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Abstract— Algebraic error correcting codes (ECC) are widely
used to implement reliability features in modern servers and
systems and pose a formidable verification challenge. We present
a novel methodology and techniques for provably correct design
of ECC logics. The methodology is comprised of a design
specification method that directly exposes the ECC algorithm’s
underlying math to a verification layer, encapsulated in a tool
“BLUEVERI” , which establishes the correctness of the design
conclusively by using an apparatus of computational algebraic ge-
ometry (Buchberger’s algorithm for Gröbner basis construction).
We present results from its application to example circuits to
demonstrate the effectiveness of the approach. The methodology
has been successfully applied to prove correctness of large error
correcting circuits on IBM’s POWER systems to protect memory
storage and processor to memory communication, as well as a
host of smaller error correcting circuits.

I. INTRODUCTION

ECCs are widely used in practice to protect data against
random errors that inevitably occur during transmission as well
as during prolonged storage. As semiconductor technology is
scaling down to the nanometer regime and tens of gigabits
per second transmission rates, error-free data handling requires
larger and more sophisticated error correcting circuits, with the
code construction and encoding/decoding algorithms almost
always going beyond the templates found in classical literature
due to feature set requirements. For example, the IBM z196
systems feature “RAIM” (Redundant Array of Independent
Memory, [1], [2]) with a 90 byte ECC that allows the system to
recover instantaneously from a full DIMM failure even in the
presence of additional chip failures. Each such error correcting
circuit has to be individually designed and programmed by a
human designer. The resulting implementation complexity in
hardware can lead to design errors which can cause costly
re-spins of the Silicon and derail schedules. Establishing
correctness/verification of such complex hardware is of critical
importance, though poses formidable challenges.

Traditional verification methods such as software simula-
tion, hardware-accelerated simulation or post-Silicon debug
offer insufficient coverage given the difficult nature of the logic
and the large solution space to be investigated. State-of-the-art
formal verification algorithms (which inherently check circuit
behavior against all possible legal combinations of inputs)
offering high capacity have been found lacking in proving
correctness because of their inability to exploit the specifics

of the underlying algebra - Galois field arithmetic.
We propose a solution to the problem of complete symbolic

verification of logical circuits which substantially rely on
arithmetic over Galois fields. Most of the error correcting
circuits fall in the above category, as well as some of the
circuits for data encryption and arithmetic logic unit (ALU).

The verification technique is encapsulated in a reasoning
tool “Blue Code Verifier” - “BLUEVERI” - and applies
algebraic geometry methods (e.g. checks on the consistency
of polynomial systems of equations using the concept of
Gröbner basis and the associated Buchberger’s algorithm) to
the problem of verifying circuits defined over Galois fields
in order to establish correctness of the logic circuit against
a mathematical specification. The methodology has been suc-
cessfully applied to verify real life error correcting codes at
IBM resulting in substantially improved verification quality,
by providing full proof of the correctness of the design which
was otherwise unobtainable, and in improved productivity, via
significantly reduced verification time and effort. We expect
the improvements to accumulate as the methodology gets
applied “out-of-the-box” to future processor chips employing
even stronger ECC designs, and will be key to integrate
commodity memories in products as well as in the design of
communication link transceivers. The techniques involved are
applicable to other types of logic circuitry based on Galois
field arithmetic such as Elliptic Curve Cryptography.

A. Previous Art

Simulation-based methods such as software simulation or
hardware-accelerated simulation are inapplicable to the prob-
lem of complex ECC verification. This is due to the fact that
the problem has large numbers of inputs which precludes an
exhaustive exploration to fully verify the ECC circuitry to
cover all possible combinations of input bit strings and injected
errors (within the claimed error correction capability of the
code) and check to see if in each case the decoded bit string is
equal to the original one. Directed simulation to cover the vast
majority, if not all, of “corner cases” again requires a careful
analysis of the code to enumerate correction capability and
features - a process which is inherently subject to human lim-
itations and errors. Systematic methods such as SAT or graph-
based canonical representations of the logic with Decision
Diagrams (DD) such as BDDs [3], BMDs [4], FDDs [5] run
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out of steam quickly due to the large input space and the com-
plexity of the underlying logic employing exclusive-ORs. Our
experience suggests that these existing decision procedures
have difficulty scaling to designs beyond circuits with more
than 24-bit inputs. Enhanced verification techniques leveraging
Transformation-based Verification (TBV) [11] concepts to
simplify then prove the designs become capacity gated for 32-
bit Galois field algorithms and beyond. Satisfiability Modulo
Theory (SMT) solvers which utilize specialized theories to
address specific problem domains (e.g. bit-vectors) do not
address polynomial equation solving over Galois fields. Our
approach addresses this niche and proposes a methodology to
solve such systems of polynomial equations over Galois fields
efficiently.

A search for verification of Galois field circuits reveals the
following applicable references - [6] and [7]. [6] defines a
formal first-order logic language for symbolic arithmetic over
an arbitrary binary Galois field along with a set of rules for
manipulation of formal sentences (such as transformation of
the sentence into prenex normal form, usage of DeMorgan’s
law, elimination of variables etc.). The correctness criterion
for parts of some ECC circuits can be formally expressed in
this language, e.g. finding the error locator polynomial from
the value of the syndrome for Reed-Solomon codes. A formal
reasoning in the language is then applied to prove or disprove
the correctness statement. The method is only applicable to
verification of algorithms which are correct in any GF (2k)
independently of the value of k. In our method the size of the
field is specified; in particular this allows the use of constants
of the field other than ‘0’ and ‘1’ in the circuit. The method
does not employ any of the computational algebraic geometry
machinery; that bounds it to purely GF (2k) circuits (with no
bit operations allowed), while our method works on circuits
with mixed bit and GF signals (Boolean result of test value
operations on GF signals is computed by building Gröbner
basis of polynomial algebraic system).

The latter [7] applies Gröbner basis techniques to the very
narrow problem of verifying multipliers over a large Galois
field. The class of the multipliers is further limited to those
based on representation of the large field as an extension of
degree m of a smaller field of degree n. The paper reports
practical results of verifying multipliers up to maximum field
size of GF (21024), (m = 32, n = 32), but it does not make
any attempts to verify circuits other than this multiplier circuit
with a fixed structure parameterized with only two integers m
and n. In contrast our method is capable of verifying virtually
any circuit built with GF , Boolean and mixed operations, with
the runtime and memory being the only limiting factors for
large circuits.

II. PROPOSED METHOD

Our method was first inspired by the need to verify a
large 1024-bit input error correction circuit responsible for
protecting the memory store as well as the communication
between a POWER processor and memory. A traditional
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Fig. 1. Example of BLUEVERI circuit representation.

formal verification approach to verify the circuitry quickly
became intractable given the vast search space.

The main idea is to use the fact that algebraic ECCs operate
mostly on the elements of finite fields, and there are powerful
techniques for symbolic reasoning in this domain. The process
of verification of such circuits reduces to the verification of a
number of algebraic statements of the type “A certain system
of multivariate polynomials over a finite field implies some
other system of multivariate polynomials over a finite field”.
The latter problem relates to computational algebraic geometry
and can be solved by building Gröbner bases for certain sets
of polynomials by using Buchberger’s algorithm ([8], pp.77,
82-87).

A. Verification Set-up

The verification set-up consists of two parts: the circuit
to be verified, and a check file containing information about
the set of legal inputs and the expected values for some set
of “crucial” signals; an example of the latter would be an
uncorrectable error flag (see subsection III-A) or a signal that
tests the equality between two bit vectors (see subsection III-
B). The verification task at hand is to formally prove (or
disprove) that for any legal combination of inputs, the values
of the crucial signals match their expected values.

In a standard processing methodology, the circuit is gen-
erally represented by a directed graph where the edges are
wires carrying only Boolean signals, and nodes are gates
performing only basic Boolean operations. Since we assume
that a large portion of the operations in the circuit are opera-
tions in GF (2k) arithmetic, we modify this representation by
“glueing” together wires which represent the same GF (2k)
elements and putting “black boxes” around the pieces of the
circuit which represent basic GF (2k) arithmetic operations.
Practically this is done by passing a special option to the HDL
compiler, telling it to not synthesize functions from a given
list. The circuit in our representation typically looks similar to
the example on Fig 1.

After this transformation, each wire carries either a Boolean
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signal or a GF (2k) signal. For this reason, we generalize the
concept of “gate” so that now each gate performs one of the
following operations:

• Basic binary arithmetic operations on GF (2k):
ADD (both x+y and x−y), MULT (xy), DIV (xy2

k−2).
• Any fixed set of unary operations on GF (2k) which

are linear over GF (2), e.g. Frobenius automorphism
(square), projections on elements of a fixed basis, square
root, bit permutations etc.

• Any fixed set of GF (2k) constants (functions without
arguments).

• WHEN ELSE(b, x, y) function which returns GF (2k)
element x when bit b is 1 and GF (2k) element y
otherwise.

• GF (2k) value test functions which return value is a bit:
IS ZERO(x), IS NONZERO(x).

• Boolean functions:
NOT, AND, OR, XOR.

The check file contains algebraic constraints on the GF (2k)
inputs, optionally initial values for some Boolean and GF (2k)
inputs, and the expected values for the crucial Boolean signals
testing the desired behavior for the circuit. The crucial signals
are restricted to Boolean because any condition on GF (2k)
signals can be expressed as a condition on Boolean signals
by adding just a few gates to the circuit. For example, if one
wants to state that a GF signal x is equal to a given constant
const, then one may alternatively assert that we expect(

IS ZERO(ADD(x, const))

to be equal to 1.
The algebraic constraints are specified in conjunctive nor-

mal form (CNF) whose literals are multivariate polynomial
equalities or inequalities on the free variables associated with
each of the GF (2k) inputs.

Here is an example of a check file for the circuit on Fig 1:

BEGIN_CHECK;

IN_BITS_SETTINGS;
b <= ’0’;

EXPLICIT_EXPRESSIONS_FOR_SOME_GF_INPUTS;
x <= "8F3A";

ALGEBRAIC_CONSTRAINTS_ON_GF_INPUTS;
[ (yˆ3 + zˆ5 == 0) or (yˆ2 + z != 0) ]
and
[ (y == 0) or (z == 0) or (y + z != 0) ]

BIT_EXPECTED_VALUES;
crucial must be ’1’;

END_CHECK;

We support multiple checks in one check file in which case
our tool verifies them independently one by one, and append-
ing new checks at the end of the file during verification (a
necessary feature for the “fork on unresolved bits” mechanism
outlined later).

B. Verification Flow

The process starts by assigning a free variable (e.g. the
symbolic string identifier used in the HDL file) to each of
the GF (2k) inputs. Next the values of the crucial bit signals
are computed one by one by applying the following recursive
procedure. The procedures for “. . . execute the operation . . . ”
will be explained for each type of operation subsequently.

COMPUTE OUTPUT OF GATE(signal g) {
// case g is Boolean : Attempt to compute to const. ‘0’ or

‘1’ .
// case g is GF (2k) : Compute as a symbolic rational

expression in the free variables.
for all inputs gi of g {
COMPUTE OUTPUT OF GATE(gi)

}
switch (type of g) {
ADD: . . . Execute the operation . . .
MULT: . . . Execute the operation . . .
· · · · · ·
XOR: . . . Execute the operation . . .

}
}

Given unlimited time and memory and assuming that all
recursive sub-calls successfully compute values of g1, g2, . . .
a call to COMPUTE OUTPUT OF GATE(g) always succeeds
if g is a GF (2k) signal. However, it may fail for Boolean
signals because Boolean signals are (generally) not constants
but depend on the inputs. If a Boolean signal cannot be
computed to ‘0’ or ‘1’ we skip to the next check and add
two new checks at the end of the check file assuming values
‘0’ and ‘1’ for that bit by applying the “fork on unresolved bit”
procedure described later in this subsection. Note that although
it may seem that this would fork on nearly every bit in the
circuit, in our experience for ECCs the situation is typically
just the opposite: given a restricted set of inputs (e.g. exactly
one injected error) most of the Boolean signals in the circuit
do not depend on the inputs; an example of this can be seen in
subsection III-A in the computation of the uncorrectable error
flag of a decoder 1. Furthermore, BLUEVERI performs signal
dependency checks that result in the value of many boolean
signals in the circuit not being needed; such booleans never
cause a fork as described above.

Given g1, g2, . . ., we compute g depending on the type of
operation as follows:
ADD and MULT : Perform the operation on the mutivariate
rational expressions. E.g. ADD( x

y+z , y
x+z ) = x2+xz+y2+yz

xy+xz+yz+z2 ,
MULT(x+ 1, y + 1) = xy + x+ y + 1 etc.
UNARY LINEAR i : Any operation on GF (2k) which is
linear over GF (2) can be given by a linearized polynomial
(a polynomial containing only terms of the form cx2t , see [9]
pp.107-124). Substitute the input rational expression into the
linearized polynomial. E.g. in GF (16) Tr(x)

def
= x8+x4+x2+

1Very often the uncorrectable error signal is both an internal signal upon
which further things depend and also an output by itself.
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Fig. 2. Example of maximal “algebraic system” subgraph for signal g.

x, Tr(y + z3) = y8 + y4 + y2 + y + z24 + z12 + z6 + z3.
CONST i : Set signal g to the constant (a rational expression
containing no free variables).
WHEN ELSE(b,X, Y ) : Set rational expression g to rational
expression X if b is ‘1’ and to rational expression Y otherwise.
IS ZERO, IS NONZERO, NOT, AND, OR, XOR : Compu-
tation of values of gates with Boolean output constitutes the
most complex part of our algorithm.

To compute the value of g we first find the maximal
subgraph consisting of all gates hj such that there exists a
directed path from hj to g and all gates on this path except
for hj itself are elementary Boolean gates (NOT, AND, OR or
XOR). An example is shown on Fig. 2. Note that the subgraph
may only contain IS ZERO, IS NONZERO and elementary
Boolean gates, and any IS ZERO or IS NONZERO in the
subgraph must be a top most gate. The input signals gi of
the subgraph are either GF (2k) inputs of value test functions
or Boolean inputs of the whole circuit.

By inductive hypothesis for our recursive function
COMPUTE OUTPUT OF GATE(g) all GF (2k)-type gi have
already been assigned some rational expression in the free
variables, and all Boolean type gi have been computed to
constant ‘0’ or ‘1’ (this is possible for all Boolean inputs to the
circuit due to an explicit assignment in the “In bits settings”
section of the check which may be set either by the user or
as a result of forking on unresolved bits).

The Boolean function given by the subgraph can be written
as a conjunctive normal form whose literals are gi = 0 or
gi 6= 0, where gi are rational expressions. As we will show
in the description of DIV operation, we always make sure
the denominators of our rational expressions cannot be zero.
This allows replacement of gi = 0 and gi 6= 0 literals by
numerator(gi) = 0 and numerator(gi) 6= 0 polynomial
equalities/inequalities and express g as an algebraic system

of the form
[
P∗(x0, x1, . . .) =, 6= 0

]
or . . . or

[
P∗(x0, x1, . . .) =, 6= 0

]
,

. . . . . .[
P∗(x0, x1, . . .) =, 6= 0

]
or . . . or

[
P∗(x0, x1, . . .) =, 6= 0

]
,
(1)

where P∗ denote arbitrary polynomials in the free variables
x0, x1, x2, . . . associated with the GF (2k) inputs of the circuit.

The algebraic constraints on the inputs are also given as
CNF, and form an algebraic system of the same type.
g is constant‘0’ if and only if
{input constraints CNF} AND {g-subgraph CNF} (2)
is unsatisfiable.
g is constant‘1’ if and only if
{input constraints CNF} AND NOT{g-subgraph CNF} (3)
is unsatisfiable.
Each of the expressions (2) and (3) can be converted to a
single CNF of the form (1). Hence, it suffices to show how to
check whether a system of the form (1) is unsatisfiable.

Satisfiability checking algorithm:

The first step is to get rid of inequalities in the system. For
each inequality P∗(x0, x1, . . .) 6= 0 we introduce an auxiliary
free variable t∗ and replace the inequality by

t∗ · P∗(x0, x1, . . .)− 1 = 0.

One can easily check that if the system before replace-
ment is satisfiable in variables {x0, x1, . . . , t0, t1, . . .} then
the system after replacement is satisfiable in variables
{x0, x1, . . . , t0, t1, . . .} ∪ {t∗} and vice versa.

The new system contains only polynomial equalities. Next
we replace all OR operations with multiplication:

(
Q∗({x∗}, {t∗})

)
· . . . ·

(
Q∗({x∗}, {t∗})

)
= 0,

. . . . . .(
Q∗({x∗}, {t∗})

)
· . . . ·

(
Q∗({x∗}, {t∗})

)
= 0,

Now we have a regular algebraic system of multivariate
polynomials over GF (2k).

By Hilbert’s Weak Nullstellensatz a system of multivariate
polynomials is unsatisfiable over an algebraically closed field
if and only if the ideal generated by the polynomials of the
system coincides with the whole ring (i.e. contains 1) (refer
[8], pp. 169-173), x ∈ GF (2k) if and only if[
x ∈ alg closure

(
GF (2k)

)
AND x2k − x = 0

]
. For each

variable v∗ of our system add equation v2
k

∗ − v∗ = 0. The
new system (denote it S) is satisfiable in the algebraic closure
of GF (2k) if and only if the original system is satisfiable in
GF (2k).

Next we build a Gröbner basis of the ideal given by the
polynomials of system S. This can be done by Buchberger’s
algorithm ([8], pp. 77, 82-87). The original system is unsatisfi-
able in GF (2k) if and only if the Gröbner basis ofS contains 1.

If the value of g is proved to be a constant ‘0’ or ‘1’ assign
this value to g (computation successful). Otherwise fork on
the unresolved Boolean signal g as follows:
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Add two copies of the current check at the end of the check
file as given below.

• If g is an input Boolean signal add g <= ’0’ to the
“In bits settings” section of copy 1 and g <= ’1’ to
the “In bits settings” section of copy 2.

• Otherwise add NOT( System (1) ) to the conjunctive
normal form in “Algebraic constraints on GF inputs” sec-
tion of copy 1 and System (1) to the CNF in “Algebraic
constraints on GF inputs” section of copy 2.

Skip the current check and continue to the next one with
the two additional checks added at the end of the queue. As
a side note, the two examples in subsections III-A and III-B
do not require branching of this type for completion.

The only operation we have not explained yet is division.
DIV : In logical circuits division is usually implemented as
if y 6= 0 return x/y; else return 0; (which is
equivalent to xy2

k−2). To compute the result of division we
first attempt to prove that the constraints on the inputs imply
that the divisor is either always = 0 or always 6= 0 by the
same algebraic method as for the gates with Boolean output. If
successful, we simply assign 0 or the rational expressionx/y
to g. Otherwise we fork on the test of [denominator = 0] the
same way as shown above for non-input Boolean signals.

We have shown how to compute value of any gate given the
values of its inputs. GF (2k) signals are computed as symbolic
rational expressions in the input signals, and Boolean signals
must compute to constant ‘0’ or ‘1’ creating new branches with
additional algebraic constraints on the inputs if necessary. This
completes the description of our algorithm.

Our actual C implementation contains many more features
than described above. The most important ones include:

• Careful manipulations of conjunctive normal form sys-
tems: A brute force manipulation of CNFs, and opening
parenthesis in polynomial products which come from
large OR-clauses would cause an immediate exponential
explosion of the size of the system. However special care
is taken of systems of the form (1) which most commonly
appear in algebraic circuits. This prevents a rapid increase
of the size of the system - at least for typical cases. In
particular, if g-CNF has only one OR clause of length
≥ 2, i.e. has the form

(
[P∗ =, 6= 0] or . . . or [P∗ =

, 6= 0]
)
and [P∗ =, 6= 0] and . . . and [P∗ =, 6= 0], our

implementation ensures the size of any system for which
we build a Gröbner basis is simply equal to the sum of the
sizes of the input constraints system and g-CNF system.

• “Lazy” signal computation method: In order to find
values of expressions such as (‘1’ or x), (‘0’ and x),
(when ‘1’ : const else x) etc., we do not compute
x. This gives a significant speed up especially when the
signals whose values we need to verify are localized in
a relatively small part of a large circuit.

• Verification flow control: The user can control a number
of verification process options such as whether to spend
more time on Gröbner basis computation of a given bit

vs. fork; whether to attempt to save time by skipping the
x ∈ GF (2k) constraints which makes false negatives (but
not false positives) possible; etc.

The verification process can have three possible outcomes:

1) For all checks all crucial bit values are computed and
match the expected values.

2) One of the checks (including checks added by “fork on
unresolved bit”) fails because the value of one of the
crucial bits is opposite to the expected value specified
in the check file.

3) One of the checks (including checks added by “fork on
unresolved bit”) fails to compute one of the crucial bit
values due to insufficient time or memory.

In the latter two cases an interactive bug tracing interface
allows the user to browse the graph of signals and view
their values in the form of symbolic rational expressions and
algebraic systems.

III. EXPERIMENTAL RESULTS

If there is no restriction on time and memory the verification
process is guaranteed to prove or disprove the specification
in the check file. We will give in what follows two simple
examples (subsections III-A and III-B) where this is accom-
plished within a reasonable amount of time, demonstrating the
power of reasoning at the Galois field level as opposed to the
Boolean level. For complex, real-life designs (as exemplified in
subsection III-C) we have found it useful to help BLUEVERI
by manually partitioning the search space, resulting in very
little use of the “forking” feature described earlier. In addition,
in some instances care is taken to specify the circuit in
otherwise equivalent forms to aid BLUEVERI in keeping
down the size of its internal rational expressions and the
complexity of algebraic systems it generates; this was not
necessary in the two examples below.

A. The uncorrectable error flag of a sample Reed-Solomon
decoder

As a first example, we consider a Reed-Solomon code with
symbols belonging to a finite field GF (q) with q = 2k

elements for some integer k. We shall assume that the length
of this code is n = 2k − 1. Let r denote the number of
check symbols of the Reed-Solomon code. We assume that this
Reed-Solomon code has been furnished with a decoder that is
capable of correcting any one symbol error, and can detect up
to r−1 different errors. This decoder has a number of different
components, one of which is responsible for the computation
of the uncorrectable error flag. This flag is a single Boolean
output that is raised whenever the decoder has detected 2,3, or
up to r − 1 errors, and kept low whenever the error scenario
corresponds to a single error, or alternately whenever there is
no error.

For our choice of Reed-Solomon code, the r syndromes of
this Reed Solomon code can be computed from a (potentially
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corrupted) encoded vector v ∈ GF (q)n using the formula

Si =
n−1∑
j=0

vjω
ij

for i ∈ {0, · · · , r − 1}, where ω denotes a primitive element
of the field. Furthermore, letting e ∈ Fn

q denote the error
vector affecting v, so that v = e + x where x ∈ Fn

q is the
uncorrupted codeword it is also known that due to linearity of
the addition operator in finite fields and the vector that x has
zero syndrome,

Si =

n−1∑
j=0

ejω
ij (4)

The design of the uncorrectable error flag for this scenario is
a well understood problem; for the sake of demonstration we
deduce what might be a reasonable method to test it directly
through formal methods. It can be easily seen from (4) that
if there is only one error in e then the syndromes satisfy the
following condition: SiSi+2 = S2

i+1 for i = 0, · · · , r − 3.
Furthermore it is also known whenever e has at least one
error and at most r errors, one or more of the {Si}r−1

i=0 is
nonzero. This leads to the conjecture that one can compute
the uncorrectable error flag through the following code, written
using BLUEVERI VHDL style semantics:

t_comp : for i in 0 to r-3 generate
t(i) <= add(mult(s(i),s(i+2)),square(s(i)));

end t_comp;
snz <= is_nz(s(0)) or ... or is_nz(s(r-1));
tnz <= is_nz(t(0)) or ... or is_nz(t(r-3));
UE <= snz and tnz;

As written above, snz and tnz represent two distinct
systems of equations which BLUEVERI will treat indepen-
dently of each other. On the other hand, BLUEVERI will
attempt to establish whether tnz (for example) is true or
false by examining the properties of t(0) ... t(r-3)
simultaneously as opposed to testing whether each t(i) is
zero or not individually.

In order to test the ability of a model checker to prove
the correctness of this implementation of the uncorrectable
error flag, we assume that the syndrome generation portion
of the decoder has been proved correct separately; this task
is in fact generally computationally simpler than the one
currently at hand. We then build a module that accepts
inputs e m(0)...e m(t-1) (for the error magnitudes) and
inputs l(0)...l(t-1) (for the error locations) where t
is the maximum number of errors one can inject into the
decoder during the test; in this particular example for the
uncorrectable error flag to be correct it is known that t =
r − 1. This module emulates the syndrome generator and
computes s(0)...s(r-1) using the equation s(i) =∑t−1

i=0 l(i) e_m(i) (as per Equation 4), and then passes
the resulting syndromes to a module that computes the uncor-
rectable error flag as previously described.

In order to test a variety of error scenarios, we can place
constraints on e m(i) and l(i). For example, one can

restrict the test to have exactly two errors by specifying the
following constraints:

e(0) != 0, e(1) != 0, l(0) != 0, l(1) != 0
add(l(0),l(1)) != 0, e(1) = ... = e(t-1) = 0

Note that in a field of characteristic 2, addition is equivalent to
subtraction, and hence the addition constraint effectively con-
strains l(0) != l(1). These constraints can be specified in
a BLUEVERI check file as equal/not equal to zero conditions
on multivariate polynomial expressions. When BLUEVERI
examines the dependencies of the UE signal, it finds that it
depends on snz and tnz. BLUEVERI must either resolve
that both are true, or that at least one of them is false. As
described earlier, this is accomplished by invoking an attempt
to compute the Gröbner basis of various system of equations
related to the constraints and the expressions defining snz
and tnz. Similar experiments can be conducted by updating
the constraints to specify “at least two, but not more than y
errors” where y is a number between 2 and r − 1.

In order to test the capability of BLUEVERI as applied
to this problem and contrast it with that of a formal prover
(we chose SixthSense, IBM’s state-of-the-art formal and semi-
formal verification tool set, for that purpose), we set up a test
with r = 8, b = 8 and with the capability to inject from 2
up to 7 errors at arbitrary locations, since the corresponding
Reed-Solomon decoder is supposed to be able to detect all
those errors. We also set up a parallel test with b = 4 which is
a considerably simpler problem for a Boolean oriented formal
verification system such as SixthSense [11]. The SixthSense
and BLUEVERI experiments do not have any special tuning
of the VHDL or the tool to improve the outcomes.

We refer the reader to Table I where the experiments
were performed in a single processor (POWER6 processor @
5GHz running AIX) and the SixthSense was run as a single
software thread mainly orchestrating redundancy removal and
SAT algorithms. In this set of experiments, BLUEVERI was
configured to reason about the circuit with the variables (due
to inputs or constraints) belonging to the algebraic closure of
the fields. This in essence means that we did not constrain
the variables to belong to the field GF (256) (resp. GF (16))
depending on whether the symbols used were 8 bit (resp. 4
bit) symbols. The consequence of this is that although the
BLUEVERI results are listed under 8-bit column, they in fact
hold for any field size, including larger field sizes which would
be even harder for a bit-level verification system to handle.
Both formal systems were able to prove the correctness of the
uncorrectable error flag under the single error scenario quite
easily, but SixthSense was not able to prove the correctness
of this flag in the double error case in the amount of time
indicated in the table. In order to test the sensitivity of SXS
to the field size, we performed a similar experiment for a
Reed-Solomon code defined over GF (16). In this case we saw
better results from SixthSense, since we were able to prove
the correctness of double and triple error detect cases but not
four error case. It is worth noting that the field size determines
many important properties of an error control code, including

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

146146146



symbol errors expected UE 8 bit symbols 4 bit symbols
BLUEVERI input bits SXS input bits SXS

1 false Success after 0.1 s. 16 Success after 14 s. 8 Success after 0.7 s
2 true Success after 1 s. 32 Gives up after 24 h. 16 Success after 3 s
3 true Success after 1 s. 48 N/A 24 Success after 55 m
4 true Success after 33 m. 64 N/A 32 Gives up after 24h
5 true Gives up after 6 h. 80 N/A 40 N/A

TABLE I
EXPERIMENTAL RESULTS FOR THE FORMAL VERIFICATION OF THE UNCORRECTABLE ERROR FLAG OF A SINGLE ERROR CORRECT, MULTIPLE ERROR

DETECT REED-SOLOMON DECODER. SXS REFERS TO SIXTH SENSE, A BIT-LEVEL FORMAL VERIFICATION TOOL SET DEVELOPED AT IBM.

errors 8 bit symbols 4 bit symbols

BLUEVERI input
bits SXS input

bits SXS

2 Succ. 2 s. 32 Gives up
after 24h 16 Succ. 0.6s

3 Succ. 2.1 s. 48 N/A 24 Succ. 16m

4 Succ. 2.1 s. 64 N/A 32 Gives up
after 24h

5 Succ. 2.3 s. 80 N/A 40 N/A
6 Succ. 3.1 s. 96 N/A 48 N/A
7 Succ. 49.4 s. 112 N/A 56 N/A
8 Succ. 8m 128 N/A 64 N/A
9 Succ. 53m 144 N/A 72 N/A

TABLE II
EXPERIMENTAL RESULTS FOR THE FORMAL VERIFICATION OF THE ERROR

MAGNITUDE COMPUTATION STAGE OF A REED-SOLOMON CODE.

the total codeword length, and thus it cannot be modified for
the purposes of formal verification since the resulting code is
entirely different and, in all likelihood, not applicable to the
original problem.

B. Computing error magnitudes in a Reed-Solomon code

One of the tasks that an error control decoder for a code
defined over multibit (q > 2) symbols must perform is to
compute the locations of the symbols in error and then to
compute the multibit pattern that one must add to those
locations in order to correct the codeword. This multibit
pattern is called the error magnitude. Suppose that there are t
errors in a codeword, and let s(0), · · · ,s(t-1) be the first
t syndromes (note that this example is for a different setting
than the example in the previous subsection). From (4), we
can derive that error magnitude computation can be carried
over using the equation

 e_m(0)
...

e_m(t-1)

=


1 · · · 1
l(0) · · · l(t-1)

...
. . .

...
l(0)t−1 · · · l(t-1)t−1


−1 s(0)

...
s(t-1)


The inverse matrix above can be derived analytically. It is

well known that the inverse is non singular if and only if the
locations l(i) are all distinct of each other. This restriction
can be specified through

(
t
2

)
constraints each of which is a

polynomial with two monomials. We refer the reader to Table
III-B where we show that in this case, BLUEVERI was able to
show the correctness of the corresponding circuit with up to 8
errors, while SixthSense was unable to finish the double error
case within the time allocated. As in the previous subsection,

in this particular example the result for BLUEVERI is actually
field size independent since it exploits only the algebraic
properties of the symbols. It is worth noting that the Gröbner
basis machinery in BLUEVERI does get involved in proving
the correctness of this circuit. This is because the inversion
of the Vandermonde matrix results in rational expressions (as
opposed to plain polynomial expressions) whose denominator
could be zero. The task of Gröbner in here then is to show
that the denominator is not zero given the assumptions on the
inputs, so that BLUEVERI can proceed with the corresponding
algebraic simplifications leading to the desired result.

C. A note on a real life application of BLUEVERI

The examples in the previous subsections are meant to
illustrate the capabilities of a formal verification system such
as BLUEVERI when compared to Boolean oriented sys-
tems. In our experience, the implementation of a real-life
encoder/decoder employs many custom algorithm variants as
one tries to address problems that are specific to the application
at hand. In the most significant application of BLUEVERI so
far, we have succeeded in proving the correctness of an ECC
of a POWER microprocessor that is based on the mathematics
of Reed-Solomon codes. The correctness criteria included all
correctable and uncorrectable cases for which we had given
guaranteed behavior (e.g. recovery from complete chip failures
and detection of multiple errors). The ECC, from the decoders
perspective, had over 1000 bits of input including several
tens of bits worth of configuration parameters. The number
of syndrome bits produced by the decoder was over 100 bits,
although our testing did include testing the behavior of the
encoder with analytically generated symbolic syndromes, it
was not limited to it - approximately half of the total testing
time exercised the more than 1000 bits of input of the circuit
directly. The number of Galois field and Boolean elements in
the corresponding graph is over 100,000 (compared to at most
a few hundred in the previous experiments). Because of the
complexity of the problem, we had to case-split to create 1M
different tests, each of which exercised formally a particular
region of the test space. It took about 2 weeks to prove the
correctness of the entire design in a 10 machine Linux (x86)
cluster.

IV. TECHNICAL SOLUTIONS

The BLUEVERI tool leverages IBM’s existing front-end
and simulation tools and flows. For language processing we
are using Portals, IBM’s HDL compiler, which accepts the
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synthesizable subset of standard VHDL and Verilog languages.
Portals performs behavioral synthesis on procedural HDL and
produces an elaborated netlist, for BLUEVERI this is in the
DADB logic database. DADB is a box-pin-net logic database
used for verification flows, such as topology checking and
simulator model build, which supports client transforms via a
dynamically loaded plugin architecture.

Portals was modified for BLUEVERI to support the black-
boxing of function calls, enabling the logic to be represented
in a form amenable to analysis by BLUEVERI. High level
language constructs which are output by Portals into the
netlist, such as case statements, can be synthesized into lower
level representations by the use of DADB client transforms.

The BLUEVERI analysis tool has its own custom input
netlist format. A netlist translator was built as a DADB client
to enable the tools flow from Portals into BLUEVERI.

The MESA logic simulator is a high performance cycle
simulator used for functional verification within IBM. MESA
simulation models are built from logic netlists in DADB by
using model build clients.

The BLUEVERI code is written in C. For the computation
of Gröbner bases we use ”SINGULAR” [10] a powerful pro-
gram for algebraic geometry computations distributed under
general public license. BLUEVERI runs SINGULAR as a
child process and uses ”EXPECT.h”, (a standard C library),
for sending queries and receiving results from SINGULAR’s
Gröbner basis engine. The Gröbner basis obtained is for the
inverse degree lexicographical ordering.

V. CONCLUSIONS

In this article we presented a novel technique for designing
and verifying circuits based on the mathematics of Galois
fields. At the heart of our approach is the idea of exposing
operations on Galois field directly to a verification layer
(encapsulated in a tool called BLUEVERI) which leverages
powerful techniques from algebraic geometry to reason about
the properties of the abstract Galois field rational expressions
generated in the circuit. Our circuits are specified using a
subset of existing Hardware Description Languages and as
such, remain fully synthesizable, an important attribute to
reduce the possibility of human error in the design process.

We demonstrated the value of the ideas we proposed in the
context of two problems representative of the type of situations
encountered when designing error correcting codes. In both
instances, we showed BLUEVERI can significantly outper-
form conventional bit-level formal verification. We outlined
a successful application of the BLUEVERI system to prove
correctness of a real production complex error correcting code
implemented on a POWER microprocessor which otherwise
could not be verified conclusively with traditional verification
methods.
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