Accelerating MUS Extraction with Recursive Model Rotation

Anton Belov and Joao Marques-Silva

Complex and Adaptive Systems Laboratory
School of Computer Science and Informatics
University College Dublin, Ireland

FMCAD 2011
October 31, 2011
Austin, TX, USA
Minimal Unsatisfiability

- F is *minimally unsatisfiable* ($F \in MU$), if $F \in UNSAT$ and for any $C \in F$, $F \setminus C \in SAT$.

Example

$\{C_1, C_2, C_3, C_4\} \in MU$.

A. Belov, J. Marques-Silva (UCD, Dublin)
Minimal Unsatisfiability

- \(F \) is **minimally unsatisfiable** \((F \in \text{MU})\), if \(F \in \text{UNSAT} \) and for any \(C \in F \), \(F \setminus C \in \text{SAT} \).

- \(F' \) is **minimally unsatisfiable subformula (MUS)** of \(F \) \((F' \in \text{MUS}(F))\) if \(F' \subseteq F \) and \(F' \in \text{MU} \).
Minimal Unsatisfiability

- F is **minimally unsatisfiable** ($F \in \text{MU}$), if $F \in \text{UNSAT}$ and for any $C \in F$, $F \setminus C \in \text{SAT}$.

- F' is **minimally unsatisfiable subformula (MUS)** of F ($F' \in \text{MUS}(F)$) if $F' \subseteq F$ and $F' \in \text{MU}$.

Example

$$C_1 = x \lor y \quad C_3 = x \lor \neg y$$

$$C_2 = \neg x \lor y \quad C_4 = \neg x \lor \neg y$$

- $\{C_1, C_2, C_3, C_4\} \in \text{MU}$.
Introduction

Minimal Unsatisfiability

- F is minimally unsatisfiable ($F \in \text{MU}$), if $F \in \text{UNSAT}$ and for any $C \in F$, $F \setminus C \in \text{SAT}$.

- F' is minimally unsatisfiable subformula (MUS) of F ($F' \in \text{MUS}(F)$) if $F' \subseteq F$ and $F' \in \text{MU}$.

Example

\[
\begin{align*}
C_1 &= x \lor y & C_3 &= x \lor \neg y & C_5 &= y \lor z \\
C_2 &= \neg x \lor y & C_4 &= \neg x \lor \neg y & C_6 &= y \lor \neg z
\end{align*}
\]

- \{ C_1, C_2, C_3, C_4 \} $\in \text{MU}$.
- $F = \{ C_1, \ldots, C_6 \} \in \text{UNSAT}$, but $\notin \text{MU}$.

A. Belov, J. Marques-Silva (UCD, Dublin)
Minimal Unsatisfiability

- F is \textit{minimally unsatisfiable} ($F \in \text{MU}$), if $F \in \text{UNSAT}$ and for any $C \in F$, $F \setminus C \in \text{SAT}$.

- F' is \textit{minimally unsatisfiable subformula (MUS)} of F ($F' \in \text{MUS}(F)$) if $F' \subseteq F$ and $F' \in \text{MU}$.

Example

\[
\begin{align*}
C_1 &= x \lor y & C_3 &= x \lor \neg y \\
C_2 &= \neg x \lor y & C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

- \{ C_1, C_2, C_3, C_4 \} $\in \text{MU}$.
- \{ C_1, C_2, C_3, C_4 \} $\in \text{MUS}(F)$.
Minimal Unsatisfiability

- F is \textit{minimally unsatisfiable} ($F \in \text{MU}$), if $F \in \text{UNSAT}$ and for any $C \in F$, $F \setminus C \in \text{SAT}$.

- F' is \textit{minimally unsatisfiable subformula (MUS)} of F ($F' \in \text{MUS}(F)$) if $F' \subseteq F$ and $F' \in \text{MU}$.

Example

\[
\begin{align*}
C_1 &= x \lor y \\
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

- $\{C_1, C_2, C_3, C_4\} \in \text{MU}$.
- $\{C_3, C_4, C_5, C_6\} \in \text{MUS}(F)$.

A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 2 / 16
Minimal Unsatisfiability

- F is **minimally unsatisfiable** ($F \in MU$), if $F \in UNSAT$ and for any $C \in F$, $F \setminus C \in SAT$.

- F' is **minimally unsatisfiable subformula (MUS)** of F ($F' \in MUS(F)$) if $F' \subseteq F$ and $F' \in MU$.

Applications of MUSes (in formal methods)

- Abstraction refinement frameworks.
- Decision procedures.
- Design debugging.
Computation of MUSes

- Based on iterative calls to SAT solver (not the only way, but currently the most effective): for each $C \in F$
 - if $F \setminus \{C\} \in \text{UNSAT}$, then there is an MUS of F that does not contain C. Remove C from F.
 - if $F \setminus \{C\} \in \text{SAT}$ (C is necessary for F), then C is in all MUSes of F. Keep C.

SAT solving is the main bottleneck of the computation, hence reduction in the number of SAT solver calls is the key to efficiency.

- On UNSAT outcomes – clause set refinement: remove C and all clauses outside the unsatisfiable core of $F \setminus \{C\}$.
 - [Dershowitz et al’06]

- On SAT outcomes – model rotation: detect additional necessary clauses without SAT solver calls.
 - [Marques-Silva&Lynce’11]

Recursive model rotation (RMR) – very effective improvement of model rotation.
- [this paper]
Computation of MUSes

- Based on iterative calls to SAT solver (not the only way, but currently the most effective): for each $C \in F$
 - if $F \setminus \{C\} \in$ UNSAT, then there is an MUS of F that does not contain $C \rightarrow$ remove C from F.
 - if $F \setminus \{C\} \in$ SAT (C is necessary for F), then C is in all MUSes of F \rightarrow$ keep C.

- SAT solving is the main bottleneck of the computation, hence reduction in the number of SAT solver calls is the key to efficiency.
Computation of MUSes

- Based on iterative calls to SAT solver (not the only way, but currently the most effective): for each $C \in F$
 - if $F \setminus \{C\} \in \text{UNSAT}$, then there is an MUS of F that does not contain C → remove C from F.
 - if $F \setminus \{C\} \in \text{SAT}$ (C is necessary for F), then C is in all MUSes of F → keep C.

- SAT solving is the main bottleneck of the computation, hence reduction in the number of SAT solver calls is the key to efficiency.

- On UNSAT outcomes – clause set refinement: remove C and all clauses outside the unsatisfiable core of $F \setminus \{C\}$. [Dershowitz et al’06]

Recursive model rotation (RMR) – very effective improvement of model rotation. [this paper]
Computation of MUSes

- Based on iterative calls to SAT solver (not the only way, but currently the most effective): for each $C \in F$
 - if $F \setminus \{C\} \in \text{UNSAT}$, then there is an MUS of F that does not contain $C \rightarrow$ remove C from F.
 - if $F \setminus \{C\} \in \text{SAT}$ (C is necessary for F), then C is in all MUSes of $F \rightarrow$ keep C.

- SAT solving is the main bottleneck of the computation, hence reduction in the number of SAT solver calls is the key to efficiency.

- On UNSAT outcomes – clause set refinement: remove C and all clauses outside the unsatisfiable core of $F \setminus \{C\}$. [Dershowitz et al’06]

 Recursive model rotation (RMR) – very effective improvement of model rotation. [this paper]
Impact of RMR

- 500 benchmarks submitted to MUS track of SAT Competition 2011.
- Time limit 1200 sec, memory limit 4 GB.

MUS computation without RMR (x-axis) vs with RMR (y-axis)
 - Left: number of SAT solver calls (on instances solved in both cases).
Impact of RMR

- 500 benchmarks submitted to MUS track of SAT Competition 2011.
- Time limit 1200 sec, memory limit 4 GB.

- MUS computation without RMR (x-axis) vs with RMR (y-axis)
 - Left: number of SAT solver calls (on instances solved in both cases).
 - Right: CPU time (sec).
Computation of MUSes

Use SAT solver to identify necessary (or, transition) clauses

- $C \in F$ is necessary for F, if $F \in \text{UNSAT}$ and $F \setminus \{C\} \in \text{SAT}$.
Computation of MUSes

Use SAT solver to identify necessary (or, transition) clauses

- $C \in F$ is necessary for F, if $F \in \text{UNSAT}$ and $F \setminus \{C\} \in \text{SAT}$.
- $F \in \text{MU}$ iff every clause $C \in F$ is necessary for F.

Deletion-based MUS Computation

Input: F — an unsatisfiable CNF formula

$M \leftarrow F$

// Inv: M is a superset of some MUS of F

foreach $C \in F$ do

if $M \setminus \{C\} \in \text{UNSAT}$ then

// is C necessary for M?

// no - delete it

$M \leftarrow M \setminus \{C\}$

// yes - keep it

return M

// Every $C \in M$ is necessary for M.
Computation of MUSes

Use SAT solver to identify necessary (or, transition) clauses

- $C \in F$ is necessary for F, if $F \in$ UNSAT and $F \setminus \{C\} \in$ SAT.
- $F \in$ MU iff every clause $C \in F$ is necessary for F.
- If C is necessary for F then C is necessary for every unsatisfiable subset of F.

Deletion-based MUS Computation

Input: F — an unsatisfiable CNF formula

```
M ← F // Inv: M is a superset of some MUS of F
foreach C ∈ F do
  if M \{C\} ∈ UNSAT then
    // is C necessary for M? no - delete it
    M ← M \{C\} // yes - keep it
return M // Every C ∈ M is necessary for M
```
Computation of MUSes

Use SAT solver to identify necessary (or, transition) clauses

▶ $C \in F$ is necessary for F, if $F \in \text{UNSAT}$ and $F \setminus \{C\} \in \text{SAT}$.
▶ $F \in \text{MU}$ iff every clause $C \in F$ is necessary for F.
▶ If C is necessary for F then C is necessary for every unsatisfiable subset of F.

Deletion-based MUS Computation

Input: F — an unsatisfiable CNF formula

$M \leftarrow F$ // Inv: M is a superset of some MUS of F

foreach $C \in F$ do

if $M \setminus \{C\} \in \text{UNSAT}$ then // is C necessary for M?

// no - delete it

$M \leftarrow M \setminus \{C\}$

// yes - keep it

return M // Every $C \in M$ is necessary for M
Example

\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_1 &= x \lor y \\
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M = F \in \text{UNSAT} \)
Example

\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_1 &= x \lor y \\
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M = F \in \text{UNSAT} \)

\(M \setminus \{ C_1 \} \in \text{UNSAT}, \) hence \(C_1 \) is not necessary
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[C_1 = x \lor y \]
\[C_2 = \neg x \lor y \]
\[C_3 = x \lor \neg y \]
\[C_4 = \neg x \lor \neg y \]
\[C_5 = y \lor z \]
\[C_6 = y \lor \neg z \]

\[M = F \in \text{UNSAT} \]
\[M \setminus \{ C_1 \} \in \text{UNSAT}, \text{ hence } C_1 \text{ is not necessary } \rightarrow M = M \setminus \{ C_1 \} \]
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[C_3 = x \lor \neg y \quad C_5 = y \lor z \]

\[C_2 = \neg x \lor y \quad C_4 = \neg x \lor \neg y \quad C_6 = y \lor \neg z \]

\(M = F \in \text{UNSAT} \)

\(M \setminus \{ C_1 \} \in \text{UNSAT}, \) hence \(C_1 \) is not necessary \(\rightarrow M = M \setminus \{ C_1 \} \)

\(M \setminus \{ C_3 \} \in \text{SAT}, \) hence \(C_3 \) is necessary
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_1 &= \neg x \lor y \\
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M = F \in \text{UNSAT} \)

\(M \setminus \{ C_1 \} \in \text{UNSAT}, \) hence \(C_1 \) is not necessary \(\rightarrow M = M \setminus \{ C_1 \} \)

\(M \setminus \{ C_3 \} \in \text{SAT}, \) hence \(C_3 \) is necessary \(\rightarrow \) keep \(C_3 \)
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[C_1 = x \lor \neg y \quad \quad C_5 = y \lor z \]
\[C_2 = \neg x \lor y \quad \quad C_4 = \neg x \lor \neg y \quad \quad C_6 = y \lor \neg z \]

\(M = F \in \text{UNSAT} \)

\(M \setminus \{ C_1 \} \in \text{UNSAT} \), hence \(C_1 \) is not necessary \(\rightarrow M = M \setminus \{ C_1 \} \)

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary \(\rightarrow \) keep \(C_3 \)

\(M \setminus \{ C_5 \} \in \text{SAT} \), hence \(C_5 \) is necessary
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_5 &= y \lor z \\
C_2 &= \neg x \lor y \\
C_4 &= \neg x \lor \neg y \\
C_6 &= y \lor \neg z
\end{align*}
\]

\[M = F \in \text{UNSAT} \]

\[M \setminus \{ C_1 \} \in \text{UNSAT}, \text{ hence } C_1 \text{ is not necessary } \rightarrow M = M \setminus \{ C_1 \} \]

\[M \setminus \{ C_3 \} \in \text{SAT}, \text{ hence } C_3 \text{ is necessary } \rightarrow \text{keep } C_3 \]

\[M \setminus \{ C_5 \} \in \text{SAT}, \text{ hence } C_5 \text{ is necessary } \rightarrow \text{keep } C_5 \]
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M = F \in \text{UNSAT} \)

\(M \setminus \{ C_1 \} \in \text{UNSAT} \), hence \(C_1 \) is \underline{not necessary} \(\rightarrow M = M \setminus \{ C_1 \} \)

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is \underline{necessary} \(\rightarrow \) keep \(C_3 \)

\(M \setminus \{ C_5 \} \in \text{SAT} \), hence \(C_5 \) is \underline{necessary} \(\rightarrow \) keep \(C_5 \)

\(M \setminus \{ C_2 \} \in \text{UNSAT} \), hence \(C_2 \) is \underline{not necessary}
Example

\[F = \{C_1, \ldots, C_6\} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[
C_3 = x \lor \neg y \\
C_5 = y \lor z
\]

\[
C_4 = \neg x \lor \neg y \\
C_6 = y \lor \neg z
\]

\(M = F \in \text{UNSAT} \)

\(M \setminus \{C_1\} \in \text{UNSAT}, \text{ hence } C_1 \text{ is not necessary } \rightarrow M = M \setminus \{C_1\} \)

\(M \setminus \{C_3\} \in \text{SAT}, \text{ hence } C_3 \text{ is necessary } \rightarrow \text{ keep } C_3 \)

\(M \setminus \{C_5\} \in \text{SAT}, \text{ hence } C_5 \text{ is necessary } \rightarrow \text{ keep } C_5 \)

\(M \setminus \{C_2\} \in \text{UNSAT}, \text{ hence } C_2 \text{ is not necessary } \rightarrow M = M \setminus \{C_2\} \)
Example

\[F = \{C_1, \ldots, C_6\} \]

\[M (an \ overapproximation\ of\ some\ \text{MUS} \ of\ F): \]

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_5 &= y \lor z \\
C_4 &= \neg x \lor \neg y \\
C_6 &= y \lor \neg z
\end{align*}
\]

\[M = F \in \text{UNSAT} \]

\[M \setminus \{C_1\} \in \text{UNSAT}, \text{ hence } C_1 \text{ is not necessary } \rightarrow M = M \setminus \{C_1\} \]

\[M \setminus \{C_3\} \in \text{SAT}, \text{ hence } C_3 \text{ is necessary } \rightarrow \text{keep } C_3 \]

\[M \setminus \{C_5\} \in \text{SAT}, \text{ hence } C_5 \text{ is necessary } \rightarrow \text{keep } C_5 \]

\[M \setminus \{C_2\} \in \text{UNSAT}, \text{ hence } C_2 \text{ is not necessary } \rightarrow M = M \setminus \{C_2\} \]

\[M \setminus \{C_4\} \in \text{SAT}, \text{ hence } C_4 \text{ is necessary} \]
\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M = F \in \text{UNSAT} \)

\(M \setminus \{ C_1 \} \in \text{UNSAT} \), hence \(C_1 \) is not necessary \(\rightarrow M = M \setminus \{ C_1 \} \)

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary \(\rightarrow \) keep \(C_3 \)

\(M \setminus \{ C_5 \} \in \text{SAT} \), hence \(C_5 \) is necessary \(\rightarrow \) keep \(C_5 \)

\(M \setminus \{ C_2 \} \in \text{UNSAT} \), hence \(C_2 \) is not necessary \(\rightarrow M = M \setminus \{ C_2 \} \)

\(M \setminus \{ C_4 \} \in \text{SAT} \), hence \(C_4 \) is necessary \(\rightarrow \) keep \(C_4 \)

Each clause in \(F \setminus M \) costs one SAT solver call.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\[M = F \in \text{UNSAT} \]
\[M \setminus \{ C_1 \} \in \text{UNSAT}, \text{ hence } C_1 \text{ is not necessary } \rightarrow M = M \setminus \{ C_1 \} \]
\[M \setminus \{ C_3 \} \in \text{SAT}, \text{ hence } C_3 \text{ is necessary } \rightarrow \text{ keep } C_3 \]
\[M \setminus \{ C_5 \} \in \text{SAT}, \text{ hence } C_5 \text{ is necessary } \rightarrow \text{ keep } C_5 \]
\[M \setminus \{ C_2 \} \in \text{UNSAT}, \text{ hence } C_2 \text{ is not necessary } \rightarrow M = M \setminus \{ C_2 \} \]
\[M \setminus \{ C_4 \} \in \text{SAT}, \text{ hence } C_4 \text{ is necessary } \rightarrow \text{ keep } C_4 \]
\[M \setminus \{ C_6 \} \in \text{SAT}, \text{ hence } C_6 \text{ is necessary} \]
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[
C_3 = x \lor \lnot y \\
C_4 = \lnot x \lor \lnot y \\
C_5 = y \lor z \\
C_6 = y \lor \lnot z
\]

\(M = F \in \text{UNSAT} \)

\(M \setminus \{ C_1 \} \in \text{UNSAT} \), hence \(C_1 \) is not necessary \(\rightarrow M = M \setminus \{ C_1 \} \)

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary \(\rightarrow \) keep \(C_3 \)

\(M \setminus \{ C_5 \} \in \text{SAT} \), hence \(C_5 \) is necessary \(\rightarrow \) keep \(C_5 \)

\(M \setminus \{ C_2 \} \in \text{UNSAT} \), hence \(C_2 \) is not necessary \(\rightarrow M = M \setminus \{ C_2 \} \)

\(M \setminus \{ C_4 \} \in \text{SAT} \), hence \(C_4 \) is necessary \(\rightarrow \) keep \(C_4 \)

\(M \setminus \{ C_6 \} \in \text{SAT} \), hence \(C_6 \) is necessary \(\rightarrow \) keep \(C_6 \)
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M = \{ C_3, C_4, C_5, C_6 \} \) is an MUS of \(F \).
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y & C_5 &= y \lor z \\
C_4 &= \neg x \lor \neg y & C_6 &= y \lor \neg z
\end{align*}
\]

\(M = \{ C_3, C_4, C_5, C_6 \} \) is an MUS of \(F \).

- Each clause in \(F \setminus M \) costs one SAT solver call.
Example

\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M = \{ C_3, C_4, C_5, C_6 \} \) is an MUS of \(F \).

- Each clause in \(F \setminus M \) costs \(\leq 1 \) SAT solver call – clause set refinement.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\[M \] (an overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\[M = \{ C_3, C_4, C_5, C_6 \} \] is an MUS of \(F \).

- Each clause in \(F \setminus M \) costs \(\leq 1 \) SAT solver call – clause set refinement.
- Each clause in \(M \) costs one SAT solver call.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (an overapproximation of some MUS of \(F \)):

\[C_3 = x \lor \neg y \quad C_5 = y \lor z \]
\[C_4 = \neg x \lor \neg y \quad C_6 = y \lor \neg z \]

\(M = \{ C_3, C_4, C_5, C_6 \} \) is an MUS of \(F \).

▶ Each clause in \(F \setminus M \) costs \(\leq 1 \) SAT solver call – clause set refinement.

▶ Each clause in \(M \) costs \(\leq 1 \) SAT solver call – model rotation.
Fact: C is necessary for F iff $F \in \text{UNSAT}$ and $\exists \tau$ such that $\text{Unsat}(F, \tau) = \{C\}$. τ is a witness (of necessity) for C.
Fact: C is necessary for F iff $F \in \text{UNSAT}$ and $\exists \tau$ such that $\text{Unsat}(F, \tau) = \{C\}$. τ is a witness (of necessity) for C.

During MUS extraction: when $M \setminus \{C\} \in \text{SAT}$, the assignment τ found by the SAT solver is a witness for C.

Fact: C is necessary for F iff $F \in \text{UNSAT}$ and $\exists \tau$ such that $\text{Unsat}(F, \tau) = \{C\}$. τ is a witness (of necessity) for C.

During MUS extraction: when $M \setminus \{C\} \in \text{SAT}$, the assignment τ found by the SAT solver is a witness for C.

Model rotation: given a witness τ for C, try to modify it into a witness τ' for another clause C'. How?
Example

\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z \\
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.
Example

\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z \\
C_2 &= \neg x \lor y \\
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT}, \text{ hence } C_3 \text{ is necessary.} \)

SAT solver returns \(\tau = \{ \neg x, y, z \} \)
Example

Let $F = \{ C_1, \ldots, C_6 \}$

M (the overapproximation of some MUS of F):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

$M \setminus \{ C_3 \} \in \text{SAT}$, hence C_3 is necessary.

SAT solver returns $\tau = \{ \neg x, y, z \}$, $\text{Unsat}(M, \tau) = \{ C_3 \}$.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \)
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z \\
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

\(\text{SAT solver returns} \ \tau = \{ \neg x, y, z \}, \ \text{Unsat}(M, \tau) = \{ C_3 \} \).

\(\text{Flip } x \ \text{in } \tau : \ \tau' = \{ x, y, z \}, \ \text{Unsat}(M, \tau') = \{ C_4 \} \)
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_5 &= y \lor z \\
C_2 &= \neg x \lor y \\
C_4 &= \neg x \lor \neg y \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(x \) in \(\tau' \): back to \(\tau \). \(C_3 \) is already known to be necessary.
Example

\[F = \{C_1, \ldots, C_6\} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[C_2 = \neg x \lor y \quad C_3 = x \lor \neg y \quad C_5 = y \lor z \]

\[C_4 = \neg x \lor \neg y \quad C_6 = y \lor \neg z \]

\(M \setminus \{C_3\} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{\neg x, y, z\} \), \(\text{Unsat}(M, \tau) = \{C_3\} \).

Flip \(x \) in \(\tau \): \(\tau' = \{x, y, z\} \), \(\text{Unsat}(M, \tau') = \{C_4\} \rightarrow C_4 \) is necessary.

Flip \(x \) in \(\tau' \): back to \(\tau \). \(C_3 \) is already known to be necessary.

Flip \(y \) in \(\tau' \): \(\tau'' = \{x, \neg y, z\} \)
Example

\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(x \) in \(\tau' \): back to \(\tau \). \(C_3 \) is already known to be necessary.

Flip \(y \) in \(\tau' \): \(\tau'' = \{ x, \neg y, z \} \), \(\text{Unsat}(M, \tau'') = \{ C_2, C_6 \} \).
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(x \) in \(\tau' \): back to \(\tau \). \(C_3 \) is already known to be necessary.

Flip \(y \) in \(\tau' \): \(\tau'' = \{ x, \neg y, z \} \), \(\text{Unsat}(M, \tau'') = \{ C_2, C_6 \} \).

Tried all variables in \(C_4 \) — stop.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in SAT \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \),
\(Unsat(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \),
\(Unsat(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(x \) in \(\tau' \): back to \(\tau \). \(C_3 \) is already known to be necessary.

Flip \(y \) in \(\tau' \): \(\tau'' = \{ x, \neg y, z \} \),
\(Unsat(M, \tau'') = \{ C_2, C_6 \} \).

\(C_4 \) is necessary, \(\text{without SAT solver call} \).
Simple idea: when model rotation stops, backtrack to a necessary clause detected earlier and flip another variable.
Simple idea: when model rotation stops, backtrack to a necessary clause detected earlier and flip another variable.

Fact: let τ be a witness for C in F, that is $\text{Unsat}(F, \tau) = \{C\}$. Then, the sets $\text{Unsat}(F, \tau|\neg x)$ for $x \in \text{Var}(C)$ are pairwise disjoint.

- By flipping different variables we are likely to detect new necessary clauses.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_1 &= x \lor y \\
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in SAT \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(Unsat(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(Unsat(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(x \) in \(\tau' \): back to \(\tau \). \(C_3 \) is already known to be necessary.

Flip \(y \) in \(\tau' \): \(\tau'' = \{ x, \neg y, z \} \), \(Unsat(M, \tau'') = \{ C_2, C_6 \} \).

Tried all variables in \(C_4 \) — stop, go back to \(C_3 \) and \(\tau \).
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z \\
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_3 &= x \lor \neg y \\
C_5 &= y \lor z \\
C_2 &= \neg x \lor y \\
C_4 &= \neg x \lor \neg y \\
C_6 &= y \lor \neg z
\end{align*}
\]

\[M \setminus \{ C_3 \} \in \text{SAT}, \text{ hence } C_3 \text{ is necessary.} \]

\(\text{SAT solver returns } \tau = \{ \neg x, y, z \}, \text{ Unsat}(M, \tau) = \{ C_3 \}. \)

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \text{ is necessary.} \)

Flip \(y \) in \(\tau \): \(\tau' = \{ \neg x, \neg y, z \} \)
Example

\[
F = \{ C_1, \ldots, C_6 \}
\]

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(y \) in \(\tau \): \(\tau' = \{ \neg x, \neg y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_6 \} \rightarrow C_6 \) is necessary.
Example

\[F = \{ C_1, \ldots, C_6 \} \]

\(M \) (the overapproximation of some MUS of \(F \)):

\[C_2 = \neg x \lor y \]
\[C_3 = x \lor \neg y \]
\[C_4 = \neg x \lor \neg y \]
\[C_5 = y \lor z \]
\[C_6 = y \lor \neg z \]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(y \) in \(\tau \): \(\tau' = \{ \neg x, \neg y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_6 \} \rightarrow C_6 \) is necessary.

Flip \(z \) in \(\tau' \): \(\tau'' = \{ \neg x, \neg y, \neg z \} \)
Example

\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

\(\text{SAT solver returns } \tau = \{ \neg x, y, z \}, \text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \}, \text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(y \) in \(\tau \): \(\tau' = \{ \neg x, \neg y, z \}, \text{Unsat}(M, \tau') = \{ C_6 \} \rightarrow C_6 \) is necessary.

Flip \(z \) in \(\tau' \): \(\tau'' = \{ \neg x, \neg y, \neg z \}, \text{Unsat}(M, \tau'') = \{ C_5 \} \rightarrow C_5 \) is necessary.
Example

\(F = \{ C_1, \ldots, C_6 \} \)

\(M \) (the overapproximation of some MUS of \(F \)):

\[
\begin{align*}
C_2 &= \neg x \lor y \\
C_3 &= x \lor \neg y \\
C_4 &= \neg x \lor \neg y \\
C_5 &= y \lor z \\
C_6 &= y \lor \neg z
\end{align*}
\]

\(M \setminus \{ C_3 \} \in \text{SAT} \), hence \(C_3 \) is necessary.

SAT solver returns \(\tau = \{ \neg x, y, z \} \), \(\text{Unsat}(M, \tau) = \{ C_3 \} \).

Flip \(x \) in \(\tau \): \(\tau' = \{ x, y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_4 \} \rightarrow C_4 \) is necessary.

Flip \(y \) in \(\tau \): \(\tau' = \{ \neg x, \neg y, z \} \), \(\text{Unsat}(M, \tau') = \{ C_6 \} \rightarrow C_6 \) is necessary.

Flip \(z \) in \(\tau' \): \(\tau'' = \{ \neg x, \neg y, \neg z \} \), \(\text{Unsat}(M, \tau'') = \{ C_5 \} \rightarrow C_5 \) is necessary.

\(C_4, C_5, C_6 \) are necessary, without SAT solver call.
Recursive Model Rotation (RMR)

Input: M — an over-approximation of an MUS
: C — a clause necessary for M
: τ — a witness for C (i.e. $\text{Unsat}(M, \tau) = \{C\}$)

```plaintext
foreach $x \in \text{Var}(C)$ do
    $\tau' \leftarrow \tau|_{\neg x}$ // flip $x$
    if $\text{Unsat}(M, \tau') = \{C'\}$ and $C'$ is not known to be necessary for $M$
        then
            mark $C'$ as necessary
            RMR($M, C', \tau'$)
```

Note: The second condition of if keeps the number of the recursive calls linear in the size of computed MUS.
Recursive Model Rotation (RMR)

Input: M — an over-approximation of an MUS
: C — a clause necessary for M
: τ — a witness for C (i.e. $Unsat(M, \tau) = \{C\}$)

```
foreach $x \in Var(C)$ do
    $\tau' \leftarrow \tau|_{\neg x}$ // flip $x$
    if $Unsat(M, \tau') = \{C'\}$ and $C'$ is not known to be necessary for $M$
    then
        mark $C'$ as necessary
        RMR($M, C', \tau'$)
```

- The second condition of if keeps the number of the recursive calls linear in the size of computed MUS.
Recursive Model Rotation (RMR)

- 500 benchmarks submitted to MUS track of SAT Competition 2011.
- Time limit 1200 sec, memory limit 4 GB.

- Left: model rotation (x-axis) vs. RMR (y-axis), CPU time (sec).

A. Belov, J. Marques-Silva (UCD, Dublin)
Recursive Model Rotation (RMR)

- 500 benchmarks submitted to MUS track of SAT Competition 2011.
- Time limit 1200 sec, memory limit 4 GB.

- Left: model rotation (x-axis) vs. RMR (y-axis), CPU time (sec).
- Right: % of clauses in the computed MUS detected by RMR (red) and by (non-recursive) model rotation (blue).
MUSer2 — MUS extractor with RMR

- 295 benchmarks used in the MUS track of SAT Competition 2011.
- Time limit 1800 sec, memory limit 4 GB.
Summary

- Recursive Model Rotation (RMR) — simple but powerful technique for acceleration of MUS extraction.
- Clause reordering (see the paper) — gives a slight performance edge.
- MUSer2 — state-of-the-art MUS extractor
Summary

- Recursive Model Rotation (RMR) — simple but powerful technique for acceleration of MUS extraction.
- Clause reordering (see the paper) — gives a slight performance edge.
- MUSer2 — state-of-the-art MUS extractor

Thank you for your attention!
Impact of RMR

- 295 benchmarks used in the MUS track of SAT Competition 2011.
- Time limit 1800 sec, memory limit 4 GB.

- MUS computation without RMR (x-axis) vs with RMR (y-axis)
 - Left: number of SAT solver calls (instances solved in both cases).
Impact of RMR

- 295 benchmarks used in the MUS track of SAT Competition 2011.
- Time limit 1800 sec, memory limit 4 GB.

MUS computation without RMR (x-axis) vs with RMR (y-axis)
- Left: number of SAT solver calls (instances solved in both cases).
- Right: CPU time (sec).
Model Rotation [Marques-Silva&Lynce, SAT'11]

- 500 benchmarks submitted to MUS track of SAT Competition 2011.
- Time limit 1200 sec, memory limit 4 GB.

- Left: no model rotation (x-axis) vs. model rotation (y-axis).
- Right: % of clauses in computed MUS detected by model rotation.