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Abstract—Reactive synthesis, where a finite-state system is
automatically generated from its specification, is a particularly
ambitious way to engineer correct-by-construction systems. In
this paper, we propose implementation-extraction based on com-
putational learning of Boolean functions as a final synthesis step in
order to obtain small and fast circuits for realizable specifications
in a symbolic way. Our starting point is a restriction of the system
player’s choices in a synthesis game such that all remaining
strategies are winning. Such games are used in most symbolic
synthesis tools, and hence, our technique is not tied to one
specific synthesis workflow, but rather supports a large variety
of these. We present several variants of our implementation-
learning approach, including one based on Bshouty’s monotone
theory. The key idea is the efficient use of the system player’s
freedom in the game. Our experimental results show a significant
reduction of implementation size compared to previous methods,
while maintaining reasonable computation times.

I. INTRODUCTION

A common criticism on formal methods for the verification
of reactive systems is that they only aid the system engineer
with ensuring correctness after the system is constructed.
The idea of reactive synthesis is to change this situation
by automatically computing a correct-by-construction system
after the specification is stated. While the theoretical com-
plexity of the synthesis problem is long-established for many
important specification formalisms, only recently, progress on
the practical solution of this problem has gained momentum,
as new results on symbolic synthesis [18], [17], smart specifi-
cation decomposition techniques [16], [29], and specification
formalisms explicitly targeting synthesis have emerged [7].

Early theory on the subject was mainly concerned with
checking the realizability of a specification, i.e., testing if
there exists an implementation. Procedures for obtaining an
implementation in case of a positive answer were rudimentary
and did not consider the quality of the synthesized solutions.
With the rise of synthesis technology from its infancy, a
growing interest in synthesizing solutions of high quality
(e.g., requiring only a small on-chip area, or reacting quickly)
emerged, witnessed by the introduction of synthesis methods
that take quantitative criteria into account. Introducing quanti-
tative criteria at the start of the synthesis process however typ-
ically breaks the possibility to perform the synthesis process in
a symbolic way, e.g., using binary decision diagrams (BDDs).
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The key idea to solve this problem is to consider the
quality only at a later stage in the synthesis process, when the
realizability of a specification has already been determined.
Most synthesis approaches reduce the realizability problem
of a given specification to solving a two-player game in
which one player models the environment and provides the
input to a system to be synthesized, whereas the other player
models the system and provides the output. If and only if the
system player can always win the game, the specification is
realizable. We call the characterization of a set of moves a
general strategy if the system player wins when taking only
moves from this set. Calling it general is justified by the fact
that there are often situations in which the strategy can be
non-deterministic, i.e., it has multiple choices for the system
player to win in that situation. Any implementation that
resolves this non-determinism, and is thus a specialization
of such a general strategy, satisfies the original specification.
Since a general strategy is a natural by-product of most
game solving algorithms used in synthesis, we can easily
take the general strategy as input to a process for finding
a small implementation. This way, we have separated the
problems of synthesizing any solution and obtaining a good
one. While we might miss the smallest implementation this
way, we do not introduce any additional computational hassle
by combining the two goals in one step.

Theoretical work on computing small implementations from
general strategies shows that approximating the size of a
smallest finite-state machine within any polynomial quality
function [14] from a general strategy is NP-hard.1 This holds
even if we do not have any input to the system. The fact that
for scalable synthesis, we also have to be able to cope with
symbolically represented general strategies2, and also want a
circuit rather than an explicit finite-state machine as result,
does not quite make the problem easier in terms of complexity.
As a consequence, current methods minimize the circuit size
heuristically while only guaranteeing correctness. Experience
however shows that with these techniques, the circuit sizes are
often prohibitively large, calling for a better approach.

In this paper, we present a learning-based approach to com-

1For example, any algorithm that (1) outputs false if for some given general
strategy and value of n, there exists no finite-state machine of size n that
behaves in a way allowed by the general strategy, (2) outputs true if there
exists such a finite-state machine of size at most n10, and (3) outputs an
arbitrarily result otherwise, solves an NP-hard problem.

2A symbolic representation of the synthesis game and the general strategy
is crucial for scalability of reactive synthesis because the transformation of a
specification into a game can lead to huge state spaces.
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puting small circuits in symbolic reactive synthesis. In contrast
to previous approaches, we do not exploit special properties
of the data structure involved for symbolic reasoning (such
as BDDs), but rather use computational learning of Boolean
functions. This allows us to utilize the non-determinism of
general strategies in a much more effective way. We learn
a CNF (conjunctive normal form), DNF (disjunctive normal
form), CDNF (conjunction of DNFs), or DCNF (disjunction
of CNFs) representation of output and next-state bit valuations,
which can immediately be translated into circuits. These
circuits are not only typically smaller, but also more shallow
than those of previous approaches, which allows running them
at higher clock rates.

Our approach is not bound to one specific synthesis work-
flow, but supports any flow that computes a general strategy.
For our experimental evaluation, we used two different BDD-
based synthesis tools, namely RATSY [4], and UNBEAST [15].
RATSY provides us with general strategies stemming from
the generalized reactivity(1) synthesis approach [7]. UNBEAST
is a symbolic implementation [16] of a bounded synthesis
variant [18]. In our experiments, we obtained circuit-size im-
provements of around one order of magnitude, when compared
to the built-in approaches of these tools. The computation
times are longer but still reasonable, thus allowing the new
approach to be applied also to large problem instances.

This paper is structured as follows. In the next section, we
give an overview of related work and provide experiences with
previous approaches to circuit computation in synthesis. Then,
we briefly discuss preliminaries and give literature pointers to
the computation of general strategies in synthesis workflows.
In Section IV, we describe our new learning-based approach,
followed by an experimental evaluation in Section V. We
conclude with a summary and ideas for future work.

II. PREVIOUS APPROACHES AND RELATED WORK

Computing an implementation in case of a realizable spec-
ification is the last step of every reactive synthesis approach.
There are a few of these for which this last step is an easy
one. In SMT-based bounded synthesis [18], the realizability
of a specification by some finite-state machine with b states is
encoded into a satisfiability modulo theory (SMT) formula,
whose solution is an explicit implementation. Anti-chains-
based bounded synthesis [17] uses anti-chains, rather than
BDDs, as symbolic data structure during a game-solving
process. It is then trivial to extract an implementation with
as many states as there are elements in the final anti-chain.

Both approaches come at a price. SMT-based bounded syn-
thesis is only reasonable if there exist small implementations
and the number of input/output signals is not too high. Anti-
chains-based bounded synthesis requires the specification to be
a conjunction of relatively small sub-specifications in order to
scale well. To counter these limitations, we are concerned with
general circuit extraction approaches that start with symbolic
general strategies. In the remainder of this section, we describe
previous techniques for this task, state our experiences with
them, and discuss techniques similar to our new approach.

Kukula and Shiple [23] described a simple technique to
compute a circuit from a general strategy in BDD form. The
main idea is to take the graph structure of the BDD and
instantiate an 8-gate building block for all nodes to obtain an
implementation. The resulting circuits have a very high depth
(more than two times the number of state and input variables)
and experience shows that they are often huge [6].

ANZU [21] uses a simple, cofactor-based approach [6] to
compute a completely specified Boolean function for each
output signal. The BDDs that represent these functions are
then dumped into a network of multiplexers. Bloem et al. [6]
also mention a simple but effective optimization. For each
output, they remove unnecessary input variables by existential
quantification. This method has also been implemented in
RATSY [4]. To the best of our knowledge, this is the most
effective circuit synthesis approach previously known, and it
will be used as a baseline for comparison in Section V. We will
subsequently refer to this method as the cofactor approach.

Baneres et al. [3] present a recursive paradigm for extracting
completely specified Boolean functions from general strate-
gies. Their approach is based on first computing the single
output functions independently, without resubstitution. In a
second stage they recursively resolve inconsistencies resulting
from uncoordinated choices during the first stage. They also
introduce a recursion-depth limit. If the limit is reached, their
algorithm falls back to an arbitrary other relation-solving
method. We reimplemented their approach within RATSY
and applied it to its general strategies. Unfortunately, first
experimental results were rather discouraging. Without any
recursion limit, the approach timed out even for rather small
benchmarks. However, using a recursion limit, we (almost)
always hit the fall-back mechanism. The result of the fall-back
mechanism is in almost all cases the same as if the recursive
approach of [3] had not been used at all. Therefore, this
approach does not provide any improvement concerning circuit
size, but only increases computation time significantly. We
believe that this is due to the fact that our general strategies are
highly non-deterministic, and in particular have many vertices
that [3] calls “non-don’t-care extendable”.

Another approach that we tried was implementing the
Minato-Morreale algorithm for computing an Irredundant
Sum-of-Products [24], [26]. It is a recursive procedure that
takes a general strategy as an input and computes a Sum-of-
Products form for a compatible completely specified function.
The final result is irredundant in the sense that no single literal
or cube can be deleted without changing the function. We
use the recursive structure of the algorithm to build a multi-
level Boolean circuit along the way. The resulting circuits are
comparable in size to the ones obtained through the cofac-
tor approach. Computation times, however, are significantly
higher. To further improve these results, we also tried using
a “cache”. In each step, the algorithm first checks whether a
function lying in the desired interval of functions has already
been built as a circuit in previous steps. If so, this function
(and the corresponding wire in the circuit) is reused. To keep
the memory footprint of the cache small and to speed up the
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process of a cache look-up, we did not store the BDDs of
the functions, but rather used a signature-based approach as
in [25]. We only store the function’s output for some random
input vectors. These outputs are called a signature. Signatures
have a very low memory footprint. When doing a look-up, we
can use the signature to perform a fast pre-test. This pre-test
may, however, create false positives. Thus, whenever the pre-
test yields a positive result, we (recursively) reconstruct a BDD
for the function in question from the structure of the circuit
generated so far. We subsequently use this BDD to perform a
sound comparison to check whether or not the function really
lies within the desired interval. Experimental results have
shown that, unfortunately, we get almost no cache hits. The
hits we do get are mostly very small, almost trivial functions,
consisting of only a handful of gates. Thus, the gain due to
sharing is negligible. On the other hand, computation time
rises significantly due to the many look-up checks that have
to be performed. We also noticed that, when extended from
completely specified functions [25] to intervals, the signature-
based pre-test gives too many false positives to be of use.

Jiang et al. [19] presented a SAT-solver-based approach to
compute functions from a general strategy. Their method is
based on Craig interpolation [13], which is supported by many
modern SAT solvers. Also here, preliminary experimental
results suggest that this method cannot deal well with the high
degree of non-determinism which is characteristic for general
strategies in reactive synthesis. First tests produced circuits
that were at least one order of magnitude larger than the ones
obtained by the cofactor approach.

Our method for computing circuits is based on computa-
tional learning. It starts with simple candidate functions and
refines them based on the counterexamples that are returned
by a teacher oracle. Counterexample-guided refinements have
already been used in program sketching [30] to synthesize
missing program parts, and for program repair [22], [10].
Natively, these methods can only synthesize integer constants.
Templates or user-provided generators containing unknown
integers are used to synthesize more sophisticated program
parts. In contrast, our method is able to compute circuits
directly and without the help of the user.

Computational learning of Boolean function has many ap-
plications apart from implementation extraction. Becker et
al. [2] use the concept to turn a quantified Boolean formula
(QBF) solver into a tool for obtaining a compact representation
of all solutions to a Boolean formula that may or may not
have some quantifiers. While the representation types for
the solutions are the same as in this work (CNF, DNF, and
a conjunction of DNF formulas), Becker et al. focus on
integrating a QBF solver into the classical learning algorithms
for these representations. In this paper, on the other hand, we
are not concerned with such low-level technical considerations,
and simplify the details of our approach by taking BDDs
as data structure for symbolic reasoning. This allows us to
start right away with tackling the special properties of the
implementation extraction domain, in particular how to obtain
efficient circuits with multiple output signals, and how to make
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circuit
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Fig. 1. Implementation of a general strategy.

the best use of the non-determinism in the general strategies.
The work in [11] addresses learning of Boolean functions

over enlarging sets of variables, especially for loop invariant
generation and assumption synthesis. The learning method is
based on Bshouty’s monotone theory [8], just like one of our
algorithms. However, while [11] concentrates on efficiency in
presence of an unbounded number of variables, we focus on
utilizing non-determinism effectively to obtain small circuits.

III. PRELIMINARIES

A. Basic Notation

Let V be a set of Boolean variables. To simplify notation,
we treat subsets X of V and their characteristic functions
interchangeably. Thus, a subset X of V induces a variable
valuation x : V → B by setting x(v) = true for some v ∈ V
if and only if v ∈ X , and likewise, a variable valuation x :
V → B induces a subset X of V by choosing X = {v ∈ V |
x(v) = true}. A model of a Boolean formula is a variable
valuation that satisfies the Boolean formula.

B. General strategies

A general strategy is a tuple S = (S, I,O, s0, δ), where S
is a set of state bits, I is a set of input bits, O is a set of output
bits, s0 ⊆ S is the initial state and δ ⊆ 2S × 2I × 2S × 2O

is the transition relation. To separate the two occurrences of
state bit sets in the transition relation, we will henceforth write
S′ for their second copy. In this paper, we are concerned with
extracting a small circuit for this strategy, i.e., a net with input
bits U = S ∪ I and output bits W = S′ ∪ O such that for
every input (s, i) ∈ 2S × 2I , if s is a reachable state and the
circuit outputs some (s′, o) ∈ 2S

′ × 2O for this input, then
(s, i, s′, o) ∈ δ. We call such a circuit a specialization of S as
it exhibits only behavior that is allowed by the strategy, and
chooses one particular output/next state combination whenever
more than one is possible. A state s is considered to be reach-
able if there exists some sequence s0

o0−→
i0

s1
o1−→
i1

. . .
on−→
in

sn

with sn = s such that for all j ∈ {0, . . . , n}, (sj+1, oj) is
the output of the circuit for the input bit valuation (sj , ij).
Thus, we assume that some flip-flops feed back the output
state bits as input to the net in the next computation cycle. This
implementation of S in a circuit is illustrated in Fig. 1. For
the scope of this paper, the sizes and depths of combinatorial
circuits are considered at the gate level.

General strategies as defined above are computed in many
modern synthesis workflows as a by-product. Normally, not all
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possible implementations of a specification are specializations
of the general strategy computed, but rather some unfavorable
ones have already been filtered out. For example, if we used a
mutual-exclusion protocol specification as input to a synthesis
tool, we would want that the general strategy computed
ensures that grants are given quickly in order not to let the
requester wait unnecessarily. For the synthesis approaches
considered in this paper, this good reactivity is ensured: in gen-
eralized reactivity(1) synthesis [7], [27], the general strategy
is built such that transitions that help towards the fulfillment
of liveness objectives are preferred, whereas in BDD-based
bounded synthesis [16], a strict bound on delays in such a
situation is imposed. Thus, in both cases, for synthesizing
implementations of high quality, we can restrict our attention
to circuit size and depth for the scope of this paper. For details
on the computation of general strategies in these two synthesis
approaches, the interested reader is referred to [16], [7], [27].

C. Binary Decision Diagrams

To handle Boolean functions and general strategies sym-
bolically, we use reduced ordered binary decision diagrams
(BDDs) [9], which represent characteristic functions f : 2V →
B for some finite set of variables V . Let f and f ′ be two
BDDs and V ′ ⊆ V be a set of variables. We denote the
conjunction, disjunction, negation, existential quantification,
and universal quantification of BDDs as f ∧ f ′, f ∨ f ′, ¬f ,
∃V ′ . f and ∀V ′ . f , respectively. To represent the transition
relation of a general strategy S = (S, I,O, s0, δ), we take
V = S ] I ] S′ ] O and build the characteristic function
of δ by setting fδ(X) = true for some X ⊆ V iff
(X ∩ S,X ∩ I,X ∩ S′, X ∩O) ∈ δ.

IV. LEARNING SMALL CIRCUITS

In this section, we present the core contribution of this work:
Given a general strategy S = (S, I,O, s0, δ), we show how
to compute a combinatorial circuit with input bits U = S ∪ I
and output bits W = S′ ∪ O that implements the strategy
as illustrated in Fig. 1. We break down this problem into
obtaining |W | circuits with a single output bit, each getting
|U | bits as input. First, we describe this decomposition process.
Then, in Section IV-B, we discuss how a circuit for a single
output bit can be computed using computational learning.

A. Decomposition

One reason for computing |W | one-output-bit circuits, as we
do in this paper, is to increase the freedom in the circuits due
to unreachable states. If a circuit for one output bit has been
found, we can recompute the set of states reachable by any
specialization that uses this circuit. Typically, this reachable
state set shrinks with every additional circuit, which allows
our specialization to ignore more and more input valuations
X ⊆ U as the algorithm proceeds. The following algorithm
describes the overall process:

1: procedure OBTAINCIRCUIT(S, I,O, s0, δ)
2: A := δ
3: for v ∈W do

4: r := states reachable from s0 under A as BDD
5: c := r ∧ (¬(∃W .(A ∧ v)) ∨ ¬(∃W .(A ∧ ¬v)))
6: if optimize then
7: (f, c) := MINVARS(A, v, c)
8: else
9: f := ∃W .(A ∧ v)

10: end if
11: g := LEARN(U, f, c)
12: Take g as output circuit for v
13: A := A ∧ (¬v ⊕ g)
14: end for
15: end procedure
The algorithm iterates over all outputs v ∈ W of the combi-
natorial circuit we wish to build. In every iteration, we first
compute which states are reachable in any specialization with
the circuits computed so far. Next, we compute the care set,
i.e., the set of input variable valuations X ⊆ U for which the
output matters. There are two reasons why a valuation might
not be in the care set: (1) the state is not reachable, and (2) both
values of the output bit v are allowed. The computation of c
in line 5 reflects these cases. Ignore the optional optimization
in line 7 for a moment. Line 9 now computes the target
function, and line 11 uses a black-box function LEARN to
obtain a corresponding circuit using computational learning.
We assume that LEARN returns a BDD representation of the
one-output-bit circuit that resembles f on variable valuations
X ⊆ V for which c(X) = true holds. We describe two
variants of a function LEARN in the next subsection.

After a circuit for one output v ∈ W has been obtained,
we need to update the general strategy to only allow output
variable valuations X ⊆W that are still possible when using
the circuits we already have. This happens in line 13.

The optimization in line 7 minimizes the number of input
bits v′ ∈ U on which the output bit v may depend. This idea
has been introduced in [6] and can be implemented as follows.

1: procedure MINVARS(A, v, c)
2: m0 := ¬((∃W .(A ∧ v)) ∨ ¬c)
3: m1 := ¬((∃W .(A ∧ ¬v)) ∨ ¬c)
4: for v′ ∈ U do
5: (m′0,m

′
1) := (∃v′ .m0,∃v′ .m1)

6: if m′0 ∧m′1 = false then
7: (m0,m1) := (m′0,m

′
1)

8: end if
9: end for

10: return (m1,m0 ∨m1)
11: end procedure
The lines 2 and 3 compute the input variable valuations for
which the circuit to be learned has to output false and true,
respectively. If an existential quantification of an input variable
v′ does not make the two regions m0 and m1 overlap, then
this means that the function can still be implemented without
taking the input bit v′ into account. Otherwise, v′ is crucial for
distinguishing input variable valuations for which the circuit
has to output true from those where it has to output false.
In this case, v′ cannot be disregarded. The check is done in
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line 6. After all unnecessary input bits have been discarded
using existential quantification, the target function f and the
care set c are recomputed and returned. We also use the above
algorithm in a heuristic to find a good ordering for the output
bits in line 3 of OBTAINCIRCUIT: output bits v for which f
depends on fewer variables are considered simpler to handle,
and are thus processed first.

B. Learning circuits with a single output bit

When computing a small one-output-bit circuit from a
problem instance (V, f, c), our aim is to utilize don’t care input
bit valuations (i.e., X ⊆ V with c(X) = false) as effectively
as possible, while obtaining circuits with appealing properties,
such as low depth and few gates. We describe here how to
apply the concept of computational learning to obtain small
and shallow circuits. We decompose f into a Boolean formula
that only needs to be correct on the care set, i.e., the input bit
valuations that c maps to true. The Boolean formula is built
in an incremental fashion, i.e., we start with a small formula
that we iteratively refine until it is correct with respect to the
care set. After learning the formula, it can easily be translated
to a circuit by using only AND, OR, and NOT gates.

We describe two variants of the learning process here, one
for which the target Boolean formula is in CNF form, and
one for which it is in CDNF form, i.e., a conjunction of
disjunctive normal form Boolean formulas. Both variants are
instances of Angluin-style [1] learning algorithms, in which
the learning process proceeds by performing queries of various
types to some teacher oracle. In our context, queries reduce
to operations on BDDs. We can use the CNF and CDNF
algorithms to also learn DNF and DCNF formulas: we simply
dualize f and the output formula.

1) Learning CNFs: A formula in conjunctive normal form
is a conjunction of clauses, each being a disjunction of literals.
Given a one-bit output circuit problem (V, f, c), a clause C
is sound in a CNF for (V, f, c) iff ¬C(X) implies ¬f(X) ∨
¬c(X) for all X ⊆ V . That is, a sound clause only evaluates
to false if the variable valuation can be mapped to false. On
the other hand, if a CNF formula of sound clauses maps every
X ⊆ V with c(X) ∧ ¬f(X) to false, then it has enough
clauses to be a valid solution. Using BDDs, we can easily
check if a CNF formula has enough clauses or if a clause is
sound. The following algorithm iteratively searches for sound
clauses until we have enough of them:

1: procedure LEARNCNF(V, f, c)
2: r := true
3: while r ∧ (¬f) ∧ c 6= false do
4: b := pick some variable valuation in r ∧ (¬f) ∧ c
5: V ′ := V
6: C :=

∨
v′∈V ′ v′ ⊕ b(v′)

7: for v ∈ V do
8: C ′ :=

∨
v′∈(V ′\{v}) v

′ ⊕ b(v′)
9: if ((¬C ′) ∧ c ∧ f) = false then

10: (C, V ′) := (C ′, V ′ \ {v})
11: end if
12: end for

13: r := r ∧ C
14: end while
15: return r
16: end procedure
The variable r stores the candidate CNF formula as BDD. In
practice, we store the BDD together with the corresponding
CNF formula to avoid reconstructing the CNF at the end.
In line 3, we check if we have found enough sound clauses
already. If this is not the case, we pick some variable valuation
b that witnesses this fact. We use b to derive a new sound
clause in line 6. In the lines 7 to 12 we shorten it as much as
possible while retaining its soundness. This way, we keep both
the length and number of the clauses in the formula small.

Let X = {X ⊆ V | c(X) ∧ ¬f(X) ∧ r(X)} be the set of
variable valuations that r must, be but does not yet, map to
false. LEARNCNF terminates because it quits on |X | = 0,
and |X | decreases in every loop iteration. It is correct because
it adds only sound clauses to r, and enough to have |X | = 0.

After LEARNCNF is finished, we remove all clauses from
r for which removing leaves the learned function consistent
with f on c. This reduces the size of the learned function.

Example 1. We illustrate LEARNCNF on the learning prob-
lem ({v1, v2}, f, c), defined in the left part of the following
truth table.
v1 v2 f c r1 C1=¬v1 ∨ v2 C ′1=r2=v2

false false false false true true false
false true false false true true true
true false false true true false false
true true true true true true true

We write ai to denote variable a in iteration i of LEARNCNF.
The first candidate is r1 = true. An input valuation b1

satisfying r1 ∧ (¬f) ∧ c is b1(v1) = true, b1(v2) = false;
the corresponding clause is C1 = ¬v1 ∨ v2. Next, C1

is simplified by removing literals as long as soundness is
preserved. C ′1 = v2 renders (¬C ′1) ∧ c ∧ f unsatisfiable,
so C ′1 is still sound. Since the empty clause is not sound, r is
refined to r2 = C ′1 = v2. Now, r2 ∧ (¬f)∧ c is unsatisfiable,
i.e, there is no more input valuation for which the circuit must,
but does not yet, output false. Hence, the circuit outputting
r2 = v2 is a solution to the learning problem ({v1, v2}, f, c).

2) Learning CDNFs: The CNF learning approach above
computes two-level combinatorial circuits. While these are
shallow, there are many functions for which we need more
levels in order to obtain a circuit with few gates. Here, we use
Bshouty’s learning algorithm, based on his monotone theory
[8] as a basis for learning a CDNF representation of the
target function, which leads to three levels in the computed
circuits. This is still a low number, and thus allows to drive
the resulting circuit with high clock rates, but offers a better
chance for minimizing the number of gates. We start with an
explanation of the necessary theory, and then describe how it
can be applied when f and c are given in BDD form.

Let V be some set of variables and X,Y, and Z be subsets
of V . We write X ⊆Z Y if and only if (X ∩ (V \ Z)) ⊆
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(Y ∩ (V \ Z)) and (X ∩ Z) ⊇ (Y ∩ Z). A Boolean function
f : 2V → B is Z-monotone if for all X,Y ⊆ V , if X ⊆Z Y
and f(X) = true, then f(Y ) = true.

Bshouty’s learning algorithm represents the function-to-
learn as a conjunction of Boolean formulas in disjunctive
normal form. Each of this DNF formulas is Z-monotone
for some Z ⊆ V . From the computational learning theory
perspective [1], Bshouty’s CDNF learning algorithm employs
two types of queries: membership queries and equivalence
queries. In this paper, we extend its idea by modifying
the algorithm in order to make use of don’t care variable
valuations. Performing a membership query in this context
then means that for a variable valuation X , we check if
f(X) ∨ ¬c(X) = true. Performing an equivalence query
means checking if the variable valuations that c maps to true
are models of the candidate CDNF formula if and only if they
are mapped to true by f . The following code describes the
learning process:

1: procedure LEARNCDNF(V, f, c)
2: P = ∅
3: while true do
4: g :=

∧
(h,d)∈P h

5: if (g ∧ (¬f) ∧ c) 6= false then
6: b := pick some variable valuation in g ∧ (¬f) ∧ c
7: P := P ∪ {(false, b)}
8: else if ((¬g) ∧ f ∧ c) 6= false then
9: b := pick some variable valuation in (¬g) ∧ f ∧ c

10: for {(h, d) ∈ P | b 6|= h} do
11: b′ := b
12: for v ∈ {v′ ∈ V | b′(v′) 6= d(v′)} do
13: b′′ := b′

14: b′′(v) := ¬b′′(v)
15: if f(b′′) ∨ ¬c(b′′) then
16: b′ := b′′

17: end if
18: end for

19: h′ := h ∨
∧
v∈V,b′(v)6=d(v)

{
v if b′(v) = true

¬v else
20: P := P \ {(h, d)} ∪ {(h′, d)}
21: end for
22: else
23: return g
24: end if
25: end while
26: end procedure

The algorithm maintains a candidate CDNF formula in P . Ev-
ery DNF formula is stored together with its monotonicity base.
Line 5 checks for false-positives, and line 8 for false-negative
variable valuations. False-positives are valuations X ⊆ V with
c(X) = true that are models of the candidate formula, but for
which f(X) = false. Likewise, false-negatives are valuations
X for which c(X) = f(X) = true, but X is not a model
of the candidate formula. Both witness the misclassification
of a variable valuation. Whenever we find a false-positive X ,
we add a DNF that is kept X-monotone during the run of the

algorithm. For a false-negative X , we update all DNFs with a
cube (a conjunction of literals) that ensures that X becomes a
model of the DNF. For this, we first make the false-negative as
similar to the monotonicity base as possible without changing
the fact that the circuit is allowed to output true for this
valuation. Then we add a cube that contains only literals that
point away from the monotonicity base. This way, the DNF
formula remains d-monotonous with respect to its base d, but
stays small at the same time. For more details on Bshouty’s
CDNF learning algorithm, the reader is referred to [28].

The algorithm terminates because in every iteration, either a
false-positive or a false-negative is resolved, and the maximum
number of potential misclassifications is finite. Note that
resolving a false-positive will typically add new false-negatives
because the newly added DNF is initially empty, i.e. false.
However, resolving a false-positive X eliminates it once and
for all. The reason is that the new DNF that is added is
kept X-monotone. It is extended with cubes containing literals
that point away from the monotonicity base only. Hence,
X can never become a model of that DNF and g(X) will
always remain false. The algorithm is correct because upon
termination, there are no more misclassifications.

In a post-processing step, we simplify the formula produced
by LEARNCDNF. We remove all DNFs, cubes and literals for
which removing leaves the CDNF consistent with f on c.

Example 2. We apply LEARNCDNF to the learning problem
({v1, v2}, f, c) from Example 1, defined by the following table.

v1 v2 f c g1 g2 g3

false false false false true false false
false true false false true false true
true false false true true false false
true true true true true false true

We have that P 1 = ∅, so g1 = true. Since g1∧(¬f)∧c is sat-
isfiable, there exists a false-positive b1 with b1(v1) = true and
b1(v2) = false. To resolve it, a new DNF formula, initialized
to false, is added to P together with its monotonicity base b1.
In the next iteration, g2 is false. Consequently, g2∧(¬f)∧c is
unsatisfiable, so there exists no false-positive. However, there
is a false-negative b2, defined as b2(v1) = b2(v2) = true.
To resolve it, the DNF formula h2 = false is weakened with
an additional cube. To get a small cube, b2 is modified to
match the monotonicity base b1 as well as possible. b1 and
b2 differ only in v2, so this value is flipped to obtain b′′2

as b′′2(v1) = true, b′′2(v2) = false. However, for b′′2 it
is not allowed to output true, because f(b′′2) ∨ ¬c(b′′2) is
false, so the flip is retracted. Since b1 and b2 differ only in
v2 and b′2(v2) = true, the empty DNF in h2 is extended to
v2. Since P 3 now contains only the DNF v2, g3 is v2 in the
next iteration. Using g3, there is neither a false-positive nor
a false-negative, so g3 = v2 is reported as solution.

V. EXPERIMENTAL RESULTS

In this section, we first briefly describe our implementation
and experimental setup. Then we present our experimental
results with the synthesis tools RATSY and UNBEAST.
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A. Implementation and Experimental Setup

We implemented the learning algorithms in a circuit ex-
traction tool that can be run in 9 different modes. For every
mode, the following table summarizes the learning method,
whether the basic method is complemented, whether variables
are minimized using MINVARS, and the output format. We
say that a method is complemented if we negate the function
to learn before applying the learning algorithm. By duality, we
can then use the CNF learning algorithm for obtaining a DNF
result, and the CDNF learner to get a DCNF (disjunction of
DNFs) output. Mode 8 is special: for every output, it applies
the learning methods of modes 1, 3, 5, and 7, and picks the
smallest implementation.

Mode Learning Method Compl. MINVARS Outcome
0 Bshouty no no CDNF
1 Bshouty no yes CDNF
2 Bshouty yes no DCNF
3 Bshouty yes yes DCNF
4 CNF Refinement no no CNF
5 CNF Refinement no yes CNF
6 CNF Refinement yes no DNF
7 CNF Refinement yes yes DNF
8 both both yes all

As input, our tool takes a file containing a general strategy S .
As output, it produces a circuit in SMV or BLIF format.
All symbolic computations are done using BDDs. We use
CUDD [31] as BDD library with dynamic variable reordering
enabled. Our tool is written in C++. The implementation
as well as the input files and all scripts to reproduce the
experimental results are available for download3.

In our experiments, we run RATSY and UNBEAST to
synthesize circuits for several specifications. We also export
the general strategies and synthesize circuits with our learning-
based extractor. ABC4 70930 is used to map circuits to
standard cells. The gates in our standard cell library have
a fan-in of at most 4 (which can increase the depth of the
circuit). All circuits produced by our extractor have been suc-
cessfully model-checked against their original specifications,
using NUSMV 2.5.4 [12] with bounded model checking.

All experiments were performed on an Intel Xeon E5430
CPU with 4 cores running at 2.66GHz, 64GB of RAM, and
a 64 bit Linux. All programs run single-threaded, so only one
core was actually used. The maximum memory consumption
of our new circuit extractor was 3.3GB in our experiments.

B. Experiments with RATSY

RATSY’s built-in circuit extractor uses the cofactor approach
sketched in Section II. Table I compares this technique with
our new approach. Due to space constraints, the comparison
includes mode 1 and 7 (see Section V-A) only. These modes
were chosen because they achieved good results. Results for
the other modes can be found in Table III in the appendix. We

3http://www.iaik.tugraz.at/content/research/design verification/others/
4http://www.eecs.berkeley.edu/∼alanmi/abc/

evaluate the methods on three parametrized specifications. The
first one defines an arbiter for ARM’s AMBA AHB bus [6].
It is parametrized with the number of masters it can handle.
These specifications are denoted as Ai, where i is the number
of masters. The second specification, denoted A’i, is a less
optimized variant of the former. It is described in [5]. The
third specification is denoted by Gi and defines a generalized
buffer [6] connecting i senders to two receivers. The bit
numbers of the general strategies range from |U | = 24 and
|W | = 12 (for G2) to |U | = 129 and |W | = 63 (for A15).
Table III contains the exact numbers for every benchmark.

Column 1 in Table I lists the time needed by RATSY to turn
the general strategy into a circuit. The size of the resulting
circuit in terms of the total number of standard cells (gates
plus flip-flops, but the flip-flops are typically negligible) is
given in column 2. Column 3 contains the corresponding depth
of the combinational circuit. The columns 4 to 7 show the
results for circuit extraction with our extractor in mode 1.
Column 4 gives the circuit extraction time. The columns 5
and 6 list the size and depth of the resulting circuits. Column 7
contains the circuit size improvement factor due to our method.
The columns 8 to 11 show the same information for mode 7.
Computation time entries preceded by a “>” indicate time-
outs. A “-” stands for missing data due to a time-out. The suffix
k stands for a multiplication of the respective number by 1 000.
The table does not contain entries for A’i with i > 5 because
for these specifications, RATSY did not finish within 100 000
seconds. The sums and averages in the last two lines only take
into account benchmarks for which all methods terminate.

C. Experiments with UNBEAST

UNBEAST is a bounded synthesis tool that applies the Kuku-
la/Shiple method (see Section II) for circuit extraction. The
comparison with our new approach is summarized in Table II
for the modes 1 and 7 of our new circuit extraction tool.
Results for the other modes can be found in the appendix. For
the comparison, we use the (realizable) LILY benchmarks [20],
which are denoted as Li. For some of these benchmarks
we created several variants. They are named Li-j, where j
is a size parameter. We also use a specification for a load
balancer [16] (the final version), which is parameterized by
the number i of clients. These specifications are referred to as
Bi. Table II is organized just like Table I. A circuit depth of
0 means that the combinatorial circuit could be implemented
without gates, i.e., all outputs are either equal to an input or to
the constants true or false. The bit numbers of the general
strategies range from |U | = 9 and |W | = 9 (on L13) to
|U | = 93 and |W | = 92 (on B5). The individual bit numbers
can be found in Table IV in the appendix.

D. Discussion

Fig. 2 shows a scatter plot comparing the size of the
circuits produced by our new extractor in mode 1 against
those produced by RATSY or UNBEAST. On most benchmarks
run through RATSY, an improvement of around one order of
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TABLE I
COMPARISON WITH RATSY.

Col. 1 2 3 4 5 6 7 8 9 10 11

RATSY Mode 1 Mode 7
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[sec] [#cells] [-] [sec] [#cells] [-] [-] [sec] [#cells] [-] [-]

A2 1.2 733 18 1.4 269 5 2.7 1.3 260 5 2.8
A3 19 5.6 k 25 19 355 5 16 21 565 5 9.9
A4 67 10 k 33 461 1.8 k 7 5.5 480 3.7 k 8 2.7
A5 135 5.7 k 25 221 663 5 8.5 239 1.2 k 6 4.9
A6 204 8.2 k 26 233 819 6 10 251 1.3 k 6 6.4
A7 840 16 k 36 452 1.0 k 6 16 488 1.6 k 6 10
A8 6.6 k 135 k 46 >100 k − − − >100 k − − −
A9 1.8 k 22 k 41 4.2 k 1.3 k 6 16 6.7 k 2.4 k 6 9.3
A10 3.0 k 19 k 44 8.9 k 1.5 k 6 12 7.0 k 2.4 k 7 7.6
A11 4.0 k 39 k 46 7.4 k 1.8 k 7 21 7.5 k 3.1 k 6 13
A12 10 k 38 k 50 16 k 2.0 k 6 19 37 k 3.1 k 7 12
A13 15 k 65 k 54 45 k 2.4 k 6 28 31 k 3.5 k 7 19
A14 15 k 47 k 42 36 k 2.6 k 7 18 83 k 3.6 k 7 13
A15 19 k 70 k 59 75 k 3.0 k 7 24 99 k 4.0 k 7 18

A’2 1.7 1.0 k 16 1.9 224 5 4.6 2.4 306 5 3.4
A’3 169 17 k 26 77 465 5 38 103 781 6 22
A’4 914 28 k 32 984 677 5 41 5.1 k 5.2 k 8 5.3
A’5 9.7 k 101 k 37 18 k 893 5 113 16 1.9 k 6 54

G2 0.1 249 11 0.1 53 3 4.7 0.1 65 3 3.8
G3 0.2 394 12 0.3 123 4 3.2 0.3 174 4 2.3
G4 0.5 721 18 0.5 119 3 6.1 0.5 262 5 2.8
G5 1.2 1.8 k 18 2.3 444 6 4.2 1.9 674 6 2.7
G6 7.7 6.2 k 22 6.8 1.1 k 6 5.8 2.1 828 6 7.5
G7 3.3 3.5 k 23 11 1.7 k 7 2.0 15 3.4 k 7 1.0
G8 8.1 5.8 k 26 2.6 278 4 21 7.4 5.5 k 8 1.1
G9 5.9 3.4 k 25 430 5.8 k 9 0.6 74 10 k 8 0.3
G10 14 6.5 k 29 8.0 k 22 k 9 0.3 57 13 k 9 0.5
G11 18 9.8 k 33 71 k 47 k 10 0.2 157 28 k 9 0.4
G12 35 14 k 34 >100 k − − − 711 62 k 10 0.2

sum 80 k 531 k 827 292 k 100 k 160 5.3 294 k 101 k 173 5.3
avg. 3.0 k 20 k 31 11 k 3.7 k 5.9 16 11 k 3.7 k 6.4 8.7

magnitude can be observed, with a tendency to greater im-
provements for larger circuits. For UNBEAST the improvement
reaches almost two orders of magnitude on many benchmarks.
Mode 8 (only included in the appendix) produces even smaller
circuits, but at the costs of higher running times. In contrast
to the many methods we have already tried (cf. Section II),
these results are very promising. Table I and II also show a
significant improvement of the circuit depths. For RATSY, the
average is reduced from 31 to 6 after mapping to standard
cells. For UNBEAST there is an average reduction from 41 to
less than 3 in our experiments.

The downside of our new method is that computation times
grow. For the RATSY benchmarks Ai and A’i, the slow-down
factor is mostly below 4. Only for the benchmarks Gi, the
circuit extraction times grow much faster with increasing i
than with the cofactor approach implemented in RATSY. Also
compared to the Kukula/Shiple method of UNBEAST, a con-
siderable slow-down can be observed on the Bi benchmarks.
On the Gi benchmarks, mode 7 appears to scale better than

TABLE II
COMPARISON WITH UNBEAST.

Col. 1 2 3 4 5 6 7 8 9 10 11

UNBEAST Mode 1 Mode 7
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[sec] [#cells] [-] [sec] [#cells] [-] [-] [sec] [#cells] [-] [-]

L3 0.1 845 24 0.1 19 1 44 0.1 19 1 44
L3-6 0.3 6.3 k 86 15 2.6 k 6 2.4 0.9 79 3 80
L5 0.1 908 23 0.1 24 1 38 0.1 27 2 34
L6 0.1 2.5 k 40 0.1 38 3 65 0.1 42 2 59
L7 0.1 551 21 0.1 22 1 25 0.1 25 2 22
L8 0.1 113 11 0.1 10 0 11 0.1 10 0 11
L9 0.1 450 15 0.1 16 1 28 0.1 16 1 28
L10 0.1 1.4 k 35 0.1 22 0 64 0.1 22 0 64
L12 0.1 524 21 0.1 15 0 35 0.1 15 0 35
L13 0.1 28 7 0.1 9 1 3.1 0.1 9 1 3.1
L14 0.1 3.4 k 31 0.1 17 1 203 0.1 17 1 203
L15 0.1 277 15 0.1 16 2 17 0.1 16 2 17
L16 0.1 830 21 0.1 29 3 29 0.1 37 3 22
L17 0.1 1.5 k 37 0.1 21 1 71 0.1 25 2 60
L18 0.3 23 k 73 0.2 79 4 286 0.2 73 4 309
L19 0.1 531 26 0.1 21 1 25 0.1 21 1 25
L20 0.1 4.7 k 52 0.5 120 4 39 0.3 84 4 56
L21 0.4 13 k 70 2.6 114 5 112 3.6 205 5 62
L22 0.1 1.1 k 43 0.1 107 4 11 0.1 43 3 26
L22-5 0.1 950 35 0.1 104 4 9.1 0.1 40 3 24
L22-6 0.1 995 40 0.1 107 4 9.3 0.1 43 3 23
L22-7 0.1 1.2 k 43 0.1 107 4 11 0.1 42 3 28
L22-8 0.1 1.0 k 35 0.1 106 4 9.5 0.1 41 3 24
L22-9 0.1 910 35 0.1 105 4 8.7 0.1 41 3 22
L23 0.1 354 18 0.1 16 1 22 0.1 16 1 22

B2 0.1 3.5 k 51 0.1 35 2 99 0.1 43 2 81
B3 0.7 27 k 79 1.9 437 6 62 0.8 131 5 208
B4 5.5 171 k 151 1.1 k 6.5 k 9 26 3.5 k 23 k 9 7.4
B5 650 816 k 189 99 k 17 k 9 49 >100 k − − −

sum 7.5 268 k 1.1 k 1.1 k 11 k 77 25 3.5 k 24 k 69 11
avg. 0.3 9.6 k 41 39 387 2.8 49 125 872 2.5 57

mode 1, but at the costs of producing larger circuits.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new approach for extracting
circuits from general strategies that improves the circuit size by
roughly one to two orders of magnitude, compared to previous
techniques. Moreover, it reduces the depths of the resulting
circuits, allowing them to be run at higher clock rates. General
strategies are typical intermediate results of reactive synthesis
workflows, and thus our contribution significantly increases
the quality of the circuits computed in reactive synthesis.

During our quest for effective and efficient circuit extraction
techniques that go beyond the cofactor approach of Bloem
at al. [6], we tried a large number of older techniques from
literature. Our experience shows that exploiting the large
degree of non-determinism that we have in general strategies
is not a simple task and techniques not geared towards such
cases do not perform well. Our approach on the other hand
is built around the idea of computational learning of Boolean
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Fig. 2. Circuit size improvement.

functions. It allows exploiting non-determinism in a natural
way, which is the reason for the effectiveness of our approach.

In the future, we plan to implement more learning al-
gorithms, refine them with heuristics for selecting better
false-positives, false-negatives, and variable orderings, and to
implement the algorithms also with SAT-solvers instead of
BDDs. Furthermore, we want to compare the produced circuits
with manual implementations to see how much potential for
optimizations still exists, and to get new inspirations.
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APPENDIX

TABLE III
EXTENSIVE PERFORMANCE RESULTS USING RATSY. “T” INDICATES A TIME-OUT AFTER 100 000 SECONDS.

RATSY Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

|U | |W | time size time size time size time size time size time size time size time size time size time size

[-] [-] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells]

A2 32 18 1.2 733 4.2 339 1.4 269 4.4 358 1.5 259 3.4 358 1.3 217 7.6 551 1.3 260 2.0 249
A3 41 23 19 5.6 k 48 406 19 355 162 732 23 540 29 420 20 423 94 732 21 565 21 303
A4 48 26 67 10 k 5.1 k 2.5 k 461 1.8 k 65 k 11 k 1.8 k 5.3 k 4.4 k 3.4 k 123 1.2 k T − 480 3.7 k 2.7 k 2.1 k
A5 56 30 135 5.7 k 921 703 221 663 2.5 k 1.2 k 235 824 717 850 233 756 1.4 k 1.6 k 239 1.2 k 265 581
A6 63 33 204 8.2 k 1.1 k 835 233 819 5.7 k 1.9 k 260 1.3 k 714 1.4 k 292 960 3.3 k 2.1 k 251 1.3 k 299 691
A7 71 37 840 16 k 2.4 k 1.1 k 452 1.0 k 8.7 k 2.2 k 498 1.6 k 1.8 k 1.8 k 964 1.2 k 9.8 k 2.6 k 488 1.6 k 664 912
A8 78 40 6.6 k 135 k T − T − T − T − T − T − T − T − T −
A9 86 44 1.8 k 22 k 24 k 1.3 k 4.2 k 1.3 k 26 k 3.4 k 4.4 k 2.1 k 8.6 k 2.7 k 6.5 k 1.6 k 37 k 3.4 k 6.7 k 2.4 k 4.9 k 1.2 k
A10 93 47 3.0 k 19 k T − 8.9 k 1.5 k T − 7.0 k 2.5 k 24 k 3.2 k 9.3 k 1.9 k T − 7.0 k 2.4 k 13 k 1.4 k
A11 100 50 4.0 k 39 k 77 k 1.9 k 7.4 k 1.8 k T − 7.4 k 2.9 k 16 k 3.9 k 12 k 2.2 k T − 7.5 k 3.1 k 11 k 1.6 k
A12 107 53 10 k 38 k T − 16 k 2.0 k T − 20 k 3.1 k T − 48 k 2.4 k T − 37 k 3.1 k 36 k 1.7 k
A13 114 56 15 k 65 k T − 45 k 2.4 k T − 28 k 3.6 k 45 k 5.3 k 87 k 2.7 k T − 31 k 3.5 k T −
A14 121 59 15 k 47 k T − 36 k 2.6 k T − 38 k 3.9 k 58 k 5.9 k T − T − 83 k 3.6 k 92 k 2.3 k
A15 129 63 19 k 70 k T − 75 k 3.0 k T − T − T − T − T − 99 k 4.0 k T −

A’2 35 21 1.7 1.0 k 4.7 298 1.9 224 5.2 400 2.2 265 3.6 365 1.6 188 8.4 540 2.4 306 2.4 183
A’3 43 25 169 17 k 142 307 77 465 114 450 99 561 120 310 103 555 159 555 103 781 83 444
A’4 52 30 914 28 k T − 984 677 T − 4.1 k 4.8 k 61 k 4.8 k 1.7 k 1.2 k T − 5.1 k 5.2 k 1.1 k 656
A’5 60 34 9.7 k 101 k 7.6 k 466 18 k 893 8.6 k 842 12 k 1.1 k 6.7 k 475 15 k 900 11 k 1.4 k 16 k 1.9 k 9.1 k 834

G2 24 12 0.1 249 0.3 79 0.1 53 0.4 81 0.1 61 0.2 80 0.1 57 0.2 87 0.1 65 0.1 56
G3 28 14 0.2 394 0.8 153 0.3 123 0.9 165 0.3 181 0.7 173 0.3 147 0.7 214 0.3 174 0.4 136
G4 32 16 0.5 721 1.7 140 0.5 119 2.0 169 0.5 190 1.7 149 0.5 111 1.7 267 0.5 262 0.5 119
G5 36 18 1.2 1.8 k 11 261 2.3 444 9.2 356 2.5 673 11 332 1.7 387 20 565 1.9 674 3.3 268
G6 39 19 7.7 6.2 k 20 502 6.8 1.1 k 15 371 2.4 601 8.7 463 4.3 1.0 k 14 617 2.1 828 5.8 212
G7 42 20 3.3 3.5 k 41 483 11 1.7 k 121 518 27 3.5 k 179 668 5.3 1.4 k 927 1.2 k 15 3.4 k 47 1.4 k
G8 46 22 8.1 5.8 k 22 417 2.6 278 28 483 18 3.9 k 17 414 2.7 261 178 626 7.4 5.5 k 21 278
G9 50 24 5.9 3.4 k 249 872 430 5.8 k 551 790 180 9.9 k 22 k 1.1 k 91 5.2 k 34 k 1.4 k 74 10 k 644 1.4 k
G10 53 25 14 6.5 k 871 1.9 k 8.0 k 22 k 418 790 95 9.8 k 14 k 1.3 k 1.3 k 19 k 8.4 k 1.3 k 57 13 k 3.6 k 410
G11 56 26 18 9.8 k 7.4 k 3.4 k 71 k 47 k 300 969 263 20 k 1.4 k 1.5 k 3.7 k 35 k T − 157 28 k 25 k 470
G12 59 27 35 14 k 740 2.2 k T − 1.4 k 1.2 k 1.1 k 44 k 37 k 1.7 k 14 k 75 k 95 k 1.6 k 711 62 k T −

avg. 62 31 3.0 k 23 k 5.8 k 930 11 k 3.7 k 5.7 k 1.3 k 4.6 k 4.7 k 12 k 1.7 k 7.7 k 6.0 k 11 k 1.1 k 11 k 5.8 k 8.0 k 794

TABLE IV
EXTENSIVE PERFORMANCE RESULTS USING UNBEAST. “T” INDICATES A TIME-OUT AFTER 100 000 SECONDS.

UNBEAST Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

|U | |W | time size time size time size time size time size time size time size time size time size time size

[-] [-] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells]

L3 21 19 0.1 845 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19
L3-6 59 57 0.3 6.3 k 1.2 115 15 2.6 k 34 3.7 k 0.9 90 1.2 118 2.5 2.7 k 13 3.1 k 0.9 79 18 89
L5 26 24 0.1 908 0.1 24 0.1 24 0.1 27 0.1 27 0.1 24 0.1 24 0.1 27 0.1 27 0.1 24
L6 34 32 0.1 2.5 k 0.1 40 0.1 38 0.1 49 0.1 41 0.1 41 0.1 43 0.1 54 0.1 42 0.1 37
L7 24 22 0.1 551 0.1 22 0.1 22 0.1 25 0.1 25 0.1 22 0.1 22 0.1 25 0.1 25 0.1 22
L8 10 10 0.1 113 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10
L9 16 16 0.1 450 0.1 20 0.1 16 0.1 18 0.1 16 0.1 20 0.1 16 0.1 18 0.1 16 0.1 16
L10 22 22 0.1 1.4 k 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22
L12 15 15 0.1 524 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15
L13 9 9 0.1 28 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9
L14 17 17 0.1 3.4 k 0.1 17 0.1 17 0.1 21 0.1 17 0.1 17 0.1 17 0.1 21 0.1 17 0.1 17
L15 14 14 0.1 277 0.1 15 0.1 16 0.1 21 0.1 16 0.1 15 0.1 16 0.1 21 0.1 16 0.1 16
L16 18 18 0.1 830 0.1 39 0.1 29 0.1 47 0.1 41 0.1 40 0.1 28 0.1 48 0.1 37 0.1 29
L17 20 21 0.1 1.5 k 0.1 33 0.1 21 0.1 35 0.1 25 0.1 36 0.1 21 0.1 37 0.1 25 0.1 21
L18 34 35 0.3 23 k 1.3 249 0.2 79 3.0 465 0.2 85 1.0 224 0.2 70 1.9 451 0.2 73 0.3 83
L19 21 21 0.1 531 0.1 32 0.1 21 0.1 33 0.1 21 0.1 31 0.1 21 0.1 28 0.1 21 0.1 21
L20 28 29 0.1 4.7 k 0.4 76 0.5 120 0.4 126 0.3 102 0.3 77 0.3 99 0.4 92 0.3 84 0.6 86
L21 32 32 0.4 13 k 2.2 123 2.6 114 16 468 12 419 3.3 248 4.1 261 4.3 218 3.6 205 4.6 101
L22 28 26 0.1 1.1 k 0.1 61 0.1 107 0.4 215 0.1 40 0.1 63 0.1 109 0.2 169 0.1 43 0.2 38
L22-5 24 22 0.1 950 0.1 53 0.1 104 0.3 205 0.1 38 0.1 59 0.1 105 0.1 175 0.1 40 0.1 34
L22-6 28 26 0.1 995 0.1 61 0.1 107 0.4 215 0.1 40 0.1 63 0.1 109 0.1 169 0.1 43 0.2 38
L22-7 27 25 0.1 1.2 k 0.1 56 0.1 107 0.4 209 0.1 39 0.1 62 0.1 108 0.2 178 0.1 42 0.1 37
L22-8 26 24 0.1 1.0 k 0.1 55 0.1 106 0.4 207 0.1 38 0.1 61 0.1 107 0.1 177 0.1 41 0.1 36
L22-9 25 23 0.1 910 0.1 54 0.1 105 0.4 206 0.1 39 0.1 60 0.1 105 0.1 176 0.1 41 0.1 35
L23 16 16 0.1 354 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16

B2 33 32 0.1 3.5 k 0.2 45 0.1 35 0.5 113 0.1 44 0.2 54 0.1 33 0.2 66 0.1 43 0.2 36
B3 44 43 0.7 27 k 4.2 453 1.9 437 7.9 280 1.6 165 2.5 467 1.1 447 1.1 169 0.8 131 3.3 160
B4 77 76 5.5 171 k T − 1.1 k 6.5 k T − T − 19 k 7.9 k 264 8.1 k 8.1 k 22 k 3.5 k 23 k T −
B5 93 92 650 816 k T − 99 k 17 k T − T − T − T − T − T − T −

avg. 27 26 23 37 k 0.4 64 3.4 k 947 2.4 250 0.6 54 663 349 9.7 451 291 993 125 872 1.0 40
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