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Abstract—In the past decade, formal tools have increased
functional verification efficiency by exhaustively searching for
hard to find bugs. Often the counter-examples returned are not
due to design bugs but due to missing constraints that are needed
to model the surrounding environment. These types of false
positives have become a great concern in the industry today.
To address this issue, input constraints are typically added by
the engineer to restrict the input space a formal tool is allowed
to explore. These constraints are difficult to generate as they
are usually implicit in the documentation or implementation of
adjacent design blocks. As a consequence, this process reduces
the efficiency of formal methodologies because missing input
constraints must be determined before deep design bugs can
actually be detected.

In this work, we present an algorithm to automatically gen-
erate missing input constraints given a failing counter-example.
The process begins by building a filtering function that models
the failing behaviors from the counter-example. Next, using
this function a list of fixed cycle properties are generated and
filtered to return a set of candidate input constraints for use
in debugging. Preliminary experimental results show that the
generated properties provide a strong intuition as to what input
constraints may be missing.

I. I NTRODUCTION

Functional verification is one of the most time consuming
steps in the VLSI design flow taking up to 46% of the total
design time [1]. To ease this growing burden, new tools and
technologies have been developed such as assertion-based ver-
ification (ABV). ABV has shown to improve observability and
increase overall verification efficiency. Along with traditional
simulation-based techniques, modern ABV flows make wide
use of formal technologies.

Formal methods allow a user to exhaustively explore the
state space of a design in an attempt to find corner case
counter-examples that elude traditional simulation-based veri-
fication. In formal property checking, a design block is verified
against a precisely defined formal property written in an
assertion language such as SystemVerilog Assertions (SVA)
or Property Specification Language (PSL). As such, when a
formal verifier returns a counter-example, the expectation is
that a design bug has been detected. Although ideal, reports
from the industry indicate that many failures are due to missing
constraints from the surrounding environment and not because
of design errors [2]. In the context of this work, we refer
to such a situation as afalse positive. These false positive
are typically caused by missing constraints that are built into

the environment but not explicitly documented. This results in
formal tools reporting a failure when, in fact, the design may
work as intended for the given environment.

To solve this issue, constraints in the form of formal prop-
erties are added by the engineer to restrict the space in which
the formal tool can explore. The purpose of these constraints
is to precisely model the restricted input space allowing the
formal tool to find “real” design bugs. However, this presents
a large debugging challenge to the engineer who is asked to
play a guessing game as to which constraints need to be added.
Adding to this overhead, often these constraints are implicitly
specified in the documentation or implementation of adjacent
design blocks. In many cases, the time-consuming manual
process needed to identify these missing input constraints
dominates the formal verification process leading to reduced
efficiency.

This situation of generating constraints has also appeared
in other contexts. During constrained random simulation, the
work in [3] automatically generates constraint properties to
bias the stimulus generator towards missing coverage holes.
In compositional verification [4], a key step is generating
assumption properties in order to verify the correctness of
components separately. Previous work [5]–[7] aims to auto-
matically generate an assumption on the interface between two
components with the goal of proving the target property. Ad-
ditionally, generating environmental constraints for software
model checking [8], [9] and reactive system synthesis [10],
[11] have also been studied. In these situations, the techniques
effectively generate constraints to accomplish their respective
goals. However, none of them addresses the wide-spread pain
of debugging missing input constraints in a formal hardware
verification flow.

In this work, we present an algorithm that takes the first
steps towards automated debugging of missing input con-
straints in a formal Register Transfer Level (RTL) verification
flow. This algorithm automatically generates fixed cycle input
constraints in the form of SystemVerilog properties from a
failing formal counter-example. The benefit of these generated
constraints is twofold. First, the constraints are generated
efficiently from the counter-example without the need to re-
run the entire formal flow thus providing feedback quickly in
the verification cycle. Further, the constraints are in the form
of simple properties that can aid debugging by either being
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directly used for the actual missing constraint(s), or indirectly
used to give intuition about the failure. The key insight is
that the engineer cannot be taken out of the debugging loop
entirely. Instead, the algorithm aims to efficiently return easy
to understand feedback to speed up the debugging of missing
constraints.

The algorithm begins by using the time-unrolled counter-
example and extracting all minimal correction sets with respect
to the inputs of the design. This information is used to
build a filtering function that encodes the incorrect input
combinations that led to the failure in the counter-example.
Next, a dictionary of fixed cycle properties is used to generate
a list of candidate input constraints based on relevant signals
from the counter-example. Each property on the list is then
used in conjunction with the filtering function to generate a
small SAT instance to determine if the property is a candi-
date for a missing constraint. The result is a set of input
constraints that each can restrict the bad input behavior seen in
the counter-example. Preliminary experimental results confirm
the efficiency in generating the new properties as well as
their ability to provide effective guidance as to what input
constraints may be missing.

The remaining sections of this paper proceed as follows.
Section II and Section III present background material and
the proposed approach, respectively. Section IV presents ex-
perimental results and Section V concludes this work.

II. PRELIMINARIES

A. Minimal Correction Sets and Unsatisfiable Cores

Given an unsatisfiable (UNSAT) Boolean formulaφ in
conjunctive normal form (CNF), anUNSAT coreis a subset of
clauses that are unsatisfiable. AMinimal Unsatisfiable Subset
(MUS) is an UNSAT core where every proper subset is satis-
fiable (SAT). A Minimal Correction Set(MCS) is a minimal
subset of clauses ofφ such that removing the subset will
result inφ being satisfiable. There exists a duality relationship
between MUSs and MCSs as it is possible to compute the set
of one from the other [12]. Using this relationship, one can
calculate all MUSs from all MCSs.

Given an UNSAT CNF formulaφ, MCSs can be computed
by introducing a fresh variable to each clause called are-
laxation variable. If the variable is active, then the clause
is effectively removed from the problem. Using this idea,
cardinality constraints [13] can be used to find all minimal
sets of relaxation variables that makeφ SAT. For each solution,
the set of active relaxation variables correspond to an MCS.
This idea has been used extensively in modern Max-SAT
solvers [14], [15] to compute MCSs.

With respect to debugging, a MUS intuitively represents one
way in which a counter-example can excite an error, traverse
its effects through the design components and cause a failure
at the observation points. In this view, clauses correspond
to the counter-example, components of the design and target
property. Alternatively, an MCS represents a minimal set of
clauses related to components that are potentially erroneous.
In other words, removing the components related to the MCS

clauses is a potential way to “correct” the design. UNSAT
cores and MCSs have been widely used in various debugging
applications such as [16].

III. D EBUGGING MISSING INPUT CONSTRAINTS

A. Extracting Failing Behaviors from a Counter-Example

In this subsection, we develop a methodology to quickly
determine whether a candidate input constraint will prevent a
failure from occurring. A naive way to detect this is to simply
re-run the formal tool with the added candidate constraint. This
can be very computationally intensive especially if multiple
input constraint candidates need to be tested. Instead, we will
generate an approximate solution to this process by generating
a function that intuitively represents the disallowed input
behaviors from the unrolled counter-example. More precisely,
this function will represent all MUSs with respect to the
input unit clauses of the unrolled counter-example. Using this
function, potential input constraints can be efficiently checked
to ensure that they do not cause a failure in a similar manner
to the given counter-example.

Consider the CNF formulaφ of the time-frame expanded
circuit and the corresponding counter-example:

φ = S ·X · T · P (1)

whereS represents the initial state,X the counter-example
input vector,T the unrolled circuit transition relation, and
P the property to be checked. Sinceφ models the counter-
example of the unrolled circuit, it is guaranteed to be UNSAT.

Instead of computing all MUSs forφ to generate our desired
function, a less expensive computation can be performed by
examining only the inputs clauses fromX. The intuition here
is that we are only concerned with missing input constraints,
so it is unnecessary to perform extra computation for finding
all MUSs not relating to inputs.

More precisely, we wish to extract all minimal∗ subsets of
input unit clauses fromX (denoted byUk for the kth such
set) such thatS · T · P · Uk is UNSAT. This will allow us
to build a function,F , that represents the disjunction of all
MUSs with respect to the inputs, shown in the next equation:

F = U0 + ...+ Uk (2)

Given a candidate input constraint,A, if F · A is SAT, then
A does not prevent the failure given in the counter-example
since at least one ofUk is SAT. Inversely, ifF ·A is UNSAT,
then A will ensure that future failures will not occur in the
same way as the given counter-example. However in the latter
case,A may not constrain the input space enough to prevent
all failures, but it at least prevents failures similar to those
seen in the counter-example.

For theith literal in Uk, denoted byuk
i
, Equation 2 can be

expanded to give:

F =u0

0
u0

1
...u0

|U0|
+ ...+ uk

0
uk

1
...uk

|Uk|

=(u0

0
+ u0

1
+ ...+ u0

|U0|
)...(uk

0
+ uk

1
+ ...+ uk

|Uk|
) (3)

∗ Minimal in the sense that removing any clause fromUk will make
S · T · P · Uk become SAT.
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Notice that whenF evaluates to false, at least one literal in
eachUk term is false. In other words, allUk MUSs can be
broken by negating at least one literal from each term inF .
Correspondingly,φ can be made SAT if at least one literal
from each term inF is negated for the respective unit clauses
in φ. Further, removing a minimal set of the corresponding
unit clauses from the original problem will give an equivalent
effect. Define this minimal set to beV k ⊆ X for thekth such
set.

The setV k can be thought of as thekth MCS with respect to
the input literals. In fact, the relationship between the minimal
subsets of inputs to makeφ UNSAT (Uk), and the minimal
subsets of inputs that need to be removed to makeφ SAT (V k),
is analogous to the relationship between MUSs and MCSs.

Using this relationship and the fact that these sets only
contain unit clauses,F can be simplified further. Let the
ith literal in V k ⊆ X be denoted byvk

i
. Equation 3 can

be simplified, by distributing the conjunctions and removing
redundant terms/literals, to:

F =v0
0
v0
1
...v0

|V 0|
+ ...+ vk

0
vk
1
...vk

|V k|
(4)

Now each term of Equation 4 contains the conjunction of the
negated literals of eachV k. Thus to build the functionF , one
only needs to find allV k.

This can be accomplished in a similar manner to computing
all MCSs. Begin by adding a fresh relaxation variable to each
clause inX. Using cardinality constraints, find all minimal
SAT solutions with respect to these relaxation variables similar
to the process used by modern Max-SAT solvers [14], [15].
Each such solution will correspond to aV k. After all such
solutions are found, construct a SAT instance of the form
F · A, whereA is the given input constraint to be checked.
This instance checks whetherA can restrict the input space
to prevent a failure similar to the one seen in the counter-
example.

Although computing MCSs can be computationally inten-
sive in general, the proposed method only calculates them with
respect to the input unit clauses. This allows the method to be
more efficient as shown in the experimental results.

Example 1 Consider the implementation of the simple state
machine shown in Figure 1 that implements a modulo-2
counter that counts up whena = 1 and resets ifb = 1. The
property to be verified is:

P: s == 2’b01 && a |=> s == 2’b10

Informally, if the counter is at01 and a is high, then
in the next cycle it should be at10. If sent to a formal
property checker, the property will fail because the property
was written under the assumption that the reset signalb does
not go high. A two cycle counter-example to this property
is X =< (a0, b0), (a1, b1) >, where the superscripts indicate
the clock-cycle. Solving for allV k, we find:V 0 = {a0}, V 1 =
{b0}, V 2 = {a1}, V 3 = {b1}. Which can directly be used to

build F = a0 + b0 + a1 + b1.

a = 1, b = 0

a = 0||b = 1

b = 1

s0s1 = 10 s0s1 = 01

s0s1 = 00

a = 0, b = 0

a = 1, b = 0

b = 1

a = 0, b = 0

a = 1, b = 0

Fig. 1. Example 1: A Simple Modulo-2 Counter

B. Generating Fixed Cycle Properties

Missing constraints can be arbitrarily complex properties
ranging from constant values to complex bus protocols that
depend on the specifications. In general, there is no automated
method to precisely generate these missing constraints that
model the external environment. Even in cases where it
may be possible, it is usually not practical. This is because
algorithmically computed properties will likely be in some
complex form that is unintelligible to user. This limits the
benefit of any such technique to the user.

Instead, we take a different approach where simple fixed
cycle properties are generated to give guidance to the user. In
this way, the feedback can be used in conjunction with the
user’s knowledge to determine the missing input constraint,
which frequently requires higher level design semantics. These
properties may not be able to model all the complexities of
the surrounding environment in all cases. However, the benefit
of the proposed approach lies in the fact that it points the user
to what types of constraints may be needed. Note that a more
comprehensive set of properties can be used to expand upon
the simple models presented in this preliminary study to gain
greater benefit.

The process begins by selecting which input signals are
involved in the counter-example failure. Any signal whose
bit is used inF is considered to be a candidate for use in
a generated property. Here, signals are categorized either as
single-bit or multi-bit based upon the definition in the RTL.

For single bit signals and bits composing multi-bit signals,
denoted bya, the following family of properties are generated:

• Stuck-at properties:!a anda.
• Hold: $past(a) == a, $rose(a) |=> a,
$rose(a) |=> !a, $fell(a) |=> a,
$fell(a) |=> !a

This family comprises of simple stuck-at properties and hold
properties. These types of properties can be useful for detect-
ing many different types of issues such as setting incorrect
modes, or writing incorrect data.

Next, these multi-bit properties provide detection for com-
mon bus constraints such as one-hot, or incorrect addresses.
b1 andb2 represent multi-bit signals, while<val> represents
an assignment to the respective signal seen when simulating
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the counter-example. The following is a family of multi-bit
properties:

• One-hot properties:$onehot(b) and$onehot0(b).
• Equality operators:b1 <op> <val> and b1 <op>
b2. Where<op> is one of {<, <=, ==, >=, >},
and where the size ofb1 andb2 match.

These are slightly higher-level properties that may give intu-
ition about certain missing constraints.

Once a list of properties are generated, each one can be
efficiently filtered, as described in Section III-A, by creating a
small SAT instanceF ·A. Each instance is significantly smaller
than the original unrolled circuit, allowing an efficient means
of filtering these potential constraints without having to do an
entire formal check.

Example 2 Consider the filtering functionF generated from
Example 1 and the four stuck-at fault properties that would be
generated:a, a, b, andb. Of these, only the first one would be
filtered out since it would return SAT when run withF , while
the others all return UNSAT. Of the remaining, it is easy to
see how they translate to high-level behavior of the design:a

prevents the counter from incrementing (a vacuous condition),
b continually resets the machine (also vacuous), andb turns
off reset (desired result).

IV. EXPERIMENTAL RESULTS

This section presents preliminary experimental results for
the proposed approach. All experiments are run on a single
core of a Intel Core i5 3.1 GHz quad-core workstation with
8 GB of RAM. Three designs are selected for our evaluation.
The first two designs are from OpenCores [17] (hpdmc,spi),
while the last one is a DDR2 controller from the OpenSparc
project (ddr) [18]. For the OpenCores designs, SVA assertions
are written based upon the accompanying design documenta-
tion. For the DDR2 controller, assertions from [19] are used
which are based on the DDR2 specifications. These assertions
are formally verified against the design using a commercial
formal property checker [20], and any failures are considered
instances of missing constraints. Each failing assertion is
considered separately and is labeled by adding a number to
the suffix of the circuit name.

Using these instances, our experimental methodology pro-
ceeds as follows. First, for each failing assertion, a counter-
example is generated using a formal property checker. Next,
the proposed approach from Section III uses the counter-
example to generate a filtered list of missing constraints.
Minisat [21] is used to solve all SAT instances, including
generating the filtering functionF . Finally, to check if any
of the generated properties can be used as actual missing
constraints, each property is re-run in a separate formal check
with the original failing assertion. The comprehensive results
for each instance are shown in Table I.

The first four columns of Table I show the instance name,
number of gates, number of state elements, and counter-
example length. The next three columns list the overall run-
time in seconds of the proposed approach, which includes

creating the filtering function as well as filtering, along with
the original number of generated properties candidates from
Section III-B, followed by the number remaining after filtering
with functionF . From the filtered list, the last three columns
show the total run-time, number of non-vacuous passing
instances and vacuous passing instances when re-running all
generated constraints separately with the formal tool.

Overall, the results show that the filtering function can
significantly reduce the number of candidates constraints from
an average of166 properties in column6, down to an average
of 24 in column 7 after filtering. Moreover, this is done
with relatively little run-time making it ideal for fast analysis
for use when debugging missing constraints. Compared to
running each generated constraint in a separate formal check
(column 8), the proposed method shows a 33.4x speedup on
average. The last two columns show that in certain cases (e.g.
hpdmc andspi), the simple properties can generate an exact
constraint to prevent the failing assertion. Although in the case
of ddr, none of the generated properties are able to prevent
the failing assertion.

This is not a big surprise considering the simplicity of the
generated constraints. However, a main point of this work
is to aid debugging of missing constraints, not necessarily
generate the exact constraint for the user. The simplicity of
the generated constraints in this case is beneficial since it
gives a intuitive method for the user as to which constraint is
potentially missing. To further illustrate this point, we describe
in detail the results of several cases from Table I.

Consider the first failing property forhpdmc1 that specifies
that after a read, an acknowledge signal should be asserted
several cycles later based on thetim_cas register.

P: $rose(read) |-> (!tim_cas ##5 $rose(ack))
or (tim_cas ##6 $rose(ack))

The proposed approach generates29 constraints, which deal
primarily with bus and address line input pins. In particular,
these generated constraints seemed relevant:

A1: wbc_adr_i[3:2] == 2’b00
A2: !wbc_we_i
A3: wbc_dat_i[6]
A4: !wbc_dat_i[6]

The first two constraints forcetim_cas not to be over-written
during programming of the control registers, while the last
two† ensure that regardless of what is programmed,tim_cas
should be held stable. These constraints give intuition that the
tim_cas register should be held constant when checking this
property.

For spi1, the assertion is a simple property to detect that
the internal FIFO raises theempty flag correctly:

P: (re && (rp+2’h1)==wp) |=> empty;

The proposed approach generated10 constraints, where the
following were of particular interest:

† The reason that bothwbc_dat_i[6] and its complement are suggested
is that it ensures that the signal is held constant throughout the trace so that
it does not toggle.
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TABLE I
AUTOMATED GENERATION OFMISSING CONSTRAINTSEXPERIMENTAL RESULTS

instance info algorithm check
instance # # c-ex time cand filter time passing vacuous
name gates states len (s) (s)

hpdmc1 9794 430 13 25 211 29 716 11 2
hpdmc2 9794 430 12 58 325 45 984 1 5
hpdmc3 9794 430 2 1 14 5 46 3 1
spi1 1724 132 4 1 40 10 80 1 8
spi2 1724 132 21 4 82 40 169 0 10
ddr1 55069 2474 9 248 310 20 3477 0 0
ddr2 55069 2474 6 42 180 20 1869 0 0

A1: adr_i[1:0] != 2’b10
A2: !we_i

These constraints attempt to disable writing to the FIFO. In
this case, the assertion was written under the assumption that
the writes cannot happen if the current operation has not been
acknowledged yet, as given by this property:!ack_o |=>

!we_i. In this case, the missing constraint involves a more
complex protocol that is dependent on an output pin,ack_o.
Despite this, the returned constraints can remind the user that
this protocol should be followed.

In the case ofddr1, the assertion involves a more complex
setup described in [19] to reach the target property of: “No
more than 4activatecommands may be issued to the DDR2
SDRAM within a window of t FAW clock cycles.” All the
returned constraints deal with theother_que_pos signal,
which controls thewe signal, which in turn causes anacti-
vate command. The work in [19] suggests that the issue is
either a design error, or a constraint is missing to model an
adjacent block that enforces this behavior. In the latter case,
other_que_pos constraints point to this conclusion.

V. CONCLUSION

In this work, an algorithm is proposed that automatically
generates missing input constraints from a failing counter-
example. It begins by building a filtering function that models
the failing behaviors from the counter-example. Next, a list
of fixed cycle properties are generated and filtered to return
a set of constraints that restrict the failing behavior in the
counter-example. Preliminary experimental results show that
the constraints can be efficiently generated and they provide
effective guidance to improve the formal verification flow.
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