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Abstract—Determinism is often a desired property in multi-
threaded programs. A multi-threaded program is said to be
deterministic if for a given input, different thread interleavings
result in the same system state in the execution of the program.
This, in turn, requires that different interleavings preserve the
values read by each read operation. A related, but less strict
condition is for the program to be race-free. A deterministic
program is race-free but the converse may not be true. There
is much work done in the static analysis of programs to detect
races and nondeterminism. However, this can be expensive and
may not complete for large programs in reasonable time. In
contrast to static analysis, predictive analysis techniques take
a given program trace and explore other possible interleav-
ings that may violate a given property — in this case the
property of interest is determinism. Predictive analysis can
be sound, but is not complete as it is limited to a specific
set of program runs. Nonetheless, it is of interest as it offers
greater scalability than static analysis. This work presents a
predictive analysis method for detecting nondeterminism in
multi-threaded programs. Potential cases of nondeterminism
are checked by constructing a causality graph from the thread
events and confirming that it is acyclic. On average, the number
of graphs analyzed per benchamrk is one per potential case
of nondeterminism, thereby ensuring that it is efficient. We
demonstrate its application on some benchmark Java and
C/C++ programs.

I. INTRODUCTION

Writing correct and efficient multi-threaded programs is
widely accepted as a challenging task. The wide range
of possible concurrency errors makes it inherently harder
than writing sequential programs [15], [26], [28]. Given the
same input, the different runs of a multi-threaded program
may produce different outputs because the threads inter-
leave in different ways. This makes it hard to replicate
and debug errors through traditional testing methods. These
errors are referred to as “Heisenbugs” [2]. The potential
nondeterminism of multi-threaded programs lies at the core
of these Heisenbugs. For this and other reasons, determinism
is often a desired property in multi-threaded programs. A
multi-threaded program is said to be deterministic if for
a given input, different thread interleavings result in the
same system state in the execution of the program. It is
important to consider when the system state is observed. If
it is observed only at the end of the program execution, then
individual read events may not need to read the same value
across different interleavings. However, if the system state is
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continuously observed, then each read event must read the
same value in all possible interleavings. We consider this
case. Further, for ease of analysis we consider the stricter
condition that each read event reads the value from the same
write event in all interleavings. This restriction is consistent
with other work in predictive analysis [8], [34], and can
be supplemented with program analysis to consider specific
values rather than specific events, if desired.

A related but less strict condition is a datarace. A pair
of shared memory accesses are said to be conflicting if
they are performed by different threads and at least one of
them is a write. Also, the events are unsynchronized if the
threads do not use an explicit mechanism such as locks to
prevent the accesses from being simultaneous. A datarace is
defined as two conflicting and unsynchronized data accesses.
A deterministic program is race-free but the converse may
not be true. The following example in Fig. 1 illustrates this
further.

Causally This work
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Thread1 Thread2

®

Happens Before (HB)
Analysis

Thread1 Thread2 Thread1 Thread2

©
@(rd x)

Time

Nondeterministic

No CP-race
(a) (b) (c)
L1, L2 —lock /; U1, U2 — unlock /

No HB-race

Figure 1. A deterministic program is race-free but the converse may not
be true. (‘Causally precedes’ is defined in [35].)

Consider the example in Fig. 1. In this example, there is
a pair of conflicting shared memory accesses, each under
the lock-scope of the same lock variable [. Let events L1
and L2 be ‘acquire lock’ events on [. Similarly, let events
Ul and U2 represent ‘release lock’ events on [. In (a), we
show a standard Happens Before (HB) analysis for lock
operations. The two events Ul and L2 are ordered by HB,
as indicated by the (U1, L2) edge and hence there is no race.
Next, in (b), we consider the causally precedes (CP) analysis
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proposed by Smaragdakis et al. [35]. Due to the presence of
conflicting accesses (w and r) within the lock-scopes, Ul
causally precedes L2 introducing the CP edge from Ul to
L2. Hence, there is no CP-race. However, observe that in
another interleaving (c), where the lock-scopes swap order,
the following different order is possible in an interleaving:
U2 happens before L1. Thus, while the program is race free,
it is nondeterministic because the read event (rd x) reads
from a different write event in the interleaving (c) compared
to the interleaving in (a) and (b).
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Figure 2. Classification of race and nondeterminism detection techniques
based on cost of analysis: Burnim10 [6], SingleTrack [32], Eraser [33], Fast-
Track [13], GoldiLocks [11], Sliced Causality [7], jPredictor [8], Causally
precedes [35], CoreDet [3], Kendo [29], DThreads [25], NavabiO8 [27],
Peregrine [10], Vaziri06 [37], Warlock [36], Kahlon07 [20], Choi02 [9],
Vechev10 [38]

There is much work done in static analysis of programs
to detect races and nondeterminism [36], [20], [9], [3],
[29], [25], [27], [10], [37] as shown in Fig. 2. Among these,
deterministic multi-threading (DMT) has attracted a lot of
interest recently [25], [10]. DMT deterministically schedules
the threads such that the values read by the read operations
are preserved. The static analyses for detection or finding
schedules can be expensive and may not complete for large
programs within reasonable time.

The other end of the spectrum is monitoring-based solu-
tions [33], [13], [11]. Although monitoring-based solutions
are scalable and sound, the analysis is based only on the runs
that are actually executed. In contrast, predictive analysis
techniques take a given program trace and explore other
possible interleavings that may violate a given property [35],
[8], [7]. This helps to enhance coverage of a given test input
to a larger set of thread interleavings. Predictive analysis can
be sound but it is not complete as it may not cover the entire
program.

In this work, we adopt a predictive analysis technique
for detecting nondeterminism. This provides an effective
trade-off between cost and coverage. Our technique is based
on the partial order permitted by a trace combined with
the reasoning for locks. This technique is fast because it
searches a reduced set of sufficient interleavings. Potential
cases of non-determinism are checked by constructing a

causality graph from the thread events and confirming that
this is acyclic. We demonstrate its application on some
benchmark Java and C++ programs. Our results show that
the average number of graphs analyzed per benchmark is
one per potential case of nondeterminism.

This work makes the following contributions:

o It presents a sound and complete! predictive analysis
technique for checking determinism of multi-threaded
programs. It reports only feasible cases of nondetermin-
ism and thus avoids false positives that would require
additional test execution after the analysis.

o The proposed technique requires search over a reduced
set of sufficient interleavings and hence is fast.

o The technique has been implemented and experimental
results on C/C++ and Java benchmark programs are
very promising.

II. PRELIMINARIES

We consider a multi-threaded program consisting of a
set of threads Ty, T, ..., Ty and a set of shared variables.
Let {1,...,k} be the set of

thread indices. The remain-
ing aspects of the program,
including the control flow
and the expression syntax,
are intentionally left unspec-
ified for generality.

Program Trace Model:
An execution trace p = e,
€2,...65 1S a sequence of
events, e;, i € {1,...,n},
each of which is an in- 0
stance of a visible operation - pmgmmmmgeé) ©)
during the execution of the R e ol amotaton

Time

program. The visible opera-
tions are: read/write accesses
to shared variables and syn-

Figure 3. The partial order
graph with vertices represent-

chronization operations such
as wait, notify, notifyall, lock
acquire/release and thread

ing events and the dashed and
solid edges are program order
and sync. edges respectively. The
read-couple annotations are indi-
cated by the squiggly arrows.

fork/join. An event is repre-
sented as a S-tuple (tid, eid, type, var, child), where tid
is the thread index (tid € {1,...,k}), eid is the event
index (that starts from 1, and increases sequentially within a
thread), type is the event type, var is either a shared variable
(in read/write operations) or a synchronization object, child
is the child thread index (in thread create/join). The event
type is one of {read, write, fork, join, acquire, release,
wait, notify, notifyall}.

An execution trace p is the observed interleaving of
events across the threads and provides a total order on these
events. We derive the required partial order for this trace by

Lover all interleavings of events in the given trace, not over the entire

program
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retaining only the set of must-happen-before constraints as
described below.

Partial Order Graph: Let G(V, E) be a partial order
graph such that V(G) is the set of vertices, each of which
represents an event in the trace (we use vertices and events
interchangeably when the context is clear). Fig. 3 is an
example partial order graph with three threads. The number
inside each vertex is the eid within the thread. A directed
edge (a,b) in E(G) (the set of edges) is either a program
order edge, or a synchronization (sync.) edge.> Program
order edges are indicated by dotted arrows and sync. edges
by solid arrows in Fig. 3. An edge in E(G) is referred to
as a partial order edge.

We note that locks are not added as sync. edges in E(G).
The mutual exclusion due to locks is considered separately
by our analysis. We also give special consideration to write-
read pairings. If event b reads the value written by event
a, then the pair (a,b) is defined as a read-couple. A read-
couple is indicated by a squiggly arrow annotation in the
partial order graph G. Note that this is not included in the
edge set E(G). In a different interleaving 7, if b reads from
a different event ¢, we say that the read-couple for b, and
the read b in p is broken in T.

Locked Scope: A locked scope, denoted as [e; . ..e;];,
is defined as the sequence of events ¢;...e; after an
‘acquire lock I’ event and before a ‘release lock
I’ event, where [ is a lock-variable. Note that the sequence
of events e; ...e; and lock acquire/release events belong to
the same thread.

III. PREDICTIVE ANALYSIS OF NONDETERMINISM

We assume that the shared variables are implicitly written
(or initialized) at the beginning of the execution. Similarly,
they are all implicitly read at the end of the program
execution. Given the same inputs, if a read instruction of
a shared variable reads the value from the same write
operation in all interleavings, it is referred to as a view-
preserving read. Otherwise, the read is non-view-preserving.
This is related to the well-known notion of view equivalence
in database transactions [30].

Definition 1: [Program Nondeterminism] We define a
multi-threaded program to be nondeterministic iff there
exists at least one non-view-preserving read.

Writer, Readers and Challengers: In the given trace,
there can be several read operations reading the value written
by a single write operation, w. w is referred to as the writer.
Any read event that reads the value written by w is denoted
as reader of w. Let R(w) be the set of readers of w. Any
write operation c, other than w that writes the same shared
variable is denoted as a challenger of w. It is named so
since it challenges the set of read-couples induced by w (i.e.

2HB edges between fork event in parent thread and first event in child
thread, between wait and notify events, and between last event in child
thread and join event in parent thread are sync. edges.

{(w,r) where, r € R(w)}) as in an alternate interleaving
may read from c instead of w, thus breaking the read couple
(w, 7). Let, C(w) be the set of all challengers of writer w.

Problem Formulation: We aim to detect nondeterminism
over alternate interleavings of events of a given trace p.
Thus, we address the following problem: given a trace p
and a read-couple (w,r) in p, is there a challenger c such
that it breaks (w,r) in another interleaving 77

For a pair of events e; and es and an interleaving, let
e1 — eg represent “ey precedes es in the interleaving’.
For a given triplet (w,r,¢) and a partial order graph G,
where r € R(w) and ¢ € C(w), the read-couple is broken
in an interleaving 7, when any of the following orders is
present in 7: (1) ¢ — 7 +— w, or (2) w — ¢ — 1, or (3)
¢ — r and w does not occur in 7. In each case, r does not
read from w in 7. We refer to these orders as witnesses of
nondeterminism and the interleaving containing a witness as
a witness interleaving. In cases (1) and (2), w, r and c are
the events of the witness and in case (3), ¢ and r are the
events of the witness. A triplet is said to be nondeterministic
if it can provide a witness of nondeterminism.

Central Idea: There are two phases in our analysis
for each witness. For a certain witness w to exist in an
interleaving 7, 7 must satisfy the orderings between the
members of w in addition to the HB constraints imposed
by program-order, synchronization and possibly between
locked scopes. Let G’(w) be the graph after incorporating
all the mentioned constraints to G in the form of ordering
edges but not including any consideration of locked scopes.
G’ (w) cannot contain a cycle since 7 must be a total order
of events satisfying the ordering constraints imposed by
G'(w). Thus, in the first phase of our analysis, we check
for a cycle in G’ (w). Presence of cycle in G’ (w) entails the
witness to be infeasible (necessary condition for feasibility
of witness). (This phase is similar to a Universal Causality
Graph (UCG)-based analysis [23]. We provide a detailed
comparison later.) However, absence of a cycle in G'(w)
does not guarantee feasibility of witness. This is because
we still need to consider the locked scopes. For each pair of
mutually exclusive locked scopes LSy and LS, either LS,
HB LS; or LSy, HB LS;. Since this holds for each pair
of mutually exclusive locked scopes, we need to consider
all possible combinations of such HB constraints. For d
such pairs, there will be 24 combinations. These choices
need to be explored by augmenting G’ with each of these
2¢ combinations of HB constraints. In the second phase of
our analysis, we construct all such possible graphs obtained
by augmenting G’(w). Let G”'(w) be one such graph. The
witness is infeasible if and only if all 2¢ G”(w) graphs
contain cycles (sufficient condition for feasibility of witness).
We now describe these two phases in detail below.
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A. Necessary Condition for Witness: Witness Order Graph

Let w be a witness in an interleaving 7. We consider
ordering constraints imposed by w on 7. Note that G already
contains program order and synchronization constraints that
7 must obey. We now augment G to G'(w) to include
additional ordering constraints imposed by the witness w.
G’ (w) is referred to as the witness order graph. The orders
imposed by w are reflected by adding additional edges to
G'(w) denoted as witness order edges.

We construct G'(w) specific to witness w as follows.
(Henceforth, we refer to G'(w) as G’ when w is clear from
the context.) Without loss of generality consider w to be of
the type ¢ — r — w. We add witness order edges (c, ) and
(r,w) to G.

For each observed read-couple (a, b) in p besides (w, ) in
w, we add a read-couple edge (a,b) to E(G’). In addition,
the induced edges [23] are added to E(G’) as described
below. For a pair of locked scopes guarded by same lock-
variable ([u, ...,v]; and [z, ..., y],, say), we add an induced
edge (v, ) if there is path from u to y in G’3. However,
if neither v precedes 2 and nor y precedes v in G’ i.e. the
locked-scopes are unordered, then the locked-scopes are said
to have a choice between edges (v, x) and (y, ») in terms of
the HB relation between them. This choice will be dealt
with later. Fig. 4(a) shows a multi-threaded program trace
where x and y are shared variables. The variable z is being
written by events ¢ and w in thread 77 and read by event r
in thread 75 respectively. Event e in thread 73 assigns the
address of x to variable y. Next, in thread 75, the value of y
is read in a local variable b. The events es, r and eg execute
in thread 75, if b is non-null. The partial order graph G in
Fig. 4(b) corresponds to the multi-threaded program trace in
Fig. 4(a). Further, Fig. 4(c) shows the witness order graph for
the same program trace and witness ¢ — 7 — w. The edge
(es,e5) is induced by (ez,es) and the presence of locked
scopes [e1,...,es], and [es, ..., eq];. Note that insertion of
one induced edge can trigger insertion of another induced
edge if the locked-scopes are nested or overlapping.

G’ now contains the following four kinds of ordering
constraints due to G (program order edges + sync. edges),
witness order edges (including locked scope analysis), read-
couple edges except (w,r), and the induced edges due to
mutual exclusion of locked scopes. Locked scope analysis
enforces the mutual exclusion constraint. However, when
combined with the ordering enforced by a specific witness,
the mutual exclusion constraint can lead to an ordering
constraint which can be added to the partial order ordering
constraints [23].

In Fig. 4(c), G’ has a cycle (r - w — e; — €3 — e4 —
es — 7). Since this cycle represents orderings corresponding
to the edges in G’, at least one of these orders is not possible.

3Presence of a path from u to y in G’ implies that [u, ..., v]; must be
entirely executed before starting the execution of [z, ..., y];.

/ init:y =0 N\ n T T T,
T T, :
cx:=1
WX :=2;
wf| er acql;
E|l esy=8x
- es: rell; e, bi=y;
if (b # 0)
{
eg: acql;
roozi=x
eg: rel l;
! (c) Witness Order Graph (G’),
(a) Program source code. (b) Partial ordergraph G~~~ _____ > induced edge
with read-couple annotations. Cycle exists

Figure 4. The partial order graph G and the witness order graph G’(w),
where w is (¢ — r +— w) for the example program source code in (a).

Specifically, in this case, the (e2,e4) read-couple will be
broken in 7. Therefore, the read for e4 in 7 may result in
a different value from the read in the original trace p. This
may alter the program flow so that the event » may not even
happen in 7. In this case the witness is said to be infeasible
as 7 may not contain r.

Let (w’, ') be a read-couple in p that is broken in 7. Let
x be an event in witness w. The witness w is infeasible if
there is a path from ' to z in G. Intuitively, for w to be
feasible, all the views must be preserved until the events in
w in the interleaving 7. If (w’,r’) is broken in 7 then 1’ is
not view preserving. Otherwise w is deemed infeasible in
G'. The following theorem provides the necessary condition
for feasibility.

Theorem 1: [WITNESS ORDER GRAPH THEOREM] A
witness is infeasible if there is a cycle in G.

A proof sketch is provided in the appendix. The reverse
direction (infeasibility=-cycle) is not true. This has to do
with the ordering choice between unordered locked scopes
and is considered next.

Consider a pair of locked scopes [a1,...,b1], and
[ag, ..., bo]; in different threads guarded by the same lock
variable [, such that there does not exist a path from a; to
by or from as to by in G'. In this case the locked scopes are
defined to be an unordered pair of locked scopes. Moreover
due to the mutual exclusion between the two locked scopes
one must be ordered before the other. Thus, there exists
a choice between edges (b1,a2) and (b2,a1). The edges
(b1,a2) and (ba,ay) are defined as choice edges and the
pair {(b1,a2), (ba,a1)} is a choice edge pair.

Consider G’ shown in Fig. 5. Let there be a wit-
ness order edge from y to = (not shown in Fig. 5 for
clarity). Let [aq,..., bl]l1 and [ag, ... 7bg]l1 be an un-
ordered pair of locked scopes guarded by variable [;.
Similarly, let [as,...,bs];,, and [a4,...,bs];, be an un-
ordered pair of locked scopes guarded by variable 5. Let
e; and ey be choice edges e; €{(b1,a2),(b2,a1)} and
es €{(b3,aq),(bs,a3)}. Let the edges shown in Fig. 5
represent paths in G'. For finding a feasible witness, we need
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at least one combination of choice edges e, and ey such
that their addition to G’ leads to no cycle. In this example,
every combination of e; and ey results in a path from x to
y. This combined with the witness order edge (y,z) leads
to a cycle for each combination. In general, if there are d
choice edge pairs then we need to check 2¢ combinations
in conjunction with G’. The number of combinations that
actually need to be considered can be reduced as shown in
the next subsection.

We would like to point out that this example also illus-
trates that UCG analysis [23] is incomplete in general, since
it does not consider choice edges that may result in cycles
with more than two threads.

Figure 5. All combinations of choice edges e and eg give a path from
z to y, where e1 €{(b1,a2),(b2,a1)} and ez €{(b3, as).(bs,a3)}

B. Sufficient Condition for Witness: Choice Graph

We first define a lock abstraction graph denoted as G/ (w).
(Henceforth, we refer to the lock abstraction graph as G/
when w is clear from the context.) All vertices within a
locked scope in G’ are replaced by a single meta-vertex
in G”. Any edge originating from or terminating into the
locked scope, originates from or terminates into the meta-
vertex, respectively. Further, for each unordered pair of
locked scopes present in G’, an undirected edge connects
the corresponding meta-vertices in G/ and is referred to as
the abstract choice edge. The abstract choice graph for the
example shown in Fig. 5 is shown in Fig. 6(a). The vertices
mi,...,my are the meta-vertices and the undirected edges
(m1,m2) and (ms, my) represent the abstract choice edges
in GI/.

T

R

T, Ty T,

] R —

=1

(a) Lock Abstraction Graph

Ts

Witness order edges

L

7N
g lag,..., bl],1 a2, ..., bg]l1

=== Choice edge
(b) Choice Graph instance with (b,,a,) and (by,a;)

Abstract choice edges

Figure 6. (a) Lock abstraction graph
for the example shown in Fig 5. (b) One
of the choice graphs with choice edges
(b1, a2) and (bs, a3).

Figure 7. The undirected edges
shown in GJ/(w) are the ab-
stract choice edges that consti-
tute Scpoice fOr witness w >
cr .

We compute Scnoice as the set of choice edge pairs such
that their exploration is sufficient to detect feasibility of w.

10

We construct Scpoice by collecting all the abstract choice
edges present in all paths from z to y in G/, for all x
and y, where (y,x) is a witness order edge in G’. Fig. 7
illustrates this for a witness w > ¢ — 7. Let |Schoice| = d'.
Usually (d' << d). This reduction can be viewed as a form
of witness-based slicing of G,.

Next, we define the choice graph G”(w) as follows.
(Henceforth, we refer to the choice graph as G’ when w
is clear from the context.) The vertex set V(G”) = V(G").
The edge set E(G") is E(G’) augmented with exactly one
choice edge per choice edge pair in Scppice- Formally,

E(G") = E(G"U U

v{ecla 6(12} € Schoice,
€c € {66176C2}

{ec}

For instance, in the example shown in Fig 5, there are two
choice edge pairs that belong to Scpeice: {(b1, az2), (b2,a1)}
and {(bs,a4), (bs,as)}. Each choice graph must choose ex-
actly one edge from each pair. As there are 22 combinations
possible, there exist four choice graphs for this example.
Fig. 6(b) shows one of those choice graphs with a choice
edge combination (b1, as) and (by, as).

Theorem 2: [CHOICE GRAPH THEOREM] A witness is
infeasible iff all the choice graphs have cycles.

A proof-sketch is provided in the appendix.

C. The Nondeterminism Checking Algorithm

We now summarize the overall algorithm. We first com-
pute the set of possible witnesses, based on challengers for
each read event in a trace. For each such witness w, in
the first phase of our analysis, we construct the witness
order graph (G’'(w)) and check for a cycle. The witness is
infeasible if there is a cycle in G’(w). However, if there is
no cycle we proceed to the second phase of our analysis. We
compute the set Schoice- If Schoice 1S empty, the witness is
feasible. Otherwise, we construct 24" choice graphs, where
|Schoice] = d’, and check for a cycle until we find a choice
graph with no cycle. If an acyclic choice graph exists, the
witness is declared feasible. If all choice graphs contain
cycles, then the witness is declared infeasible. In practice,
we need to explore only a handful (mostly one) of these
choice graphs to find one without a cycle.

The complete algorithm is shown in Fig. 8. It generates
all feasible witnesses of nondeterminism for a given inter-
leaving p. Let, z;, ¢ = 1...m be the shared variables in
the observed trace p. Further, for each shared variable z;,
let L,, be the list of read-couples, i.e. L., = {(w, R(w)) |
w writes x; }.

Optimization: Note that the partial order edges (V(G))
and all the induced edges due to locks and read-couple edges
except (w, ) are present in all the choice graphs for a given
witness w. Therefore, we add all the read-couple edges and
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ReportFeasibleWitnesses (interleaving p)
1. Construct partial order graph G from p
2: Visit each vertex and if it accesses shared variable x;
a. label vertex with locked scopes.
b. populate L, .
:foreach Ly, i=1...m)
for each write w; in L,
for each read 7, € R(w;)
for each write ¢; in Lz, such that w; # ¢;
Let (wj, Ty, c;) be the triplet
for each possible witness w for (wj, Ty, c;)
/IWitness Order Graph Check
9:  Construct G’ (w) and check for cycle in G’ (w).
10:  If cycle found in G’(w), report w is infeasible.
11:  Else construct G/ (w) and compute Schoice-
12 Report feasible witness if Scpoice 1S empty.
13:  Construct choice graphs until acyclic graph is found
and report w is feasible.
14:  If all choice graphs are cyclic, report w is infeasible.

A

Figure 8.  Algorithm for reporting feasible witnesses

their induced edges to G before line 3 in Fig. 8. Next, for
each witness we do the following: (1) delete the read-couple
(w,r) and the appropriate induced edges corresponding to
the read-couple (w, r), and, (2) insert the witness order edges
and the edges induced by them to produce G’ (w). Moreover,
we use vector clocks [24] for keeping track of the causality
relationships necessary for incremental addition or removal
of an induced edge.

Complexity Analysis: The symbols introduced for com-
plexity analysis are described in Fig. 9. The complexity
of step 1 in proce-

. Symbol description Symbol
dure ReportFeasible- Number of vertices in G N
Witnesses is O(M + Number of edges in G M
Number of lock events in G L
N) - O<M) as NV < Number of variables m
M. The locked scope Max. number of reads per variable p
analysis requires two Max. number of writes per variable q

passes over the trace Figure 9.
to label each read/write event with eid’s of acquire/release
lock events guarding the event. This is O(m(p + ¢)L).
Populating L, for = 1...m requires one pass over the
trace (O(N)). Next we consider the complexity for a single
witness. To construct G, we add the read-couple edges
(O(mp)) and the witness edges (O(1)). The induced edges
order the locked scopes. Therefore, the number of induced
edges added is O(L?). The number of read-couples in G
is O(mp). Thus, |E(G")| = O(M + mp + L?). Then cycle
checking in G’ is O(M + N +mp + L?) = O(M + L?)
(since N < M and mp < N). The number of witnesses is
O(mpg?). Note that in our implementation, the construction
of G’ is done between step 2 and step 3 of procedure
ReportFeasibleWitnesses for efficiency, with some simple
book-keeping which is omitted here for brevity. Since, the
number of choice edge pairs (d) is O(L?), d = O(L?).
Therefore, the number of choice graphs is O(2L2 ). Checking
a cycle in a choice graph is O(M + L?). Therefore, the
overall complexity: O(M +m(p-+q) L+mp+mpg* (M + L*) +
2L* (M + L?)) = O(mpL + mqL + (mpq® + 2 )(M + L?)).

Symbol table

11

IV. RESULTS

We have implemented our technique in a prototype tool.
This tool is capable of logging/analyzing execution traces
generated by both Java programs and multi-threaded C/C++
programs using pthreads. The program traces used are all
available online [18]. The C++ benchmark is available
online [16]. All the Java benchmarks are publicly avail-
able [12], [14], [17], [19], [31]. These traces are manually
chosen aiming to have a good mix with respect to graph size
and degree of communication between threads.

The tool logs execution traces at runtime from C++ source
code instrumented using the commercial front end from
Edison Design Group (EDG). For Java programs, we used
execution traces logged at runtime by a modified Java Virtual
Machine (JVM). For each test case, we first executed the
program using the default OS thread scheduling and logged
the execution trace. Next we applied our algorithm to detect
the feasible witnesses. The graphs are stored in explicit-state
form to facilitate cycle checking. The number of vertices
in partial order graphs ranged between 100-26000 and the
number of edges in those graphs ranged between 150-
31000. We would like to highlight here that we originally
implemented exploration of the combination of choice edges
using an SMT solver, but the cost was prohibitive, failing
to finish on several benchmarks. This motivated our current
purely graph-based approach.

All our experiments were conducted on an Intel i7 ma-
chine (2.67 GHz, 3 GB memory) running Ubuntu 2.6.31-
14-generic. Detailed experimental results are reported in the
appendix (Table A1) and a summary is presented in Table I.

We make the following observations.

e In 9 out of 25 traces, Phase I alone was sufficient (row
1 in Table I) for our analysis.

e Around 80% of the witnesses in the majority of the
traces are found to be infeasible due to the presence
of a cycle in the witness order graph G’ (Column 4).
Since this is a quick check, most of the witnesses are
handled quite expeditiously.

+ Among the remaining witnesses, a majority of them do
not have choice edges (~17% of the total witnesses)
(Column 5). For the traces in row 2, ~3% of the
witnesses have choice edges to be explored (Column
6).

« For the witnesses left with choice edges, even when the
average number of possible choice graphs per witness is
large (Column 7), the number of choice graphs actually
explored per witness is close to 1 (Column 8).* This
is because the exploration stops as soon as an acyclic
choice graph is detected. Thus, overall the average
number of graphs explored per witness is very close
to 1 also (Column 12).

4However, 89 of those witnesses were found to be infeasible, i.e., all
choice graphs for these witnesses are cyclic.
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Table I
SUMMARY OF THE EXPERIMENTAL DATA ON THE WITNESSES OF NONDETERMINISM IN TRACES OF MULTI-THREADED PROGRAMS.
1. 2. 3. Witness Order Graph Analysis Choice Graph Analysis 9. 10. 11. 12.
4. 5. 6. 7. 8. Avg. number
Categories | #Benchmarks | #Possible Witnesses Witnesses Witnesses Possible Choice Total Total Total of graphs
witnesses with cycles with no choice | with choice || choice graphs graphs time | feasible | infeasible analyzed
in G/ edges (feasible) | edges (%) per witness explored taken | witnesses | witnesses | per witness
(infeasible) (%) (%) in column 6 per witness (sec) (%) (%) in column 3
in column 6
Phase I 9 104178 85789 18389 0 - - 443 18389 85789 1
sufficient (82.35) (17.65) 0) (17.65) (82.35)
Both phases 16 5604552 4477107 943516 183929 7.53 1.03 8597 | 1127356 | 4477196 1.001
required (79.88) (16.84) (3.28) (20.11) (79.88)

o The time required for witness order graph analysis is
much lower than that of choice graph analysis.

V. RELATED WORK

We have already discussed the broad categories of efforts
in detecting dataraces and nondeterminism in Section I
(Figure 2). We highlight specific related aspects below.

Datarace detection: Broadly, the approaches can be
classified into three groups — (1) monitoring [33], [11],
[13], [9], (2) predictive analysis [7], [8], [35] and (3) static
analysis [36], [20], [22]. Like many of these techniques, we
too use happens-before analysis and reasoning about locks.
However, our focus is on detecting nondeterminism that is
related to, but distinct from, datarace detection. Specifically,
we do not have to provide witnesses with unsynchronized
memory accesses, which may involve subtle reasoning
about locks, e.g. by using lock acquisition histories [21]
or causally-precedes relationships [35]. Rather, we consider
witnesses with all possible orderings of related events (w,
r, and c), where lock reasoning is used only to ensure
mutual exclusion. We use a simple notion of lock scopes
to enforce mutual exclusion. Chen et al. [8] used a related
notion called lock atomicity sets, but they provide a richer
abstraction (lock atomicity equivalence) for their purpose
of predicting sound interleavings. UCG-based analysis [23]
also used cycle-based infeasibility checks, but their analysis
is incomplete for more than two threads where choice edges
need to be considered. Our lock abstraction graph can be
used to identify choice edge pairs in witness-based slicing
for other checkers that may use UCG analysis.

Nondeterminism detection: Ensuring deterministic pro-
grams has received a lot of attention lately [5]. Vechev
et al. proposed a static analysis for verifying determinism
in structured parallel programs, based on checking non-
overlapping memory accesses in parallel sections [38]. There
is some work on specification and dynamic checking for
determinism also [6], [32]. Burnim et al. proposed an
assertion framework for specifying that programs should
behave deterministically and used it to detect nondetermin-
istic behavior [6]. Sadowski et al. proposed a new non-
interference specification for deterministically-parallel code,
and used a dynamic analysis tool called SideTrack to enforce
it [32]. Many other efforts focus on adding synchronization
or deterministic scheduling to preempt nondeterministic be-
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havior or related bugs. Vaziri et al. associate synchronization
constraints with fields of a class in object-oriented programs,
and use static analysis to automatically infer synchronization
points to avoid concurrency-related bugs [37]. Navabi et
al. insert lightweight synchronization primitives at potential
violation points [27]. DThreads replaces the pthreads
library with an efficient deterministic multi-threading sys-
tem [25]. CoreDet is a compiler and runtime system for
general-purpose software deterministic multi-threading [3].
Other such systems are Determinator [1], Kendo [29] and
dOS [4]. In contrast to these efforts, our work does not target
specifying or enforcing determinism, but only to check it
under standard synchronization and scheduling semantics.
Any enforcements (using synchronization or deterministic
thread scheduling) can be easily accounted for by adapting
the partial orders we consider in our analysis. To the best
of our knowledge, our work is the first to use predictive
analysis for detecting nondeterminism.

VI. CONCLUSION

We have proposed a graph-based predictive analysis
method for detecting nondeterminism in multi-threaded pro-
grams. We analyze each read-couple with all other writes to
the same shared variable and determine the conditions for
nondeterminism. When these conditions are satisfied, we
generate a witness of nondeterminism. Further, we ensure
no false positives by ensuring that our witness is feasible,
i.e. there exists an interleaving where this witness will be
observed. A key property of our method is that we provide
a sound and complete’ predictive technique that explores
a reduced set of sufficient interleavings, thereby ensuring
that it is efficient. Our experimental results demonstrate the
effectiveness of our proposed method on several C/C++ and
Java benchmark programs.
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APPENDIX
A. DETAILED EXPERIMENTAL RESULTS

The detailed experimental results for a sample of traces are
given in Table Al. For each benchmark, column 1 presents various
statistics of the logged program traces: threads (thrds), number of
events (evs), number of lock events (I-evs) and lock variables (I-
vars), number of read/write events (rw-evs) and shared variables
(rw-vars) and number of wait-notify events (wn-evs). Column 2
shows the total number of possible witnesses in the observed
trace. Columns 3-5 and 6-7 show the results of analyses based
on witness order graphs and choice graphs, respectively. For the
witness order graphs, we report the number of infeasible witnesses
(i.e. cycle found) (column 3), number of feasible witnesses (no
choice edges and no cycle) (column 4) and witnesses left with
choice edges (column 5). Similarly, for the choice graphs, we report
the number of possible choice graphs per witness in column 5
that have choice edges (column 6) and number of choice graphs
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explored per witness in column 5 that have choice edges (column
7). Column 8 shows the total time taken for the analysis. Columns
9 and 10 show the total feasible witnesses and the total infeasible
witnesses, respectively. Column 11 reports the average number of
graphs analyzed per witness in column 2.

B. PROOF SKETCH OF THEOREM 1
Proof Sketch of Witness Order Graph Theorem:

Path of partial order
edges possibly empty

Witness order
edge

Last broken read
couple edge

_——_——

-

CycleCin G’

Figure B1. Case 2 of the proof of Theorem 1

Let C be the cycle in G’. The partial order edges/induced edges
led by partial order edges and read-couples/induced edges led by
read-couples only cannot constitute C° (otherwise this contradicts
the total order of p). Therefore, C' must contain a witness order
edge.
Case 1: C contains witness order edge and partial order
edge/induced edge led by partial order edge only. C' does not
contain read-couple/induced edge led by read-couple: Let 7 be an
interleaving that contains w. Due to C, 7 is cyclic. Then there does
not exist a valid interleaving 7 (since it must be a total order of
events) that contains w. Hence, w is infeasible.
Case 2: C' contains witness order edge, partial order edge/induced
edge led by partial order edge and at least one read-couple/induced
edge led by read-couple: In interleaving 7, at least one read-couple
in C' must be broken for 7 to be a total order since the witness
order edges must be observed for 7 to be a witness interleaving.
What we now need to show is that such broken read couple can
alter program flow so that some event x, where z is an event of
w, may not occur. Thus w will be infeasible.

Let (w’,r’) be the last read-couple that is broken in C' before
a witness order edge or an edge induced by a witness order edge
and let (u,v) be such an edge in C after (w’,r’) (Fig. B1). Note
that there cannot be any unbroken read-couple (w”,r"") between
(w’,r") and (u, v) in C because all such reads after a broken read
are not guaranteed to happen.

From the construction of (u,v) we know there are two possible
cases.

1) The edge (u,v) is an witness order edge: In this case, u
is an event in the witness w. Since the read-couple (w’, ")
is broken and there are only partial order edges between 7’
and u, w is not guaranteed to happen in 7, and thus w is
infeasible.

The edge (u,v) is induced by an witness order edge: In
this case, there is a vertex x, where x € w and [z...u],,
i.e. z and v are in the same locked scope. Since there is a
path through partial order edges from 7’ to u and (w’,r")
is broken, v may not occur. If v does not occur, then a)
either the entire scope [« ...u]; is not executed, in which

2)

Seither a partial order edge or a read-couple edge leads to an induced
edge
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case w is infeasible as x is an event in w, or b) = occurs,
but u does not occur and thus the witness w cannot continue
along (u,v). Thus w is infeasible.l]

C. PROOF SKETCH OF THEOREM 2

Proof Sketch of Choice Graph Theorem: (<) All choice
graphs represent traces that are consistent with the witness order
graph G’ (w). We know that G’ does not have a cycle, otherwise
it would have been detected before. In a choice graph, all the un-
ordered pairs of locked scopes represented in Schoice are ordered.
The presence of cycle in a choice graph G”(w) implies that the
witness w is infeasible with respect to the particular ordering of
locked scopes present in G/ (w). Similarly, the presence of cycles in
all choice graphs implies that the witness is infeasible with respect
to all the orderings of locked scopes represented in Schoice. Hence,
w is infeasible.

(=) It is known that G’ is acyclic (otherwise it would have been
detected earlier). Therefore, w is infeasible implies that there does
not exist an (acyclic) interleaving 7 that is consistent with any of
the 2¢ combinations of choice edges. Then all those 2¢ graphs
are cyclic. The cycles in these 2¢ graphs can be divided into two
categories, (1) cycles that do not contain any choice edge outside
Sechoice, and, (2) cycles that contain at least one choice edgg outside
Sehoice. All cycles of the first category are present in 2¢ choice
graphs. We are done if we can prove that (1) there is no cycle in
the second category, and, (2) each of the choice graphs contain at
least one cycle from the first category.

Subproof 1: We prove by contradiction. Let the witness be
infeasible and there exists a cycle C' in one of 2¢ possible graphs
that contains at least one choice edge e.1 from a choice edge pair
t = {ec1, €c2} outside Scpoice. C must contain at least one witness
order edge (y, x) (otherwise p is inconsistent). This choice edge e.1
in C is on the path between x and y. Therefore, by definition the
choice edge pair ¢t must be within Scpoice leading to contradiction.

Subproof 2: We prove by contradiction. Let the witness w be
infeasible and there exists an acyclic choice graph G”'. This implies
that the particular combination of d’ choice edges present in G”
does not lead to a cycle (since, by subproof 1, we know that
there does not exist a cycle in 2 combinations that contain choice
edges from pairs outside Schoice). Then there exists an (acyclic)
interleaving T consistent with choice graph G containing w. Then
w is feasible. This leads to the contradiction.

Hence, if the witness is infeasible, then all the choice graphs
must have cycles in them.[]
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EXPERIMENTAL DATA ON THE WITNESSES OF NONDETERMINISM IN TRACES OF MULTI-THREADED PROGRAMS.

Table Al

1.

Benchmark

2.

#Possible
witnesses

Witness Order Graph Analysis

Choice Graph Analysis

3.
Witnesses
with cycles

in G/
(infeasible) (%)

4.
Witnesses
with no choice
edges (feasible)
(%)

5.

Witnesses
with choice
edges (%)
(e=~0)

6. 7.
Possible Choice
choice graphs graphs
per witness explored
in column 5 per witness
in column 5

8.

Total
time
taken

9.

Total
feasible
witnesses

(%)

10.

Total
infeasible
witnesses

(%)

11.
Avg. number
of graphs
analyzed
per witness
in column 2

conpool - thrds: 4, evs: 97,
l-evs: 16, l-vars: 1, rw-evs: 53,
rw-vars: 5, wn-evs: 3

252

221 (88)

31 (12)

0 (0)

0.007s

31 (12.3)

221 (87.7)

liveness - thrds: 7, evs: 283,
l-evs: 44, l-vars: 9, rw-evs:
163, rw-vars: 12, wn-evs: 6

855

709 (83)

146 (17)

0 (0)

0.064s

146 (17)

709 (83)

SynchBench - thrds: 16,
evs: 1510, l-evs: 306, 1-vars:
2, rw-evs: 533, rw-vars: 15,
wn-evs: 0

47526

39474 (83)

8052 (17)

0 (0)

8.85s

8052 (17)

39474 (83)

Barrier - thrds: 10, evs:
653, l-evs: 108, l-vars: 2,
rw-evs: 262, rw-vars: 12,
wn-evs: 7

3975

3231 (81)

744 (19)

0 (0)

0.62s

744 (18.7)

3231 (81.3)

account - thrds: 11, evs:
902, l-evs: 146, l-vars: 21,
rw-evs: 430, rw-vars: 42,
wn-evs: 10

1416

1042 (73.6)

326 (23)

48 3.4)

2.83

1.352s

374 (26.1)

1058 (73.9)

1.06

DaisyTest - thrds: 3, evs:
2998, l-evs: 422, l-vars: 10,
rw-evs: 2003, rw-vars: 45,
wn-evs: 15

383007

305635 (79.8)

61852 (16.1)

15520 (4.1)

6.35 1.12

244s

77372 (20.2)

305650 (79.8)

1.005

Elevator - thrds: 4, evs:
3004, l-evs: 370, l-vars: 11,
rw-evs: 1795, rw-vars: 70,
wn-evs: 0

3249

2671 (82)

578 (18)

0 (0)

0.8s

578 (17.8)

2671 (82.2)

philo - thrds: 6, evs: 1141,
l-evs: 126, l-vars: 6, rw-evs:
857, rw-vars: 23, wn-evs:
22

4893

4118 (84)

775 (16)

0 (0)

0.65s

775 (15.8)

4118 (84.2)

ThriftTracel - thrds: 4,
evs: 2406, 1-evs: 226, l-vars:
12, rw-evs: 869, rw-vars:
62, wn-evs: 53

618

361 (58)

96 (16)

161 (26)

105.6 1

257 (41.6)

361 (58.4)

ThriftTrace2 -
evs: 11357, l-evs: 1384,
l-vars: 48, rw-evs: 3184,
rw-vars: 171, wn-evs: 324

thrds: 4,

35610

29441 (82.7)

5804 (16.3)

365 (1)

296.7 1

28s

6169 (17.3)

29441 (82.7)

ThriftTrace3 - thrds: 6,
evs: 20640, l-evs: 1724,
l-vars: 158, rw-evs: 8818,
rw-vars: 519, wn-evs: 349

479142

399814 (83)

79326 (16.5)

2 (e)

243s

79328 (16.6)

399814 (83.4)
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