more accurate results, find length of C * CRSes instead of one CRS.

� A potential pitfall: some arbiters may not use the random numbers in 
consecutive cycles.  Must look for CRSes in the “sampled sequence” as 
seen by the arbiter.

Logic for checking the fairness of random number ge nerator



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas28 FMCAD 2009

Experimental evaluation

� Arbiter designs used as benchmarks are taken from a set 
of industrial designs

– cache directory port arbitration logic

– command arbitration logic of an on-chip interconnection 
network controller

� 3 types of FV testbenches for bounded fairness checking

– “Any”: Can any request be starved?

– “Multiple”: Can multiple requests be starved?

– “Bug”: an arbiter design with a bug

� Used a 2-bit counter for counting the number of CRSes in 
all cases except in “bug” (larger counter)



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas29 FMCAD 2009

Experimental Setup

� IBM’s SixthSense (semi-) formal verification tool

– Transformation-based verification approach

� Machine: 1.65 GHz POWER5+ processor, 384 GB memory

� Time out of 24 Hrs. for all experiments

� “Traditional” runs

– Included the both arbiter and LFSR logic in the FV testbench

– Used a 6 or 9-bit counter to check for request-to-grant delays:

• (count < max_request_to_grant_delay) == TRUE



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas30 FMCAD 2009

Experimental results

� Number of CRSes: 1 – 7

� Length of CRS: 10’s – 100’s of cycles

� 16-stage LFSR: 216 “random” states; many more state transitions…

� FV testbench for computing length of CRS (verification step 2)
– Problem size (approx): 3000 ANDs, 600 REGs
– Run time: 1.2 hrs avg. (few Secs to 6+ hrs)

� Significantly reduces the FV testbench complexity
– Made the problem amenable for verification using FV

� Problem size in AIG 
representation after initial 
COI reduction and before 
unrolling the design

� FV testbench consists of 
DUV, driver, and checker



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas31 FMCAD 2009

Experimental results

� Number of CRSes: 1 – 7

� Length of CRS: 10’s – 100’s of cycles

� 16-stage LFSR: 216 “random” states; many more state transitions…

� FV testbench for computing length of CRS (verification step 2)
– Problem size (approx): 3000 ANDs, 600 REGs
– Run time: 1.2 hrs avg. (few Secs to 6+ hrs)

� CRS-based method significantly reduces the FV testb ench complexity
– Made the problem amenable for FV



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas32 FMCAD 2009

Other applications

� Accurate modeling of request-to-grant delays for 
performance verification

� Tuning pseudo random number generators

– Selecting different set of tap points to reduce CRS length

– Avoiding “interferences” due to tap points derived from 
same random number generator



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas33 FMCAD 2009

Provably fair random number generator

� An “add-on logic” for any random number generator to provide 
bounded fairness guarantees

� Basic idea: insert “missing” numbers to complete CRS in bounded time

� A “byproduct” of formal verification of arbiter designs! ☺

Random 

number 

generator

(eg. LFSR)
Arbiter

. . .

. . .

Requests

Grants
Fairness 

checker and 

correction logic



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas34 FMCAD 2009

Summary

� Our method effectively decouples the fairness logic  from the 
actual arbitration logic, allowing checking the bou nded 
liveness and fairness properties of each independent ly.

� Uses the notion of CRS to quantify the fairness pro perties of 
pseudo-random number generators and arbiters

� Can be applied to the verification of RTL directly ensuring 
correctness of the real logic, and does not require  building 
any specialized models.

– Used to verify arbiters in IBM microprocessor designs

– Detected a number of bugs and verified the fixes

� Can be used for proving deadlock-free operation of arbiters 
as well as accurately computing request-to-grant de lays



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas35 FMCAD 2009

Thank you!



Formal Verification of Correctness and Performance of Random Priority-based Arbiters

Krishnan Kailas36 FMCAD 2009

Randomness, Random number generators, …

� “Any one who considers arithmetical methods of 
producing random digits is, of course, in a state o f 
sin.  For, as has been pointed out several times, 
there is no such thing as a random number– there 
are only methods to produce random numbers, and 
a strict arithmetic procedure of course is not such  
a method.”
– “Various techniques used in connection with random digits” by 

John von Neumann in Monte Carlo Method (1951).


