
Quantifier Elimination by Dependency Sequents
Eugene Goldberg and Panagiotis Manolios

Northeastern University, USA, {eigold,pete}@ccs.neu.edu

Abstract—We consider the problem of existential quantifier
elimination for Boolean CNF formulas. We present a new
method for solving this problem called Derivation of Dependency-
Sequents (DDS). A Dependency-sequent (D-sequent) is used to
record that a set of quantified variables is redundant under
a partial assignment. We introduce the join operation that
produces new D-sequents from existing ones. We show that DDS
is compositional, i.e., if our input formula is a conjunction of
independent formulas, DDS automatically recognizes and exploits
this information. We introduce an algorithm based on DDS and
present experimental results demonstrating its potential.

I. INTRODUCTION

In this paper, we consider the problem of eliminating
quantifiers from formulas of the form ∃X[F] where F is a
Boolean CNF formula and some variables of F may be free
of quantifiers. We will refer to such formulas as ∃CNF. The
Quantifier Elimination (QE) problem, is to find a quantifier-
free CNF formula G such that G ≡ ∃X[F].

Our interest in the QE problem is twofold. First, the QE
problem occurs in numerous areas of hardware design and
verification, e.g., in symbolic model checking [9], [10], [22]
when computing reachable states. Second, one can argue that
progress in solving the QE problem should have a deep impact
on SAT-solving [15]. In particular, as McMillan pointed out,
even the basic operation of resolution is related to the QE
problem [23]. The resolvent C of clauses C ′,C ′′ on a variable
v is obtained by eliminating the quantifier from ∃v[C ′ ∧C ′′].

The success of resolution-based SAT-solvers [21], [24] has
led to the hunt for efficient SAT-based algorithms for the QE
problem [23], [18], [6], [13]. In this paper, we continue in
this direction by introducing a resolution-based QE algorithm
operating on CNF formulas. Such formulas are ubiquitous in
hardware verification because a circuit N can be represented
by a CNF formula whose size is linear in that of N and that
has the same set of variables as N .

Our approach is based on the following observation. The
QE problem is trivial if F does not depend on variables of X .
In this case, dropping the quantifiers from ∃X[F] produces an
equivalent formula. If F depends on X , after adding to F a
set of clauses implied by F , the variables of X may become
redundant in ∃X[F]. That is, the clauses of F depending on X
can be dropped and the resulting CNF formula G is equivalent
to the original formula ∃X[F]. The problem is that one needs
to know when the variables of X become redundant.

Unfortunately, resolution is deficient in expressing redun-
dancy of variables. Let y be an assignment to all non-
quantified variables of ∃X[F]. Let Fy denote F under as-
signment y. If Fy is unsatisfiable, then a clause C falsified
by y can be derived by resolving clauses of F . After adding

C to F , the variables of X are redundant in ∃X[Fy]. In
this case, resolution works. Assume, however, that Fy is
satisfiable. Then, the variables of X are also redundant in
∃X[Fy] because Fy remains satisfiable after removing any
set of clauses. But a resolution derivation cannot express this
fact since no clause falsified by y is implied by F .

To address this problem, we introduce the notion of De-
pendency sequents (D-sequents). A D-sequent has the form
(∃X[F], q) → Z where q is a partial assignment to variables
of F and Z ⊆ X . This D-sequent states that in the subspace
specified by q, the variables of Z are redundant in ∃X[F].
That is, in this subspace, after dropping clauses with variables
of Z from F one gets a formula equivalent to ∃X[F]. In
particular, the D-sequent (∃X[F],y) → X holds, if formula
Fy is satisfiable where y is an assignment to the non-quantified
variables of ∃X[F].

In this paper, we introduce a QE algorithm called
DDS (Derivation of D-Sequents). In DDS , adding resolvent
clauses to F is accompanied by computing D-sequents. The
algorithm terminates when the D-sequent (∃X[G], ∅)→ X is
derived, where G is a CNF formula that includes the initial
clauses, F , and some resolvent clauses. Upon termination, the
variables of X are unconditionally redundant and a solution to
the QE problem is obtained by dropping the clauses containing
variables of X from G.
DDS includes a join operation that generates new D-

sequents from existing ones. Let (∃X[F], q′) → Z and
(∃X[F], q′′)→Z be valid D-sequents where q′ and q′′ have
opposite assignments to exactly one variable v. Then a new,
valid D-sequent (∃X[F], q) → Z can be obtained by joining
the D-sequents above, where q contains all assignments of q′

and q′′ except those to v.
In this paper, we compare DDS with its counterparts

both theoretically and experimentally. In particular, we show
that DDS is compositional while algorithms based on enu-
meration of satisfying assignments [23], [19], [13], [6] are
not. Compositionality here means that given an ∃CNF for-
mula ∃X[F1 ∧ · · · ∧ Fk] where formulas Fi depend on non-
overlapping sets of variables, DDS breaks the QE problem
into k independent subproblems. DDS is a branching algo-
rithm and yet it remains compositional no matter how branch-
ing variables are chosen. Compositionality of DDS means
that its performance can be exponentially better than that of
enumeration-based QE algorithms. Since DDS is a branching
algorithm it can process variables of different branches in dif-
ferent orders. This gives DDS a big edge over QE algorithms
that eliminate quantified variables one by one using a global
order [18], [15].

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

3434978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 34978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

D-sequents are related to boundary points [14]. A boundary
point is a complete assignment to variables of F with certain
properties. To make variables of Z ⊆ X redundant in ∃X[F]
one needs to eliminate a particular set of boundary points. This
elimination is performed by adding to F resolvent clauses that
do not depend on variables of Z. Although, DDS does not
compute boundary points explicitly, we introduce them in this
paper for the following two reasons. First, boundary points
provide the semantics of DDS . In particular, the proofs of
many propositions we use in this paper are based on the notion
of boundary points. Second, DDS avoids an explicit com-
putation of boundary points by using a particular branching
order: non-quantified variables of ∃X[F] are assigned before
quantified. However, there is no guarantee that such an order
is always optimal and so to achieve the best performance one
may need to interleave assignments to quantified and non-
quantified variables. In this case, to reduce the number of new
resolvent clauses to be added to F , one, in general, cannot
avoid an explicit computation of boundary points [17].

The contribution of this paper is as follows. First, we
relate the notion of variable redundancy with the elimination
of boundary points. Second, we introduce the notion of D-
sequents and the operation of joining D-sequents. Third, we
describe DDS , a QE algorithm; we prove its correctness
and evaluate it experimentally. Fourth, we show that DDS is
compositional.

This paper is structured as follows. In Section II, we
relate the notions of variable redundancy and boundary points.
Section III explains the strategy of DDS in terms of boundary
point elimination. D-sequents are introduced in Section IV.
Sections V and VI describe DDS and discuss its composi-
tionality. Section VII gives experimental results. Background
is discussed in Section VIII, and conclusions are presented in
Section IX.

II. REDUNDANT VARIABLES, BOUNDARY POINTS AND
QUANTIFIER ELIMINATION

The main objective of this section is to introduce the notion
of redundant variables and to relate it to the elimination of
removable boundary points.

A. Redundant Variables and Quantifier Elimination

Definition 1: An ∃CNF formula is a quantified CNF for-
mula of the form ∃X[F] where F is a CNF formula, and X
is a set of Boolean variables. If we do not explicitly specify
whether we are referring to CNF or ∃CNF formulas, when we
write “formula” we mean either a CNF or ∃CNF formula. Let
q be an assignment, F be a CNF formula, and C be a clause.
Vars(q) denotes the variables assigned in q; Vars(F) denotes
the set of variables of F ; Vars(C) denotes the variables of
C; and Vars(∃X[F]) = Vars(F) \X .

Definition 2: Let C be a clause, H be a formula, and q be
an assignment. Cq is true if C is satisfied by q; otherwise it
is the clause obtained from C by removing all literals falsified
by q. Let p be q∩Vars(H). Hq denotes the formula obtained
from H by first removing the clauses of H satisfied by p, and

then removing all the literals falsified by p in the remaining
clauses of H . If Vars(H) ⊆ Vars(q), then Hq is semantically
equivalent to a constant, and in the sequel, we will make use
of this without explicit mention.

Definition 3: Let G,H be formulas. We say that G,H are
equivalent, written G ≡ H , if for all assignments, q, such that
Vars(q) ⊇ (Vars(G)∪Vars(H)), we have Gq = Hq . Notice
that Gq and Hq have no free variables, so by Gq = Hq we
mean semantic equivalence.

Definition 4: The Quantifier Elimination (QE) problem for
∃CNF formula ∃X[F] consists of finding a CNF formula G
such that G ≡ ∃X[F].

Definition 5: A clause C of F is called a Z-clause if
Vars(C) ∩ Z 6= ∅. Denote by FZ the set of all Z-clauses
of F .

Definition 6: The variables of Z are redundant in CNF
formula F if F ≡ (F \FZ). The variables of Z are redundant
in ∃CNF formula ∃X[F] if ∃X[F] ≡ ∃X[F \ FZ]. We note
that since F \FZ does not contain any Z variables, we could
have written ∃(X \Z)[F \FZ]. To simplify notation, we avoid
explicitly using this optimization in the rest of the paper.

B. Redundant Variables and Boundary Points

Definition 7: Given assignment p and a formula F , we say
that p is an F -point (or a point of F) if Vars(F) ⊆ Vars(p).

In the sequel, by “assignment” we mean a possibly partial
one. To refer to a complete assignment we will use the term
“point”.

Definition 8: A point p of CNF formula F is called a Z-
boundary point of F if a) Z 6= ∅ and b) Fp = false and
c) every clause of F falsified by p is a Z-clause and d) the
previous condition breaks for every proper subset of Z.

The term “boundary” is justified as follows. Let F be a
satisfiable CNF formula with at least one clause. Then there
always exists a {x}-boundary point of F , x ∈ Vars(F) that
is different from a satisfying assignment only in value of x.

Definition 9: Given a CNF formula F and a Z-boundary
point, p, of F :
• p is X-removable in F if 1) Z ⊆ X ⊆ Vars(F); and 2)

there is a clause C such that a) F ⇒ C; b) Cp = false;
and c) Vars(C) ∩X = ∅.

• p is removable in ∃X[F] if p is X-removable in F .
In the above definition, notice that p is not a Z-boundary

point of F ∧ C because p falsifies C and Vars(C) ∩ Z = ∅.
Proposition 1: A Z-boundary point p of F is removable in

∃X[F], iff one cannot turn p into an assignment satisfying F
by changing only the values of variables of X .

The proofs are given in [16].
Proposition 2: The variables of Z ⊆ X are not redundant

in ∃X[F] iff there is an X-removable W -boundary point of
F , W ⊆ Z.

Proposition 2 justifies the following strategy of solving the
QE problem. Add to F a set G of clauses that a) are implied
by F ; b) eliminate all X-removable Z-boundary points for
all Z ⊆ X . By dropping all X-clauses of F , one produces a
solution to the QE problem.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

353535

III. BOUNDARY POINTS AND DIVIDE-AND-CONQUER
STRATEGY

In this section, we provide the semantics of the QE al-
gorithm DDS described in Section V. DDS is a branching
algorithm. Given an ∃CNF formula ∃X[F], it branches on
variables of F until proving redundancy of variables of X
in the current subspace becomes trivial. Then DDS merges
the results obtained in different branches to prove that the
variables of X are redundant in the entire search space.

Below we give propositions justifying the divide-and-
conquer strategy of DDS. Proposition 3 shows how to perform
elimination of removable boundary points of F in the subspace
specified by assignment q. Proposition 4 justifies proving
redundancy of variables of X in subspace q one by one.
Finally, Subsection III-B describes two cases where proving
variable redundancy is trivial.

A. Decomposing the Problem of Boundary Point Elimination

Definition 10: Let q1 and q2 be assignments. The expres-
sion q1 ≤ q2 denotes the fact that Vars(q1) ⊆ Vars(q2) and
each variable of Vars(q1) has the same value in q1 and q2.

Proposition 3: Let ∃X[F] be an ∃CNF formula and q be
an assignment to Vars(F). Let p be a Z-boundary point of F
where q ≤ p and Z ⊆ X . Then if p is removable in ∃X[F]
it is also removable in ∃X[Fq].

The opposite is not true: a boundary point may be X-
removable in Fq and not X-removable in F . For instance,
if X = Vars(F), a Z-boundary point p of F is removable
in ∃X[F] for any Z ⊆ X only by adding an empty clause to
F . So if F is satisfiable, p is not removable. Yet p may be
removable in ∃X[Fq] if Fq is unsatisfiable.

Definition 11: Let ∃X[F] be an ∃CNF formula, q be an
assignment to Vars(F), and Z ⊆ (X \ Vars(q)). Vari-
ables of Z are called virtually redundant in ∃X[Fq] if
∃X[Fq \ (Fq)Z] ≡ (∃X[F])r where r ≤ q and Vars(r) =
Vars(q) \X .

Redundancy of variables of Z in ∃X[Fq] in terms of
Definition 6 is a special case of virtual redundancy. To
prove variables of Z redundant in ∃X[F] in subspace q, it
is sufficient to show virtual redundancy of Z in ∃X[Fq].
The reason is that one can ignore Z-boundary points that
are removable in ∃X[Fq] and not removable in ∃X[F]. We
introduce a new notion of redundancy of variables Z in Fq

because the operation of joining D-sequents (Definition 16)
preserves only virtual redundancy of Z. In the sequel, when
we say that variables of Z are redundant in ∃X[Fq] we mean
that they are at least virtually redundant.

Proposition 4: Let ∃X[F] be a CNF formula and q be
an assignment to variables of F . Let the variables of Z be
redundant in ∃X[Fq] where Z ⊆ (X\Vars(q)). Let a variable
x of X\(Vars(q)∪Z) be redundant in ∃X[Fq \ (Fq)Z]. Then
the variables of Z ∪ {x} are redundant in ∃X[Fq].

Proposition 4 shows that one can make variables of X \
Vars(q) redundant incrementally, if every {x}-clause is re-
moved from Fq as soon as variable x is proved redundant.

B. Two Trivial Cases of Variable Redundancy

Definition 12: Let C ′ and C ′′ be clauses having opposite
literals of exactly one variable v ∈ Vars(C ′) ∩ Vars(C ′′).
The clause C consisting of all literals of C ′ and C ′′ but those
of v is called the resolvent of C ′,C ′′ on v. Clause C is said
to be obtained by resolution on v. Clauses C ′,C ′′ are called
resolvable on v.

Definition 13: A variable x of a CNF formula F is called
blocked if no two clauses of F are resolvable on x. A variable
x is called monotone if it is a pure literal variable [11] (i.e.
literals of only one polarity of x are present in F). A monotone
variable is a special case of a blocked variable.

The notion of blocked variables is related to that of blocked
clauses introduced in [20] (not to confuse with blocking
clauses [23]). A clause C of F is blocked with respect to
x if no clause C ′ of F is resolvable with C on x. Variable
x is blocked in F if every {x}-clause of F is blocked with
respect to x.

Proposition 5: Let ∃X[F] be an ∃CNF formula and q be
an assignment to Vars(F). Let a variable x of X \ Vars(q)
be blocked in Fq . Then x is redundant in ∃X[Fq].

Proposition 6: Let ∃X[F] be an ∃CNF formula and q be
an assignment to Vars(F). Let Fq have an empty clause. Then
the variables of X \Vars(q) are redundant in ∃X[Fq].

IV. DEPENDENCY SEQUENTS (D-SEQUENTS)

In this section, we define D-sequents and introduce the
operation of joining D-sequents.

A. Definition of D-sequents

Definition 14: Let ∃X[F] be an ∃CNF formula. Let q be
an assignment to Vars(F) and Z be a subset of X\Vars(q). A
dependency sequent (D-sequent) has the form (∃X[F], q)→
Z. It states that the variables of Z are redundant in ∃X[Fq].

Example 1: Consider an ∃CNF formula ∃X[F] where F =
C1 ∧ C2, C1 = x ∨ y1 and C2 = x ∨ y2 and X = {x}. Let
q={(y1 = 1)}. Then Fq = C2 because C1 is satisfied. Notice
that x is monotone and so redundant in Fq (Proposition 5).
Hence, the D-sequent (∃X[F], q)→ {x} holds.

According to Definition 14, a D-sequent holds with respect
to a particular ∃CNF formula ∃X[F]. Proposition 7 shows that
this D-sequent also holds after adding to F resolvent clauses.

Proposition 7: Let ∃X[F] be an ∃CNF formula. Let H =
F ∧ G where F ⇒ G. Let q be an assignment to Vars(F).
Then if (∃X[F], q)→ Z holds, (∃X[H], q)→ Z does too.

B. Join Operation for D-sequents

In this subsection, we introduce the operation of joining D-
sequents. The join operation produces a new D-sequent from
two D-sequents derived earlier. The semantics of this operation
in terms of elimination of boundary points is quite simple. Let
A1 and A2 be subspaces from which all removable boundary
points of F relevant to redundancy of Z ⊆ X in ∃X[F] have
been eliminated. The join operation produces a new subspace
A such that A ⊆ A1∪A2. We start with introducing resolution
of assignments that is similar to that of clauses.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

363636

// ξ denotes ∃X[F], q is an assignment to Vars(F)
// Ω denotes a set of active D-sequents

DDS (ξ,q,Ω){
1 (Ω, ans, C)← atomic D seqs(ξ, q,Ω);
2 if (ans = sat) return(ξ,Ω, sat);
3 if (ans = unsat) return(ξ,Ω, unsat , C);
4 v := pick variable(F, q,Ω);
5 (ξ,Ω, ans0, C0)←DDS (ξ,q ∪ {(v = 0)},Ω);
6 (Ωsym ,Ωasym)← split(F,Ω, v);
7 if (Ωasym = ∅) return(ξ,Ω, ans0, C0);
8 Ω := Ω \ Ωasym ;
9 (ξ,Ω, ans1, C1)←DDS (ξ,q ∪ {(v = 1)},Ω);
10 if ((ans0 = unsat) and (ans1 = unsat)){
11 C := resolve clauses(C0, C1, v);
12 F := F ∧ C;
13 Ω := process unsat clause(ξ, C,Ω);
14 return(ξ,Ω, unsat , C);}
15 Ω := merge(ξ, q, v,Ωasym ,Ω);
16 return(ξ,Ω, sat);}

Fig. 1. DDS procedure

Definition 15: Let q′ and q′′ be assignments in which
exactly one variable v ∈ Vars(q′) ∩ Vars(q′′) is assigned
different values. The assignment q consisting of all the as-
signments of q′ and q′′ but those to v is called the resolvent
of q′,q′′ on v. Assignments q′,q′′ are called resolvable on v.

Proposition 8: Let ∃X[F] be an ∃CNF formula. Let D-
sequents (∃X[F], q′) → Z and (∃X[F], q′′) → Z hold. Let
q′, q′′ be resolvable on v ∈ Vars(F) and q be the resolvent
of q′ and q′′. Then, the D-sequent (∃X[F], q) → Z holds
too.

Definition 16: We will say that the D-sequent
(∃X[F], q) → Z of Proposition 8 is produced by joining
D-sequents (∃X[F], q′) → Z and (∃X[F], q′′) → Z at v.

V. DESCRIPTION OF DDS

In this section, we describe a QE algorithm called
DDS (Derivation of D-Sequents). DDS derives D-sequents
(∃X[F], q) → {x} stating the redundancy of one variable of
X . From now on, we will use a short notation of D-sequents
writing q → {x} instead of (∃X[F], q) → {x}. We will
assume that the parameter ∃X[F] missing in q → {x} is
the current ∃CNF formula (with all resolvent clauses added
to F so far). One can omit ∃X[F] from D-sequents be-
cause from Proposition 7 it follows that once D-sequent
(∃X[F], q) → {x} is derived it holds after adding to F any
set of resolvent clauses. We will call D-sequent r → {x} ac-
tive in the branch specified by assignment q if r ≤ q i.e. if this
D-sequent provides a proof of redundancy of x in subspace q.

A description of DDS is given in Figure 1. DDS accepts
an ∃CNF formula ∃X[F] (denoted as ξ), an assignment q to
Vars(F) and a set Ω of active D-sequents stating redundancy
of some variables of X \ Vars(q) in ∃X[Fq]. DDS returns
a modified formula ∃X[F] (where resolvent clauses have
been added to F) and a set Ω of active D-sequents stating
redundancy of every variable of X \ Vars(q) in ∃X[Fq].
DDS also returns the answer sat if Fq is satisfiable. If Fq

is unsatisfiable, DDS returns the answer unsat and a clause
of F falsified by q. To build a CNF formula equivalent to ξ,

atomic D seqs(ξ, q,Ω){
1 if (∃ clause C ∈ F falsif. by q){
2 Ω:=process unsat clause(ξ, C,Ω);
3 return(Ω, unsat , C);}
4 Ω:=new redund vars(ξ,q,Ω);
5 if (all unassgn vars redund(ξ, q,Ω)) return(Ω, sat);
6 return(Ω, unknown)};

Fig. 2. atomic D seqs procedure

one needs to call DDS with q = ∅, Ω = ∅ and discard the
X-clauses of the CNF formula F returned by DDS .

A. The Big Picture

First, DDS looks for variables whose redundancy is trivial
to prove (lines 1-3). If some variables of X \Vars(q) are not
proved redundant yet, DDS picks a branching variable v (line
4). Then it extends q by assignment (v = 0) and recursively
calls itself (line 5) starting the left branch of v. Once the left
branch is finished, DDS extends q by (v = 1) and explores the
right branch (line 9). The results of the left and right branches
are then merged (lines 10-16).
DDS terminates when for every variable x of X \Vars(q)

it derives a D-sequent g → {x} where g ≤ q. According to
Proposition 4, derivation of such D-sequents means that the D-
sequent q → X \Vars(q) holds. Proposition 4 is applicable
here because once a variable x of X \ Vars(q) is proved
redundant in ∃X[Fq], every {x}-clause of Fq is marked as
redundant. (A redundant clause is ignored by DDS until it is
unmarked as non-redundant.) So, DDS terminates when the
QE problem is solved for ξ in subspace q.

B. Building Atomic D-sequents

Procedure atomic D seqs is called by DDS to compute
D-sequents for trivial cases of variable redundancy listed in
Subsection III-B. We refer to such D-sequents as atomic.
Procedure atomic D seqs returns an updated set of active D-
sequents Ω and answer sat, unsat, or unknown depending on
whether F is satisfiable, unsatisfiable or its satisfiability is not
known yet. If F is unsatisfiable, atomic D seqs also returns
a clause C of F falsified by the current assignment q.

Lines 1-3 of Figure 2 show what is done when F contains
a clause C falsified by q. In this case, every unassigned
variable of F becomes redundant (Proposition 6). So, for every
variable of x ∈ X \ Vars(q) for which Ω does not contain a
D-sequent yet, procedure process unsat clause generates D-
sequent g → {x} and adds it to Ω. Here g is the shortest
assignment falsifying C. Once Ω contains a D-sequent for
every variable of X \ Vars(q), atomic D seqs terminates
returning the answer unsat, set Ω and clause C.

Suppose no clause of F is falsified by q. Then for every
variable x of X \ Vars(q) that does not have a D-sequent in
Ω and that is blocked, a D-sequent is built as explained below.
This D-sequent is then added to Ω (line 4). If every variable
of X \ Vars(q) has a D-sequent in Ω, then Fq is satisfiable.
(If Fq is unsatisfiable, the variables of X \ Vars(q) can be
made redundant only by adding a clause falsified by q.) So,
atomic D seqs returns the answer sat and set Ω (line 5).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

373737

Given a blocked variable x ∈ X \ Vars(q) of Fq , a D-
sequent g → {x} is built as follows. Recall that an assignment
q is a set of single-variable assignments. The fact that x
is blocked in Fq means that for any pair of clauses C ′,C ′′

resolvable on x, C ′ or C ′′ is either satisfied by q or redundant
(as containing a variable proved redundant in ∃X[Fq] earlier).
Assume that it is clause C ′. The assignment g is a subset of
q guaranteeing that C ′ remains satisfied by g or redundant in
∃X[Fg] and so x remains blocked in Fg . If C ′ is satisfied by
q, then g contains a single-variable assignment of q satisfying
C ′. If C ′ is not satisfied by q but contains a variable x∗

proved redundant earlier, g contains all the single-variable
assignments of g∗ where g∗ → {x∗} is the D-sequent of
Ω stating redundancy of x∗.

Searching for blocked variables of F for every call of
DDS may be too expensive. Some simple techniques can be
used to reduce the complexity of this search but a discussion
of such techniques is beyond the scope of this paper. In the im-
plementation of DDS we used in experiments, no optimization
techniques were applied when searching for blocked variables.

C. Selection of a Branching Variable

Let q be the assignment DDS is called with and Xred be
the set of variables of X whose D-sequents are in the current
set Ω. Let Y = Vars(F)\X . DDS branches only on a subset
of free (i.e., unassigned) variables of X and Y . Namely, a
variable x ∈ X \ Vars(q) is picked for branching only if
x 6∈ Xred . A variable y ∈ Y \Vars(q) is picked for branching
only if it is not detached. A variable y of Y \Vars(q) is called
detached in Fq , if every {y}-clause C of Fq that has at least
one variable of X is redundant (because C contains a variable
of Xred).

Although Boolean Constraint Propagation (BCP) is not
shown explicitly in Figure 1, it is included into the
pick variable procedure as follows: a) preference is given to
branching on variables of unit clauses of Fq (if any); b) if v
is a variable of a unit clause of C of Fq and v is picked for
branching, then the value falsifying C is assigned first to cause
immediate termination of this branch. In the description of
DDS of Figure 1, the left branch always explores assignment
v = 0. But, obviously, v can be first assigned value 1.

To simplify making the branching variable v redundant
when merging results of the left and right branches (see
Subsection V-E), DDS first assigns values to variables of Y .
This means that pick variable never selects a variable x ∈ X
for branching, if there is a free non-detached variable of Y .
In particular, BCP does not assign values to variables of X if
a non-detached variable of Y is still unassigned.

D. Switching from Left to Right Branch

DDS prunes big chunks of the search space by not branch-
ing on redundant variables of X or detached variables of Y .
One more powerful pruning technique of DDS discussed in
this subsection is to reduce the size of right branches.

Let g → {x} be a D-sequent of the set Ω computed
by DDS in the left branch v = 0 (line 5 of Figure 1).

merge(ξ, q, v,Ωasym ,Ω){
1 Ω := join D seqs(v,Ωasym ,Ω);
2 if (v ∈ X) Ω := Ω ∪ {atomic D seq for v(F, q, v,Ω)};
3 return(Ω);}

Fig. 3. merge procedure

Notice that if g has no assignment (v=0), variable x remains
redundant in ∃X[Fq1] where q1 = q ∪ {(v = 1)}. This is
because g → {x} is still active in the subspace specified by
q1. DDS splits the set Ω into subsets Ωsym and Ωasym of D-
sequents symmetric and asymmetric with respect to variable v
(line 6). We call a D-sequent g → {x} symmetric with respect
to v, if g does not contain an assignment to v and asymmetric
otherwise.

Denote by Xsym and Xasym the variables of Xred\Vars(q)
whose redundancy is stated by D-sequents of Ωsym and Ωasym

respectively. Before exploring the right branch (line 9), the
variables of Xasym become non-redundant again. Every clause
C of Fq with a variable of Xasym is unmarked as currently
non-redundant unless Vars(C) ∩Xsym 6= ∅.

Reducing the set of free variables of the right branch to
Xasym allows to prune big parts of the search space. In
particular, if Xasym is empty there is no need to explore the
right branch. In this case, DDS just returns the results of the
left branch (line 7). Pruning the right branch when Xasym

is empty is similar to non-chronological backtracking well
known in SAT-solving [21].

E. Branch Merging
Let q0 = q∪{(v = 0)} and q1 = q∪{(v = 1)}. The goal of

branch merging is to extend the redundancy of all unassigned
variables of X proved in ∃X[Fq0] and ∃X[Fq1] to formula
∃X[Fq]. If both Fq0 and Fq1 turned out to be unsatisfiable, this
is done as described in lines 11-14 of Figure 1. In this case,
the unsatisfied clauses C0 and C1 of Fq0 and Fq1 returned
in the left and right branches respectively are resolved on v.
The resolvent C is added to F . Since F contains a clause C
that is falsified by q, for every variable x ∈ X \ Vars(q)
whose D-sequent is not in Ω, DDS derives an atomic D-
sequent and adds it to Ω. This is performed by procedure
process unsat clause described in Subsection V-B. If, say,
v 6∈Vars(C1), then resolve clauses (line 11) returns C1 itself
since C1 is falsified by q and no new clause is added to F .

If at least one branch returns answer sat, then DDS calls
procedure merge described in Figure 3. First, merge takes care
of the variables of Xasym (see Subsection V-D). Note that
redundancy of variables of Xasym is already proved in both
branches. If a D-sequent of a variable from Xasym returned
in the right branch is asymmetric in v, then join D seqs (line
1) replaces it with a D-sequent symmetric in v as follows.

Let x ∈ Xasym and S0 and S1 be the D-sequents stating
the redundancy of x derived in the left and right branches
respectively. Then join D seqs joins S0 and S1 at v producing
a new D-sequent S. The latter also states the redundancy of x
but does not depend on v. D-sequent S1 is replaced in Ω with
S. If S1 itself does not depend on v, no new D-sequent is
produced. S1 remains in Ω as the active D-sequent for variable
x in Fq .

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

383838

Finally, if the branching variable v is in X , DDS derives
a D-sequent stating the redundancy of v. Notice that v is not
currently redundant in ∃X[Fq] because DDS does not branch
on redundant variables. As we mentioned in Subsection V-C,
the variables of Y = Vars(F)\X are assigned in DDS before
those of X . This means that before v was selected for
branching, all free non-detached variables of Y had been
assigned. Besides, every variable of X \ Vars(q) but v has
just been proved redundant in ∃X[Fq]. So, Fq may have
only two types of non-redundant clauses: a) clauses having
only detached variables of Y ; b) unit clauses depending on
v. Moreover, these unit clauses cannot contain literals of both
polarities of v because merge is called only when either branch
v = 0 or v = 1 is satisfied. Therefore, v is monotone. An
atomic D-sequent S stating the redundancy of v is built as
described in Subsection V-B and added to Ω (line 2). Then
merge terminates returning Ω.

F. Correctness of DDS and Example

Fig. 4. Search tree built by
DDS

Let DDS be called on for-
mula ξ = ∃X[F] with q = ∅
and Ω = ∅. Informally, DDS is
correct because a) the atomic
D-sequents built by DDS are
correct; b) joining D-sequents
produces a correct D-sequent; c)
every clause added to formula F
is produced by resolution and so
is implied by F ; d) by the time
DDS backtracks to the root of
the search tree, for every vari-

able x ∈ X , D-sequent ∅ → {x} is derived. Due to
Proposition 4, this implies that the D-sequent ∅ → X holds
for the formula ∃X[F] returned by DDS .

Proposition 9: DDS is sound and complete.
As we mentioned earlier, the proofs of the propositions

given in this paper are provided in [16].
Example 2. Let ∃X[F] be an ∃CNF formula where F =

C1∧C2, C1 = y1∨x, C2 = y2∨x and X = {x}. To identify a
particular DDS call we will use the corresponding assignment
q. For example, DDS (y1=1,y2=0) means that the assignments
y1 = 1 and y2 = 0 were made at recursion depths 0 and 1
respectively. So the current recursion depth is 2. Originally,
assignment q is empty so the initial call is DDS (∅). The work
of DDS is shown in Figures 4 and 5 used below to illustrate
various aspects of DDS .

Branching variables. Figure 4 shows a search tree built by
DDS . Recall that DDS branches on variables of Vars(F) \
X = {y1, y2} before those of X (see Subsection V-C).

Leaves. The search tree of Figure 4 has four leaf nodes
shown in dotted ovals. In each leaf node, variable x is either
assigned or proved redundant. For example, x is proved re-
dundant by DDS (y1=0) and assigned by DDS (y1=1,y2=0,x=1).

Generation of new clauses. DDS (y1=1,y2=0) generates a
new clause after branching on x. DDS (y1=1,y2=0,x=1) returns
C1 as a clause of F that is empty in F(y1=1,y2=0,x=1).

Similarly, DDS (y1=1,y2=0,x=0) returns C2 because it is empty
in F(y1=1,y2=0,x=0). As described in Subsection V-E, in this
case, DDS resolves clauses C1 and C2 on the branching
variable x. The resolvent C3 = y1 ∨ y2 is added to F .

Generation of atomic D-sequents. Figure 5 describes deriva-
tion of D-sequents. The dotted boxes show D-sequents ob-
tained by the join operation. The atomic D-sequents are shown
in dotted ovals. For instance, DDS (y1=0) generates D-sequent
S1 equal to (y1 =0)→ {x}. S1 holds because F(y1=0)=y2∨x
and so x is a blocked (monotone) variable of F(y1=0). The
atomic D-sequent S2 is derived by DDS (y1=1,y2=0). As we
mentioned above, DDS (y1=1,y2=0) adds clause C3 = y1 ∨ y2
to F . This clause is empty in F(y1=1,y2=0). So D-sequent
S2 equal to (y1 = 1, y2 = 0) → {x} is generated where
(y1 =1, y2 =0) is the shortest assignment falsifying C3.

Fig. 5. Derivation of D-sequents

Switching from left to
right branch. Let us consider
switching between branches by
DDS (∅) where y1 is picked
for branching. The set of D-
sequents Ω(∅) returned by the
left branch equals {S1} where
S1 is equal to (y1 = 0) → {x}.
The only clause y2 ∨ x of
F(y1=0) is marked as redundant
because it contains x that is

currently redundant. Before starting the right branch y1 = 1,
DDS (∅) splits Ω(∅) into subsets Ωsym

(∅) and Ωasym
(∅) of D-

sequents respectively symmetric and asymmetric in y1. Since
the only D-sequent of Ω(∅) depends on y1, then Ωasym

(∅) =Ω(∅)
and Ωsym

(∅) =∅. DDS (∅) removes D-sequent S1 from Ω because
S1 is not active if y1 = 1. So, before DDS (y1=1) is called,
variable x becomes non-redundant and clause C2 = y2 ∨ x is
unmarked as currently non-redundant.

Branch merging. Consider how branch merging is per-
formed by DDS (y1=1). In the left branch y2 = 0, the set
Ω(y1=1)={S2} is computed where S2 is (y1 = 1, y2 = 0) →
{x}. Since S2 depends on y2, then Ωasym

(y1=1)=Ω(y1=1). In the
right branch y2 = 1, the set Ω(y1=1)={S3} is computed where
S3 is (y2 = 1) → {x}. By joining S2 and S3 at y2, D-
sequent S4 is derived that equals (y1 = 1) → {x}. S4 states
redundancy of x in F(y1=1).

Termination. When DDS (∅) terminates, F = C1 ∧C2 ∧C3

where C3 = y1 ∨ y2 and D-sequent ∅ → {x} is de-
rived. By dropping C1, C2 as X-clauses one obtains C3 ≡
∃X[C1 ∧ C2].

VI. COMPOSITIONALITY OF DDS

We will call a CNF formula F compositional if F =
F1 ∧ . . . ∧ Fk where Vars(Fi) ∩ Vars(Fj) = ∅, i 6= j. We
will say that an algorithm solves the QE problem specified by
∃X[F] compositionally if it breaks this problem down into k
independent subproblems of finding Gi equivalent to ∃X[Fi].
A formula G equivalent to ∃X[F] is then built as G1∧. . .∧Gk.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

393939

There are at least two reasons to look for compositional QE
algorithms. First, even if the original formula F is not compo-
sitional, a formula Fq obtained from F by making assignment
q may be compositional. Second, a practical formula F
typically can be represented as F1(X1, Y1)∧ . . .∧Fk(Xk, Yk)
where Xi are internal variables of Fi and Yi are communi-
cation variables i.e. ones shared by subformulas Fi. One can
view Fi as describing a “design block” with external variables
Yi. The size of Yi is usually much smaller than that of Xi.
The latter fact is, arguably, what one means by saying that
F has structure. One can view compositional formulas as a
degenerate case where |Yi| = 0, i = 1, . . . , k and so Fi do
not “talk” to each other. Intuitively, an algorithm that does not
scale well even if |Yi| = 0 will not do well when |Yi| > 0.

A QE algorithm based on enumeration of satisfying as-
signments is not compositional. The reason is that the set
of assignments satisfying F is a Cartesian product of those
satisfying Fi,i = 1, . . . , k. So if, for example, all Fi are iden-
tical, the complexity of an enumeration based QE algorithm
is exponential in k. A QE algorithm based on BDDs [7] is
compositional only for variable orderings where variables of
Fi and Fj , i 6= j do not interleave.

Now we show the compositionality of DDS . By a decision
branching variable mentioned in the proposition below, we
mean that this variable was not present in a unit clause of the
current formula when it was selected for branching.

Proposition 10 (compositionality of DDS): Let T be the
search tree built by DDS when solving the QE problem
∃X[F1 ∧ . . . ∧ Fk] above. Let Xi = X ∩ Vars(Fi) and
Yi = Vars(Fi) \ X . The size of T in the number of nodes
is bounded by |Vars(F)| · (η(X1 ∪ Y1) + . . . + η(Xk ∪ Yk))
where η(Xi ∪ Yi) = 2 · 3|Xi∪Yi| · (|Xi| + 1), i = 1, . . . , k no
matter how decision branching variables are chosen.

Proposition 10 is proved in [16] for a slightly modified
version of DDS . Notice that the compositionality of DDS is
not ideal. For example, if all subformulas Fi are identical,
DDS is quadratic in k as opposed to being linear. Informally,
DDS is compositional because D-sequents it derives have the
form g → {x} where Vars(g) ∪ {x} ⊆ Vars(Fi). The only
exception are D-sequents derived when the current assignment
falsifies a clause of F . This exception is the reason why
DDS is quadratic in k.

Importantly, the compositionality of DDS is achieved
not by using some ad hoc techniques but is simply a re-
sult of applying the machinery of D-sequents. This provides
some evidence that DDS can be successfully applied to
non-compositional formulas of the form F1(X1, Y1) ∧ . . . ∧
Fk(Xk, Yk) where |Yi| > 0 and |Yi| � |Xi|, i = 1, . . . , k.

Notice that a QE algorithm that resolves out variables one
by one as in the DP procedure [12] is also compositional.
(If Vars(Fi) ∩ Vars(Fj) = ∅, then clauses of Fi and Fj

cannot be resolved with each other). However, although such
an algorithm may perform well on some classes of formulas,
it is not very promising overall. This is due to the necessity
to eliminate a variable in one big step, which may lead to
generation of a very large number of new resolvent clauses.

On the contrary, being a branching algorithm, DDS is very
opportunistic and eliminates the same variable differently
in different subspaces trying to reduce the number of new
resolvents to be added (if any). The lack of flexibility in
variable elimination is exactly the cause of the poor scalability
of the DP procedure in SAT-solving. There is no reason to
believe that DP-like procedures will scale better for the harder
problem of quantifier elimination.

As we mentioned above, QE algorithms based on BDDs
are compositional only for particular variable orders. This
limitation coupled with the necessity for a BDD to maintain
one global variable order may cripple the performance of BDD
based algorithms even on very simple formulas. Suppose, for
instance, that H and G are compositional CNF formulas where
H = H1 ∧ . . . ∧ Hk and G = G1 ∧ . . . ∧ Gm. Suppose
that variables of subformulas of H and G overlap with each
other so that every variable order for which a BDD of G
is small renders a large BDD for H and vice versa. Let F
be a CNF formula equivalent to (w ∨ H) ∧ (w ∨ G) where
w 6∈ Vars(H)∪Vars(G). (A CNF formula for, say, w∨H is
trivially obtained by adding literal w to every clause of H .)
Notice that F is compositional in branches w = 0 and w = 1
since Fw=0 = H and Fw=1 = G. However, a BDD based
QE algorithm cannot benefit from this fact because the same
variable order has to be used in either branch and no order is
good for both H and G. Notice, that DDS will not have any
problem in handling formula F because DDS is compositional
for any choice of decision variables in branches w = 0 and
w = 1.

VII. EXPERIMENTAL RESULTS

The objective of experiments was to compare DDS with
other SAT-based QE algorithms. We are planning to make a
comparison of DDS with BDD-based algorithms in the near
future. In our experiments, we used a QE algorithm based
on enumeration of satisfying assignments [6] (courtesy of
Andy King). We will refer to this QE algorithm as EnumSA.
We also compared DDS with the QE algorithm of [15] that
we will call QE-GBL. Here GBL stands for global. Given a
formula ∃X[F], QE-GBL eliminates variables of X globally,
one by one, as in the DP procedure. However, when resolving
out a variable x ∈ X , QE-GBL adds a new resolvent to F
only if it eliminates an {x}-removable {x}-boundary point
of F . Variable x is redundant in ∃x[F] if all {x}-removable
{x}-boundary points of F are eliminated. QE-GBL does not
generate so many redundant clauses as DP, but still has the
flaw of eliminating variables globally.

We used QE-GBL for two reasons. First, DDS can be
viewed as a branching version of QE-GBL. In Section VI,
we argued that branching gives DDS more flexibility in
variable elimination in comparison to procedures eliminating
variables globally. So we wanted to confirm that DDS indeed
benefited from branching. Second, one can consider QE-GBL
as an algorithm similar to that of [18]. The latter solves
∃x[F (x, Y)] by looking for a Boolean function H(Y) such
that F (H(Y), Y) ≡ ∃x[F (x, Y)]. We used QE-GBL to get an

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

404040

idea about the performance of the algorithm of [18] since it
was not implemented as a stand-alone tool.Our implementation
of QE-GBL was quite efficient. In particular, we employed
Picosat [4] for finding boundary points.

TABLE I
Experiments with model checking formulas. The time limit is 1min

model che- EnumSA QE-GBL DDS
king mode solved time solved time solved time

(%) (s.) (%) (s.) (%) (s.)
forward 425 (56%) 466 561 (74%) 4,865 664 (87%) 1,530

backward 97 (12%) 143 522 (68%) 2,744 563 (74%) 554

Fig. 6. Forward model checking (1 iteration)

In the first
two experiments
(Table I), we
used the 758
model checking
benchmarks of
HWMCC’10
competition [27]. In
the first experiment
(the first line of
Table I) we used
EnumSA, QE-
GBL and DDS to
compute the set of

states S1
reach reachable in the first transition. In this case,

CNF formula F describes the transition relation and the
initial state. CNF formula G equivalent to ∃X[F] specifies
S1
reach .

In the second experiment, (the second line of Table I) we
used the same benchmarks to compute the set of “bad” states
in backward model checking. In this case, F specifies the
output function and the property in question. If F evaluates to
1 for some assignment p to Vars(F), this property is broken
and the state given by the state bits of p is bad. Formula G
equivalent to ∃X[F] specifies the set of all bad states (that
may or may not be reachable from the initial state).

Fig. 7. Backward model checking (1 iteration)

Table I shows
the comparison of
the three programs
with respect to
the number of
formulas solved,
percentage of this
number to the total
number (758) and
time taken for the
solved problems.
With 1-minute time
limit, DDS solved
more formulas than

EnumSA and QE-GBL in forward and backward model
checking. Figures 6 and 7 give the number of formulas
of Table I solved by the three programs in t seconds,
0 ≤ t ≤ 60. These figures show the superiority of DDS over
QE-GBL and EnumSA on the set of formulas we used. The

poor performance of EnumSA on backward model checking
formulas is due to lack of constraints on next state variables.
In the presence of such constraints, EnumSA performs much
better (see below).

The size of the 1,227 formulas solved by DDS peaked at
98,105 variables, the medium size being 2,247 variables. The
largest number of non-quantified (i.e., state) variables was
7,880 and 541 formulas had more than 100 state variables.
The size of resulting formula G peaked at 32,769 clauses,
361 resulting formulas had more than 100 clauses. We used
Picosat [4] to remove redundant literals and clauses of G.
Namely, for every clause C of G we checked if G was
equivalent to G \ {C}. If so, C was removed from G.
Otherwise, we tested every literal l of C if removal l from
C changed the function of G. If not, l was removed from C.
The total runtime for the optimization of G by Picosat was
limited by 4 seconds. Overall, the resulting formulas built by
DDS were smaller than those of EnumSA and QE-GBL. For
instance, out of 1069 formulas solved by both DDS and QE-
GBL, the size of G built by DDS was smaller (respectively
equal or larger) in 267 (respectively 798 and 4) cases.

TABLE II
Compositionality of QE algorithms. Time

limit=1hour

#co- #vars, |Y | EnumSA DDS DDS
pies #clauses (s.) rand (s.) (s.)
5 20,30 10 0 0.01 0.01
10 40,60 20 10.5 0.01 0.01
15 60,90 30 >1hour 0.01 0.01
500 2000,3000 1000 >1hour 1.95 0.04

In the
experiments
above, we did
not use formula
preprocessing
even though it
could have been
beneficial. For
instance, the
forward model

checking formulas had a lot of unit clauses encoding the
initial state. The backward model checking formulas had
many blocked (i.e., redundant) clauses [5]. The reason is that
when the original set of bad states is computed, the next
state variables are not constrained yet. However, when we
compared the three programs on preprocessed formulas we
obtained similar results: DDS outperformed EnumSA and
QE-GBL. In particular, we generated 189 backward model
checking formulas specifying bad states after a number of
iterations. The idea was to get formulas were preprocessing
simplifications performing initial BCP and elimination of
blocked clauses failed. With 1-minute time limit, DDS ,
QE-GBL and EnumSA solved 185, 163 and 149 formulas out
of 189 respectively. Notice that EnumSA performed much
better here than in the initial iteration.

The third experiment (Table II), clearly shows the com-
positionality of DDS in comparison to EnumSA. In this
experiment, both programs computed the output assignments
produced by a combinational circuit N composed of small
identical circuits N1, . . . , Nk with independent sets of vari-
ables. In this case, one needs to eliminate quantifiers from
∃X[F] where F = F1 ∧ . . . ∧ Fk. CNF formula Fi specifies
Ni and Vars(Fi)\X and Vars(Fi)∩X are the sets of output
and non-output variables of Ni respectively. So a CNF formula
equivalent to ∃X[F] specifies the output assignments of N .

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

414141

The first column of Table II shows k (the number of copies
of Ni). The next two columns give the size of CNF formula
F and the number of outputs in circuit N . The last three
columns show the run time of EnumSA and two versions of
DDS . In the first version, the choice of branching variables
was random. In the second version, this choice was guided by
the compositional structure of N . While DDS solved all the
formulas easily, EnumSA could not finish the formulas F with
k ≥ 15 in 1 hour. Notice that DDS was able to quickly solve
all the formulas even with the random choice of branching
variables.

VIII. BACKGROUND

The relation between a resolution proof and the process of
elimination of boundary points was discussed in [14]. In terms
of the present paper, [14] dealt only with a special kind of Z-
boundary points of formula F where |Z| = 1. In the present
paper, we consider the case where Z is an arbitrary subset of
the set of quantified variables X of an ∃CNF formula ∃X[F].
This extension is crucial for describing the semantics of D-
sequents.

The notion of D-sequents was introduced in [17]. There, we
formulated a QE algorithm that branched only on quantified
variables of ∃X[F]. This algorithm is more complex than
DDS because it has to compute boundary points explicitly.
At the same time, as we mentioned in the introduction, the
limitation on variable order used by DDS (see Subsection V-C)
is artificial. In general, to achieve the best results one has
to interleave assignments to quantified and non-quantified
variables. Then to reduce the number of resolvent clauses to
be added one needs to compute boundary points explicitly.

As far as quantifier elimination is concerned, QE algorithms
and QBF solvers can be partitioned into two categories.
(Although, in contrast to a QE algorithm, a QBF-solver is
a decision procedure, they both employ methods of quantifier
elimination. Since this paper is focused on SAT-based solvers,
we omit references to papers on QE algorithms that use
BDDs [7], [8].) The members of the first category employ
various techniques to eliminate quantified variables of the
formula one by one in some order [26], [3], [2], [18], [1].
For example, in [18], quantified variables are eliminated by
interpolation. All these solvers face the problem that we
already discussed in Section VI. The necessity to eliminate
a variable in one big step deprives the algorithm of flexibility
and, in general, leads to generation of prohibitively large sets
of clauses.

The solvers of the second category are based on enumeration
of satisfying or unsatisfying assignments [23], [19], [13], [6],
[25]. Since such assignments are, in general, “global” objects,
it is hard for such solvers to follow the fine structure of the
formula, e.g., such solvers are not compositional. In a sense,
DDS tries to take the best of both worlds. It branches and
so can use different variable orders in different branches as
the solvers of the second category. At the same time, in every
branch, DDS eliminates quantified variables individually as

the solvers of the first category, which makes it easier to follow
the formula structure.

IX. CONCLUSION

We introduced Derivation of Dependency-sequents (DDS),
a new method for eliminating quantifiers from a formula
∃X[F] where F is a CNF formula. The essence of DDS is to
add resolvent clauses to F to make the variables of X redun-
dant. The process of making variables redundant is described
by dependency sequents (D-sequents) specifying conditions
under which variables of X are redundant. In contrast to
methods based on the enumeration of satisfying assignments,
DDS is compositional. Our experiments with a proof-of-the-
concept implementation show the promise of DDS . Our future
work will focus on studying various ways to improve the
performance of DDS , including lifting the constraint that non-
quantified variables are assigned before quantified variables
and reusing D-sequents instead of discarding them after one
join operation (as SAT-solvers reuse conflict clauses).

ACKNOWLEDGMENT

This work was funded in part by NSF grant CCF-1117184,
NASA NASA Cooperative Agreement NNX08AE37A, and
DARPA under Air Force Research Laboratory (AFRL/Rome)
Cooperative Agreement No. FA8750-10-2-0233.

REFERENCES

[1] P. Abdulla, P. Bjesse, and N. Eén, “Symbolic reachability analysis based
on SAT-solvers,” in Proc. of TACAS, 2000, pp. 411–425.

[2] A. Ayari and D. Basin, “Qubos: Deciding quantified boolean logic using
propositional satisfiability solvers,” in FMCAD, 2002, pp. 187–201.

[3] A. Biere, “Resolve and expand,” in Proc. of SAT-04, 2005, pp. 59–70.
[4] ——, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[5] A. Biere, F. Lonsing, and M. Seidl, “Blocked clause elimination for

qbf,” in Proc. of CADE, 2011, pp. 101–115.
[6] J. Brauer, A. King, and J. Kriener, “Existential quantificationnn as

incremental sat,” in Proc. of CAV-11. Springer-Verlag, July 2011, pp.
191–207.

[7] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, August
1986.

[8] P. Chauhan, E. Clarke., S. Jha, J. Kukula, H. Veith, and D. Wang, “Using
combinatorial optimization methods for quantification scheduling,” in
Proc. of CHARME, 2001, pp. 293–309.

[9] E. Clarke and A. Emerson, “Design and synthesis of synchronization
skeletons using branching-time temporal logic,” in Logic of Programs,
Workshop, 1982, pp. 52–71.

[10] E. Clarke, O. Grumberg, and D. Peled, Model checking. Cambridge,
MA, USA: MIT Press, 1999.

[11] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–
397, July 1962.

[12] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM, vol. 7, no. 3, pp. 201–215, July 1960.

[13] M. Ganai, A. Gupta, and P. Ashar, “Efficient sat-based unbounded
symbolic model checking using circuit cofactoring,” in Proc. of ICCAD,
2004, pp. 510–517.

[14] E. Goldberg, “Boundary points and resolution,” in Proc. of SAT.
Springer-Verlag, 2009, pp. 147–160.

[15] E. Goldberg and P. Manolios, “Sat-solving based on boundary point
elimination,” in Proc. of HVC-10. Springer-Verlag, 2011, pp. 93–111.

[16] ——, “Quantifier elimination by dependency sequents,” Northeastern
University, Tech. Rep. arXiv:1201.5653v3 [cs.LO], 2012. [Online].
Available: http://arxiv.org/pdf/1201.5653v3

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

424242

[17] ——, “Removal of quantifiers by elimination of boundary points,”
Northeastern University, Tech. Rep. arXiv:1204.1746v2 [cs.LO], 2012.
[Online]. Available: http://arxiv.org/pdf/1204.1746v2

[18] R. Jiang, “Quantifier elimination via functional composition,” in Proc.
of CAV ’09. Springer, 2009, pp. 383–397.

[19] H. Jin and F. Somenzi, “Prime clauses for fast enumeration of satisfying
assignments to boolean circuits,” in Proc. of DAC, 2005, pp. 750–753.

[20] O. Kullmann, “New methods for 3-sat decision and worst-case analysis,”
Theor. Comput. Sci., vol. 223, no. 1-2, pp. 1–72, Jul. 1999.

[21] J. Marques-Silva and K. Sakallah, “Grasp—a new search algorithm for
satisfiability,” in ICCAD-96, Washington, DC, USA, 1996, pp. 220–227.

[22] K. McMillan, Symbolic Model Checking. Norwell, MA, USA: Kluwer
Academic Publishers, 1993.

[23] ——, “Applying sat methods in unbounded symbolic model checking,”
in Proc. of CAV-02. Springer-Verlag, 2002, pp. 250–264.

[24] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
engineering an efficient sat solver,” in DAC-01, New York, NY, USA,
2001, pp. 530–535.

[25] D. Plaisted, A. Biere, and Y. Zhu, “A satisfiability procedure for
quantified boolean formulae,” Discrete Appl. Math., vol. 130, no. 2,
pp. 291–328, Aug. 2003.

[26] P. Williams, A. Biere, E. Clarke, and A. Gupta, “Combining decision
diagrams and sat procedures for efficient symbolic model checking,” in
Proc. of CAV, 2000, pp. 124–138.

[27] HWMCC-2010 benchmarks, http://fmv.jku.at/hwmcc10/benchmarks.html.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

434343

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

