
Lazy Abstraction and SAT-Based Reachability in
Hardware Model Checking

Yakir Vizel∗, Orna Grumberg∗, Sharon Shoham†
∗Computer Science Department, The Technion, Haifa, Israel

†School of Computer Science, Academic College of Tel Aviv-Yaffo

Abstract—In this work we present a novel lazy abstraction-
refinement technique for hardware model checking, integrated
with the SAT-based algorithm IC3.

In contrast to most SAT-based model checking algorithms, IC3
avoids unrolling of the transition relation. Instead, it applies local
checks, while computing over-approximated sets of reachable
states. We find IC3 most suitable for lazy abstraction, since each
one of its local checks requires different information from the
checked model.

Similarly to IC3, our algorithm obtains a series of over-
approximated sets of states. However, when constructing the
series, different abstractions are used for different sets.

If an abstract counterexample is obtained, we either find a
corresponding concrete one, or apply refinement to eliminate
all counterexamples of the same length. Refinement makes the
abstractions more precise as needed, and where needed. After
refinement, the computation resumes from the same step where
it was interrupted. The result is an incremental abstraction-
refinement algorithm where the abstraction is lazy.

We implemented our algorithm, called L-IC3, and compared
it with the original IC3 on large industrial hardware designs. We
obtained significant speedups of up to two orders of magnitude.

I. INTRODUCTION

In this work we introduce a novel lazy abstraction-
refinement technique for hardware model checking, integrated
with the SAT-based algorithm IC3 [3].

Model checking [5] is an automatic procedure that deter-
mines whether a given system satisfies a specification. In
spite of its great success in verifying hardware and software
systems, the applicability of model checking is impeded by its
high space and time requirements.

The introduction of SAT-based model checking algo-
rithms [1], [15], [12], [16], [3] significantly increased the size
of the verified systems. Still, the search for improved, more
scalable methods is neverending.

Most SAT-based model checking algorithms are based on an
unrolling of the model’s transition relation in order to traverse
its state space. In contrast, the recently introduced IC3 algo-
rithm [3] avoids such unrolling. To verify a safety property,
IC3 gradually builds a series of sets of states F0, . . . , Fi, . . .,
where Fi over-approximates the set of states reachable within
i steps from the initial states. The computation moves back
and forth along the Fi’s and strengthens them by eliminating
unreachable states. This is done via local reachability checks
between consecutive sets Fi and Fi+1. IC3 either reaches a
fixpoint, in which case all reachable states satisfy the desired
property, or returns a counterexample.

Abstraction-refinement is a well known methodology for
tackling the state-explosion problem. Abstraction hides model
details that are not relevant for the checked property. The
resulting abstract model is then smaller. Lazy abstraction [10],
[13], developed for software model checking, is a specific
type of abstraction that allows hiding different model details
at different steps of the verification.

In this work we develop, for the first time, a lazy abstraction-
refinement framework for hardware. We use the visible vari-
ables abstraction [11], which is particularly suitable for hard-
ware. However, we use it in a lazy manner in the sense that
different sets of visible variables are used in different iterations
of the state-space traversal.

We find the IC3 algorithm most suitable for lazy abstrac-
tion since its state traversal is performed by means of local
reachability checks, each involving only two consecutive sets.
Thus, at each check a different set of variables is relevant.

Our model checking algorithm, called L-IC3, thus integrates
a lazy abstraction-refinement mechanism into IC3. Similarly
to IC3, L-IC3 computes a series of over-approximating sets
Fi, each referring to a certain time frame. However, L-IC3
considers abstractions of the model during this computation.
When constructing Fi+1, we determine a set of variables
Ui, needed for its construction, and abstract both states and
transitions accordingly. The variables in Ui are referred to as
“visible”, while the others are invisible and treated as inputs.

The key ingredients of L-IC3 are therefore a series Ω
of over-approximating sets of states Fi and an abstraction
sequence Ū of sets of variables Ui.

L-IC3 works in stages. Each stage consists of an abstract
model checking step, followed by a refinement step. At a given
stage, the abstract model checking extends both Ω and Ū and
checks if they include a potential abstract counterexample. If
not, the sequences are further extended. If a potential abstract
counterexample is found, the algorithm strengthens the sets
Fi by eliminating abstract states that might be a part of an
abstract counterexample.

We use a nonstandard notion of abstract counterexample,
based on both Ω and Ū . It consists of a sequence of abstract
states connected by abstract transitions, satisfying: (i) each
transition is based on a different abstraction Ui, and (ii) each
abstract state intersects the set Fi at the corresponding time
frame. Our notion of counterexample reflects the incorporation
of lazy abstraction into the mechanism of computing Ω.

If an abstract counterexample is found, meaning that no

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

173173978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 173978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

strengthening is possible anymore based on the abstractions,
the refinement step is invoked. Refinement applies just one
iteration of a concrete variation of IC3, on the Ω computed
by the abstract model checking. By doing so, it either finds
a concrete counterexample or strengthens the Fi’s so that all
concrete counterexamples of length k are eliminated. In the
latter case, the Ui’s are also refined by adding more visible
variables to each of them, as needed and where needed. Once
refinement is finished we move to the next L-IC3 stage and
the abstract model checking is re-invoked, continuing the
computation from iteration k+1, with the refined sequences.
This makes L-IC3 incremental.

L-IC3 terminates with either a fixpoint, in which case we
conclude that the system satisfies the property, or with a
concrete counterexample.

In summary, the main contribution of our work is a novel
lazy abstraction-refinement technique for hardware. To the best
of our knowledge this is the first time lazy abstraction is
considered in the context of hardware. Our abstract model
checking and refinement are SAT-based. Both avoid unrolling
of the transition relation. Since our framework is based on a
subtle combination of the abstract and concrete models, we
provide theoretical arguments to its correctness.

In order to evaluate our new algorithm we compared it with
IC3 on a set of large industrial designs and properties. We
obtained speedups of up to two orders of magnitude. Our
experiments demonstrate that our lazy abstraction indeed uses
different sets of variables in different time frames. Moreover,
only a small portion of the design’s variables are used.

A. Related Work

[6] and [2] suggest optimizations and extensions to IC3,
but they do not combine it with a lazy abstraction-refinement
mechanism ([6] suggests the use of abstraction for IC3 but
without implementation details nor results). In [14], [9], [7],
[4], [8], SAT-based refinement is introduced. However, they
use an unrolling of the model while we use local checks a-la
IC3. Similarly to [14], [4], we also exploit an unSAT-core for
refinement. However, we never unroll the model, while [14]
does. Further, [14] is not incremental since after refinement it
resumes its (abstract) model checking from time frame 0.

IC3 [3] is sometimes also viewed as an abstraction-
refinement algorithm, since it refers to over-approximated sets
Fi and the strengthening of these sets resembles refinement.
However, the underlying model used by IC3 is concrete, and
only the concrete transition relation is considered. We, on
the other hand, alternate between abstract transition relations
(in the abstract model checking step) and the concrete tran-
sition relation (in the refinement step). Our algorithm thus
adds a layer of abstraction-refinement on top of this over-
approximation-strengthening mechanism.

II. PRELIMINARIES

Definition 1. A finite state transition model is a tuple M =
(V,U, INIT,TR) where V is a set of variables, U ⊆ V is a set
of state variables, V \U is a set of input variables, INIT(V) is

a propositional formula over V describing the initial states and
TR(V, V ′) is a propositional formula over V and the next-state
variables V ′ = {v′ | v ∈ V } describing the transition relation.

We assume that TR(V, V ′) =
∧

v∈U
(v′ = fv(V, V ′)) where

fv(V, V ′) is a propositional formula that assigns the next value
to v ∈ U based on current and next-state variables. Note that
for an input variable v ∈ V \ U , fv is not defined. From this
point on M is a finite state transition model.

The set of boolean variables of M induces a set of states
S = {0, 1}|V |, where each state s ∈ S is given by a
valuation of the variables in V . A formula over V (resp. V, V ′)
represents the set of states (resp. pairs of states) obtained by
its satisfying assignments. With abuse of notation we will refer
to a formula η over V as a set of states and therefore use the
notion s ∈ η for states represented by η.

The formula η[V ← V ′], or η′ in short, is identical to η
except that each variable v ∈ V is replaced with v′.

For a formula η over V ∪ V ′ we use Vars(η) ⊆ V ∪ V ′ to
denote all (current or next state) variables appearing in η.

Definition 2. An over-approximated reachability sequence
(OARS) with respect to a model M and a property AGp,
denoted Ω(M,p), is a sequence 〈F0, . . . , Fk〉 of propositional
formulas over V such that the following holds:

• F0 = INIT
• Fi ⇒ Fi+1 for 0 ≤ i < k
• Fi ∧ TR⇒ F ′i+1 for 0 ≤ i < k
• Fi ⇒ p for 0 ≤ i ≤ k

The set of states represented by Fi over-approximates the
states reachable from INIT in at most i steps. We refer to i as
time frame (or frame) i. When M and p are clear from the
context we omit them and write Ω.

Definition 3. Let Ω be an OARS. A formula η is inductive
up to j, if Fj ∧ η ∧ TR ⇒ η′. η is an invariant up to level j
if Fi ⇒ η holds for each i ≤ j.

Note that if η is inductive up to j then Fi ∧ η ∧ TR ⇒ η′

holds for each i ≤ j. Due to the properties of an OARS, η is
an invariant up to j iff it is inductive up to level j− 1, and in
addition F0 ⇒ η (initialization).

A. SAT-based Reachability via IC3

IC3 [3] is a SAT-based model checking algorithm that, given
a model M and a property AGp, computes increasingly long
sequences Ω(M,p). The algorithm works iteratively, where at
iteration k, the OARS of length k is extended to an OARS
of length k + 1 by initializing the set Fk+1 and possibly
updating previous sets (with index i ≤ k+1). The computation
continues until either a counterexample is found or a fixpoint
is reached (i.e. Fi+1 ⇒ Fi for some i).

One of the main features of IC3 is the fact that no unrolling
of the transition relation is needed. We give a brief overview
of how it operates. More details are given along the paper as
needed. For the exact details we refer the reader to [3].

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

174174174

IC3 starts by checking if INIT ∧ ¬p or INIT ∧ TR ∧ ¬p′
is satisfiable, in which case a counterexample of length zero
or one is found and the algorithm terminates. If both are
unsatisfiable, F0 is initialized to INIT and F1 is initialized to
p. 〈F0, F1〉 is an OARS (it satisfies the conditions in Def. 2).

IC3 extends and updates Ω, while strengthening the Fi’s.
The kth iteration starts from an OARS 〈F0, . . . , Fk〉. Then
Fk+1 is initialized to p. Clearly, Fk ⇒ Fk+1 and Fk+1 ⇒
p hold. Therefore, the purpose of strengthening is to ensure
that Fk ∧ TR ⇒ F ′k+1. This is done by checking that Fk ∧
TR ∧ ¬p′ is unsatisfiable. If this formula is satisfiable then a
state s ∈ Fk is retrieved from the satisfying assignment. s
is a bad state since it reaches ¬p (and by that violates Fk ∧
TR ⇒ F ′k+1). At this point, either s is reachable from INIT,
in which case a counterexample exists, or s is unreachable
and needs to be removed from Fk. In order to determine if s
is reachable, IC3 checks the formula: Fk−1 ∧ TR ∧ s′. If this
formula is unsatisfiable, then s can be removed from Fk (since
the property Fk−1 ∧ TR ⇒ F ′k of an OARS holds without it
as well), and the same process is repeated for other states in
Fk that can reach ¬p (if any). However, if Fk−1 ∧ TR ∧ s′
is satisfiable, a predecessor t ∈ Fk−1 of s is extracted and
handled similarly to s in order to determine if t (which is also
a bad state) is reachable from INIT or not. IC3 therefore moves
back and forth along the Fi’s, while retrieving bad states b and
checking their reachability from INIT via local reachability
checks of the form Fi∧TR∧b′. During this process, the Fi’s are
strengthened by removing bad states that are not reachable1. If
a state in F0 = INIT is reached during the backwards traversal,
then a counterexample is obtained.

Definition 4. Satisfiability checks of the form Fi ∧ TR ∧ η
(where Vars(η) ⊆ V ∪ V ′) are called i-reachability checks.

B. Abstraction
Throughout the paper we consider the “visible variables”

abstraction [11]. Let Mc = (V,U, INIT,TR) be a model and
let Ui ⊆ U be a set of state-variables. We refer to Ui as the
set of “visible variables”.

Given Ui, we consider an abstract model Mi = (Vi, Ui,TRi)
of Mc where TRi =

∧
v∈Ui

(v′ = fv(V, V ′)) is an abstract

transition relation, and Vi = {v ∈ V | v ∈ Vars(TRi) ∨ v′ ∈
Vars(TRi)} ⊆ V . Note that the behavior of invisible state
variables (in U \ Ui) is nondeterministic.

We do not introduce an abstraction of INIT as part of Mi

since we always consider the concrete set of initial states. Mi

is an abstraction of Mc, denoted Mc �Mi, in the sense that
both its set of states and its transition relation are abstractions
of the concrete ones. Mi induces a set of abstract states Si

which includes all valuations to Vi. Specifically, each concrete
state s ∈ S is abstracted by the abstract state si ∈ Si that
agrees with s on the assignment to the joint variables in Vi.
In this case we write s � si. We sometimes refer to si as the
set of concrete states it abstracts: {s ∈ S|s � si}.

1In fact, in order to remove a bad state b from Fi, IC3 finds a clause c
that is an invariant up to i and implies ¬b, and adds c to Fi as a conjunct.

In addition, TR is abstracted by TRi in the sense that TR⇒
TRi. Formally, the relation {(s, si) | s � si} is a simulation
relation from Mc to Mi.

Given an OARS Ω(Mc, p) = 〈F0, . . . , Fk〉 and an abstract
model Mi, we say that a formula η is inductive up to level j
w.r.t. Mi, if Fj ∧ η ∧ TRi ⇒ η′.

Lemma 5. Any formula inductive up to j w.r.t. Mi is also
inductive up to j w.r.t. Mc.

The lemma holds since TR ⇒ TRi. When we do not
explicitly mention a model, we refer to inductiveness w.r.t.
Mc. The notion of an invariant always refers to Mc.

C. Lazy Abstraction

As mentioned above, lazy abstraction [10] allows to use
different details of the model at different iterations of the state-
space traversal. We adapt the notion of lazy abstraction to
abstraction based on visible variables [11], and allow different
variables to be visible at different time frames.

Definition 6. An abstraction sequence w.r.t. a model Mc is a
sequence Ū = 〈U0, . . . , Uk〉 where Ui ⊆ U for 0 ≤ i ≤ k, is
a set of visible state-variables. Ū is monotonic if Ui ⊆ Ui+1

for each 0 ≤ i < k.

An abstraction sequence Ū represents different levels of
abstraction of Mc. It induces a sequence of abstract models
〈M0, . . . ,Mk〉 where Mi is defined as in Sec. II-B. If Ū is
monotonic, the induced sequence of abstract models is also
monotonic in the sense that M0 � . . . �Mk �Mc.

Definition 7. Let Ū = 〈U0, . . . , Uk〉 be a monotonic abstrac-
tion sequence and Ω(Mc, p) = 〈F0, . . . , Fk〉 an OARS. A
sequence si, . . . , sj of abstract states where 0 ≤ i < j ≤ k+1
is an abstract path from i to j if (i) for each i ≤ l < j,
(sl, sl+1) |= TRl, and2 (ii) for each i ≤ l ≤ min{j, k},
sl ∩ Fl 6= ∅.

An abstract path s0, . . . , sj from 0 to j is an abstract
counterexample of length j if sj ∩ ¬p 6= ∅.

Note that the definition above is not standard. It refers to
different transition relations at different steps. Also, it requires
the abstract states to be part of the corresponding Fi.

Definition 8. An abstraction sequence 〈U0
r, . . . , Uk

r〉 is a
refinement of an abstraction sequence 〈U0, . . . , Uk〉 if Ui ⊆
Ui

r for each i.

III. LAZY ABSTRACTION AND IC3

In this section we describe our proposed algorithm for lazy
abstraction, called L-IC3. The key ingredients of L-IC3 are an
abstraction sequence Ū that induces different abstractions at
different time frames as well as an OARS Ω.

L-IC3 starts with an initialization step and then works in
stages (Fig. 1). Its initialization (lines 2-5) is similar to the

2Requirement (ii) dismisses paths that are known to be spurious based on
Ω. min{j, k} is used for the case where j = k + 1, in which nonempty
intersection is required only up to k.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

175175175

1: function L-IC3(p)
2: Ω = 〈INIT, p〉; Ū = 〈Vars(p)〉
3: if INIT-IC3(Ω, Ū , p) == cex then
4: return cex
5: end if
6: while A-IC3(Ω, Ū) == abs-cex do
7: if REFINE(Ω, Ū) == cex then
8: return cex
9: end if

10: end while
11: return fixpoint
12: end function

Fig. 1: L-IC3

initialization of IC3 with one exception. If no counterexample
of length 0 or 1 exists, then in addition to initializing Ω to
〈F0 = INIT, F1 = p〉, it initializes Ū to 〈U0 = Vars(p)〉.
Clearly, after initialization, Ω is an OARS.

Each L-IC3 stage (lines 6-10) consists of an abstract model
checking step and a refinement step, both performed by
variations of IC3. Ū and Ω are updated in both steps.

The abstract model checking extends and updates the OARS
Ω until either a fixpoint is reached, or an abstract counterex-
ample is found (line 6). In the latter case, the counterexample
is abstract since it is computed w.r.t. the abstract transitions.
However, it is also restricted by Ω (see Def. 7). A refinement
is then performed (line 7). If the refinement finds a concrete
counterexample then it terminates. Otherwise it refines Ū and
updates Ω into an OARS (of the same length).

A new L-IC3 stage (line 6) of abstraction-refinement then
begins, invoking A-IC3 with the updated Ω and the refined Ū .

An invocation of L-IC3 results in either a fixpoint (in which
case the property is proved), or a concrete counterexample.

A. Abstract Model Checking via A-IC3

The abstract model checking algorithm, A-IC3 (Fig. 2),
either finds an abstract counterexample (line 22), or reaches a
fixpoint (line 26) by computing an OARS Ω.
Using different abstractions The computation of Ω is done
using a variation of IC3 which considers a sequence of abstract
models, induced by a monotonic abstraction sequence Ū =
〈U0 . . . , Uk〉. Both abstract transition relations and abstract
states are used. Even though abstract models are used, the
obtained OARS satisfies the requirements of Def. 2, which
refer to the concrete transition relation TR. To emphasize this,
we sometimes refer to the sequence as a concrete OARS.

Recall that IC3 performs i-reachability checks of the form
Fi ∧ TR ∧ η. A-IC3 also performs these checks (within
STRENGTHEN, line 20), but instead of using the concrete TR
it uses the abstract TRi. This means that when traversing the
model’s state space, A-IC3 uses different abstract transition
relations at different time frames. Further, when Fi ∧ TRi ∧ η
is satisfiable, A-IC3 retrieves an abstract state sa ∈Mi from
the satisfying assignment. This abstract state is either used to
strengthen Ω, or it is part of an abstract counterexample.
Incrementality If A-IC3 finds a counterexample at iteration
k it returns. After refinement (line 7) A-IC3 is re-invoked

13: function A-IC3(Ω, Ū)
14: k = |Ω| − 1
15: while Ω.fixpoint() == false do
16: Uk = Uk−1

17: Ū .add(Uk)
18: Fk+1 = p
19: Ω.add(Fk+1)
20: result = STRENGTHEN(Ω, Ū , k)
21: if result == abs-cex then
22: return abs-cex
23: end if
24: k = k + 1
25: end while
26: return fixpoint
27: end function

Fig. 2: A-IC3

with an updated Ω that is an OARS of the same length. The
computation of Ω resumes from iteration k + 1 (line 14)3.
Iterations In iteration k ≥ 1, the OARS 〈F0, . . . , Fk〉 and the
abstraction sequence 〈U0, . . . , Uk−1〉 are extended by 1 and
updated as follows (see Fig. 2).

1) Check if a fixpoint is reached. If not:
2) Uk is initialized to Uk−1 and added to Ū .
3) Fk+1 is initialized to p and added to Ω.
4) The sets F0, . . . , Fk+1 are strengthened iteratively until
〈F0, . . . , Fk+1〉 becomes an OARS, or an abstract coun-
terexample is found.

Below we describe items 2 and 4 in more detail.
(2) Extending Ū: Uk is initialized to Uk−1 (line 16). This is
aimed at immediately eliminating from TRk spurious transi-
tions that lead from states in Fk−1 ⊆ Fk to ¬p and were
already removed from TRk−1. Note that this initialization
does not imply that the Ui sets will always be equal, since
refinement might change them in different ways.
(4) Iterative Strengthening of Ω: A-IC3 obtains an OARS of
length k + 1 by strengthening the Fi’s s.t. no abstract coun-
terexample of length k+1 exists w.r.t. the OARS 〈F0, . . . , Fk〉.
This is a sufficient condition to ensure that Ω is an OARS. For
this purpose, A-IC3 finds abstract states that might be a part
of an abstract counterexample at a certain time frame, and
attempts to block them by learning corresponding invariants.
Recall that the abstract counterexamples we consider are
restricted not only by the abstract transition relations, but also
by the Fi sets (Def. 6). Technically, such states are described
by abstract proof obligations (similarly to the notion of proof
obligations used in IC3).

Definition 9. An abstract proof obligation, or an obligation
in short, is a pair (sa, n) consisting of a level n ≤ k and an
abstract state sa s.t. (1) sa is a “bad state” that reaches ¬p
along some abstract path, (2) ¬sa is an invariant up until n,
(3) sa ∩Fn+1 6= ∅, and (4) Fn reaches sa in one step of TRn.

Thus n+ 1 is the minimal level intersecting sa, and n is the
minimal level reaching sa in one abstract step. Note that it is

3An abstract counterexample is found w.r.t. Ω = 〈F0, . . . , Fk+1〉 produced
in iteration k, where |Ω| = k + 2. When A-IC3 is re-invoked, k is set to
|Ω| − 1 = k + 1.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

176176176

possible that Fn cannot reach sa along the concrete transitions.
A-IC3 maintains two sets of obligations - may and must.

Definition 10. An obligation (sa, n) is a must obligation
w.r.t. iteration k if sa must be shown unreachable from Fn

in one step w.r.t. TRn, in order to ensure that no abstract
counterexample of length k + 1 exists. All other obligations
are may obligations w.r.t. k.

If sa can reach ¬p via an abstract path from level n + 1
to level k + 1, then (sa, n) is a must obligation: unless sa is
blocked from Fn+1 (by removing from Fn all states that reach
sa in one step), an abstract counterexample of length k + 1
would exist. The same violation may also be reached from sa
in later levels Fj , n + 1 < j ≤ k + 1, in which case it will
be a suffix of a longer abstract counterexample with a longer
prefix up to sa. Therefore, we may also want to block sa in Fj ,
n+1 < j ≤ k+1. However, since different abstract transition
relations are considered at each level, it is also possible that
the same path leading from sa to ¬p is not valid from level
j > n+ 1 since, for example, Uj ⊃ Un+1 and hence the first
transition along the path does not satisfy TRj . The attempt to
block a state sa that is known to reach a violation from level
n+ 1 in levels greater than n+ 1 creates may obligations4.

The may obligations are not required to be blocked, but
blocking them can prevent A-IC3 from encountering the
same obligations/states in future iterations. On the other hand,
if we report an abstract counterexample based on a may
obligation, it is possible that no real abstract counterexample
exists, resulting in an unnecessary refinement step which can
damage the efficiency of the algorithm. We therefore greedily
try to handle may obligations and strengthen Ω accordingly,
but refrain from reporting abstract counterexamples based on
them. Note that if a may obligation is in fact a must w.r.t.
some greater k, then it will reappear as a must obligation in
the following iterations.

In order to handle an obligation (sa, n) and show sa to
be unreachable from Fn in one step, A-IC3 attempts to
strengthen Fn by extracting predecessors ta of sa that satisfy
Fn∧TRn∧ s′a, defining new proof obligations based on them,
and handling these obligations (by the same procedure). If
Fn is successfully strengthened s.t. Fn ∧ TRn ∧ s′a becomes
unsatisfiable, then ¬sa becomes an invariant up to n+ 1.
Adding Invariants If ¬sa is an invariant up to n + 1, then a
stronger invariant that blocks sa up to Fn+1 is learned based
on the abstract model Mn. Namely, ¬sa is strengthened to
some sub-clause5 c s.t. F0 ⇒ c and Fn ∧ c ∧ TRn ⇒ c′, i.e. c
is inductive up to n w.r.t. Mn and hence, by Lemma 5, also
w.r.t. Mc. Consequently, c is also an invariant up to n+1, but
it is a stronger invariant than ¬sa (since c⇒ ¬sa). The clause
c is added as a conjunct to F0, . . . , Fn+1 while maintaining

4IC3 does not make a distinction between may and must obligations and
handles them all the same since in the concrete case, a longer counterexample
is always a valid path (its suffix reaching a violation is always valid).

5A state sa is represented by a conjunction of literals, which makes its
negation ¬sa a clause (i.e., a disjunction of literals). A sub-clause of ¬sa
consists of a subset of its literals.

28: function REFINE(Ω,Ū)
29: result = C-STRENGTHEN(Ω)
30: if result == cex then
31: return cex
32: end if
33: REFINEABSTRACTION(Ω,Ū)
34: return done
35: end function

Fig. 3: REFINE procedure of A-IC3

the properties of a (concrete) OARS6.
Key procedures used by A-IC3 are described in Sec. III-D.

B. Refinement

If A-IC3 finds an abstract counterexample of length k + 1,
refinement is invoked by L-IC3 (line 7). Refinement either
finds a concrete counterexample or eliminates all concrete
spurious counterexamples of length k + 1. In the latter case,
refinement also refines Ū to ensure that no abstract coun-
terexample of length k + 1 exists. Both an updated OARS
Ωr = 〈F r

0 , . . . , F
r
k+1〉 and a refined monotonic abstraction

sequence Ūr = 〈Ur
0 , . . . , U

r
k 〉 are returned.

The REFINE procedure is described in Fig. 3. REFINE
first invokes C-STRENGTHEN, the strengthening procedure of
the concrete IC3, on the sequence 〈F0, . . . , Fk+1〉 (whose
prefix up to Fk is an OARS) obtained from the abstract
model checking. If a concrete counterexample is found the
algorithm terminates (lines 29-32). Otherwise, no concrete
counterexample of length k+ 1 exists. Moreover, the updated
(strengthened) sets F r

0 , . . . , F
r
k+1 comprise an OARS. It re-

mains to refine the abstraction sequence Ū in order to eliminate
all abstract counterexamples of length k + 1 as well. Thus,
REFINEABSTRACTION is invoked (line 33).

REFINEABSTRACTION: A-IC3 found an abstract coun-
terexample since it failed to strengthen the Fi’s. Meaning, the
relevant i-reachability checks Fi∧TRi∧ t′a could not be made
unsatisfiable when using TRi. C-STRENGTHEN, on the other
hand, succeeds to do so. Namely, for each i-satisfiability check
Fi ∧ TRi ∧ t′a of A-IC3 that was satisfiable, C-STRENGTHEN
manages to make the corresponding check F r

i ∧ TR ∧ t′ for
each t � ta unsatisfiable, either by strengthening F r

i or simply
since it considers TR. Moreover, once F r

i ∧ TR ∧ t′ becomes
unsatisfiable, C-STRENGTHEN derives from it a clause c⇒ ¬t
s.t. F r

i ∧ c ∧ TR⇒ c′ holds. C-STRENGTHEN strengthens Ωr

by adding c (invariant) as a new clause in all sets up to F r
i+1.

We consider it a learned clause at level i+ 1. The purpose of
REFINEABSTRACTION is to ensure that for a learned clause
c at level i+ 1, F r

i ∧ c ∧ TRr
i ⇒ c′ (with TRr

i instead of TR)
also holds. Meaning, c is inductive up to i w.r.t. Mr

i .

Lemma 11. Let c be a clause learned by C-STRENGTHEN at
level i+ 1. If F r

i ∧ TRr
i ⇒ F r

i+1
′ then F r

i ∧ c ∧ TRr
i ⇒ c′.

Based on the previous lemma, in order to ensure F r
i ∧ c ∧

TRr
i ⇒ c′, it suffices to ensure unsatisfiability of F r

i ∧ TRr
i ∧

¬F r
i+1
′ for every level i+ 1 in which learned clauses exist.

6c is not necessarily inductive w.r.t. Mi where i < n (in case Ui ⊂ Un).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

177177177

To ensure unsatisfiability of a formula F r
i ∧TRr

i∧¬F r
i+1
′, we

consider the same formula over TR, which is clearly unsatisfi-
able. We derive from it an unSAT-core. The next-state variables
that appear in the unSAT-core, denoted NS(unSatCore) =
{v ∈ V | v′ ∈ Vars(UnSatCore)}, are added to Ui.

Lemma 12. Let F r
i ∧TR∧η′ be an unsatisfiable formula and

let UnSatCore be its unsat core. Let Ur
i ⊇ NS(UnSatCore).

Then F r
i ∧ TRr

i ∧ η′ is unsatisfiable.

Finally, we propagate variables that were added to Ur
i

forward in order to obtain a monotonic abstraction sequence.
Since we only add variables to Ur

i , i.e. make the transition
relation TRr

i more precise, then the corresponding formulas
remain unsatisfiable.

C. Correctness Arguments

The OARS obtained by L-IC3 is concrete. Specifically, it
does not necessarily satisfy Fi ∧ TRi ⇒ Fi+1. This results
both from refinement that adds invariants learned based on the
concrete TR, and from A-IC3 that learns an invariant based on
some TRi, but also adds it to Fj+1 for j < i even if it is not
inductive w.r.t. TRj . This complicates the correctness proof.

In particular, in IC3, when a proof obligation (s, n) is
handled, then for any predecessor t of s, ¬t is an invariant
up to n−1, otherwise s would belong to a lower frame (since
Fi ∧ TR ⇒ Fi+1). Now consider an abstract proof obligation
(sa, n). If we assume to the contrary that the predecessor ta
intersect some Fi (for i < n) then we can still deduce that
the transition (ta, sa) |= TRn also exists at a lower frame, i.e.
(ta, sa) |= TRi for i < n. This is since TRn ⇒ TRi (recall
that the same does not necessarily hold for i > n). However, if
ta∩Fi 6= ∅, we cannot immediately deduce that sa∩Fi+1 6= ∅
since Fi ∧ TRi ⇒ Fi+1 might not hold. It turns out that this
property does hold (see Lemma 15), but more complicated
arguments are needed, based on the following:

Lemma 13. Let Ω = 〈F0, . . . , Fk+1〉 and Ū = 〈U0, . . . , Uk〉
be the sequences obtained at the end of a refinement step
or at the end of an iteration of A-IC3 in the case that no
counterexample was found. Then

1) Ω is an OARS.
2) For every clause c that was added to some Fi in Ω there

exists some j ≥ i− 1 s.t. c is inductive up to j w.r.t. Mj .
3) No abstract counterexample of length k + 1 exists w.r.t.

the prefix 〈F0, . . . , Fk〉 of Ω.

Theorem 14. L-IC3 either terminates with a fixpoint, in which
case the property holds, or with a concrete counterexample.

D. Detailed Description of Strengthening

We now describe the procedures used by A-IC3 in detail.
STRENGTHEN (Fig. 4): STRENGTHEN starts by checking

Fk∧TRk∧¬p′ (line 37). If it is unsatisfiable, then Fk∧TR∧¬p′
is also unsatisfiable as well (since TR ⇒ TRk). Thus Ω is
already an OARS and no further strengthening is needed.

Assume Fk ∧ TRk ∧ ¬p′ is satisfiable. An abstract state
sa ∈ Mk that reaches ¬p in one abstract step is extracted

36: function STRENGTHEN(Ω,Ū ,k)
37: while Fk ∧ TRk ∧ ¬p′ == SAT do
38: obligations = ∅
39: retrieve abstract predecessor sk
40: if BLOCKSTATE(Ω,sk ,k,k,must) == abs-cex then
41: return abs-cex
42: end if
43: while obligations 6= ∅ do
44: ((sa, n), handleMay) = CHOOSENEXT(obligations)
45: if Fn ∧ TRn ∧ s′a == SAT then
46: retrieve abstract predecessor tn
47: if BLOCKSTATE(Ω,tn,n,k,must) == abs-cex then
48: if handleMay then
49: obligations.clearAllMust()
50: else
51: return abs-cex
52: end if
53: end if
54: else
55: obligations.removeMust(sa,n)
56: BLOCKSTATE(Ω,sa,n + 2,k,may)
57: end if
58: end while
59: end while
60: PROPAGATECLAUSES(Ω)
61: return done
62: end function

Fig. 4: Iterative strengthening of A-IC3

from the satisfying assignment, meaning sa ∩ Fk 6= ∅. All
concrete states in sa∩Fk can reach ¬p via TRk and therefore,
if the property is to be proven, sa must be blocked in Fk.
Otherwise, an abstract counterexample exists.

In order to block sa in Fk, STRENGTHEN calls BLOCK-
STATE on the bad state sa at level k (line 40). BLOCKSTATE
either finds a counterexample or initializes the set(s) of obli-
gations to reflect the need to block sa (and possibly adds
invariants to the Fi’s).

STRENGTHEN then handles the proof obligations one at a
time. CHOOSENEXT (line 44) first considers obligations from
the must set only. Obligations are chosen in increasing order
of their time frames. If the must set becomes empty, then as
long as the may set is not empty, one may obligation with
a minimal time frame is moved from the may set to the
must set. STRENGTHEN then continues, with the exception
that counterexamples are no longer reported.

Given a proof obligation (sa, n):
• If Fn can indeed reach sa in one (abstract) step, i.e.,
Fn ∧ TRn ∧ s′a is satisfiable, then a predecessor ta of sa
s.t. ta∩Fn 6= ∅ is extracted from the satisfying assignment
(line 46). By Lemma 15, ta ∩Fi = ∅ for all i < n. Thus
¬ta is an invariant up to n− 1. Next, the state ta needs
to be blocked (eliminated) from level l = n (line 47).

• When Fn ∧ TRn ∧ s′a becomes unsatisfiable, the proof
obligation (sa, n) is removed (line 55) since sa can no
longer be reached from level n. In fact, ¬sa is now an
invariant up to level n + 1. In order not to encounter
sa in later iterations, we speculatively attempt to block
(eliminate) sa from level l = n+2, while using the may
parameter (line 56).

A counterexample found by BLOCKSTATE is reported iff
may obligations are not yet handled (lines 41 and 51).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

178178178

63: function BLOCKSTATE(Ω,ta,l,k,type)
64: if l > k + 1 then
65: min = k + 1
66: else
67: min = FINDNONINDUCTIVE(Ω,¬ta,l− 1,k)
68: if min == 0 then
69: return abs-cex
70: end if
71: if min ≤ k then
72: if type == must && min == l-1 then
73: obligations.addMust(ta,min)
74: else
75: obligations.addMay(ta,min)
76: end if
77: end if
78: end if
79: ADDINVARIANT(Ω,¬ta,min)
80: return done
81: end function

Fig. 5: BLOCKSTATE procedure of A-IC3

Lemma 15. Let (sa, n) be a proof obligation, and let ta be
an abstract state such that (ta, sa) |= TRn. Then ta ∩ Fi = ∅
for every i ≤ n− 1.

BLOCKSTATE (Fig. 5): BLOCKSTATE(Ω,ta,l,k,type) is
used for blocking a “bad state” ta from level l up to k + 1,
where ¬ta is already known to be an invariant up to l − 1.

Note that if l > k + 1 (line 65) then ta is already blocked
up to k + 1. Thus ¬ta is added as an invariant up to k + 1
(line 79). Otherwise, BLOCKSTATE looks for a level such that
¬ta is invariant up to it.

Specifically, BLOCKSTATE looks for the minimal level min
between l− 1 and k s.t. Fmin ∧TRmin ∧ t′a is satisfiable (line
67). The important property is that ¬ta is an invariant up to
min: If min = l − 1, this holds since ¬ta is already known
to be an invariant up to level l−1 (this is also why the search
for min starts at l − 1). If min > l − 1, then the fact that
Fmin−1 ∧ TRmin−1 ∧ t′a is unsatisfiable implies that ¬ta is
inductive at min− 1 w.r.t. Mmin−1, and hence, by Lemma 5
also w.r.t. Mc. Thus, it is an invariant up to min.

If min = 0, then the “bad state” ta is reachable from INIT in
one step of TR0. Thus, an abstract counterexample is reported
(line 69). If min = k + 1 then no corresponding level was
found up to k, i.e., ¬ta is an invariant up to k+1 and no new
proof obligation is added. However, if min ≤ k is found then
the pair (t,min) is added as a new proof obligation (lines 72-
76). Either way, ¬ta is added as an invariant up to min by
calling ADDINVARIANT (line 79). ADDINVARIANT learns an
invariant that strengthens ¬ta and adds it to F0, . . . , Fmin.

Classifying obligations as may/must is performed in
lines 72- 76 of BLOCKSTATE. Note that only obligations of
the form (ta, l − 1) are must obligations.

PROPAGATECLAUSES: Similarly to IC3, if the main loop
in STRENGTHEN terminates, added clauses are propagated
forward by PROPAGATECLAUSES (line 60). Specifically, if
Fi ∧ c ∧ TRi ∧ ¬c′ is unsatisfiable then the clause c from Fi

can safely be added to Fi+1 while maintaining the properties
of an OARS. This is done in order to get to a fixpoint.

(a) Runtime trend. Dots represent IC3, triangles represent L-IC3. Test-cases are
sorted in an increasing runtime order.

(b) Comparing runtime. IC3 on X-axis and L-IC3 on Y-axis

Fig. 6: Runtime information for L-IC3 and IC3

IV. EXPERIMENTAL RESULTS

For the implementation of the two algorithms we collab-
orated with Jasper Design Automation7. We used Jasper’s
formal verification platform in order to implement both the
original IC3 and our L-IC3 algorithm. In both implementations
we used optimizations from [6] (such as ternary simulation).
Implementing these algorithms using Jasper’s platform al-
lowed us to develop and experiment with various real-life
industrial designs and properties from various major semi-
conductor companies. All designs contain thousands of state
variables in the cone of influence of the properties.

The timeout was set to 3600 seconds and experiments were
conducted on systems with Intel Xeon X5660 running at
2.8GHz and 24GB of main memory.

We experimented with 122 real safety properties from dif-
ferent designs. Fig. 6 shows two different analyses comparing
the runtime of L-IC3 and IC3. Runtime trends are shown
in Fig. 6a. As can be seen, the overall trend is in favor of
L-IC3. In Fig. 6b runtime for IC3 and L-IC3 is represented
by the X-axis and Y -axis respectively. We can clearly see
the advantage of using L-IC3 on the more complicated test
cases. These test cases are represented by the dots that are
below the diagonal by a big margin. On these examples, the
improvement in runtime is up to two orders of magnitude.
The cases where IC3 performs better are usually cases where
L-IC3 spends most of the time in refinement. Also, for false
properties (counterexample exists), the performance of L-IC3
is affected by the way we treat may and must obligations.
Due to our special handling, L-IC3 may lose the ability to

7An EDA company: http://www.jasper-da.com

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

179179179

N]Vars Laziness - Time Frames and Number of Vars
]TF]AV]TF]AV]TF]AV]TF]AV]TF]AV]TF]AV]TF]AV]TF]AV]TF]AV

f1 11866 [0-0] 323 [1-1] 647 [2-2] 686 [3-3] 699 [4-4] 705 [5-5] 713 [6-6] 714 [7-7] 728 [8-8] 743
[9-9] 752 [10-10] 755 [11-11] 761 [12-12] 767 [13-13] 777 [14-14] 783 [15-15] 789 [16-18] 811

f2 5693 [0-7] 12
f3 5693 [0-0] 8 [1-1] 56 [2-2] 64 [3-3] 74 [4-4] 82 [5-7] 91
f4 5693 [0-6] 31 [7-7] 42 [8-8] 51 [9-13] 54
f5 5773 [0-0] 260 [1-1] 381 [2-2] 401 [3-3] 419 [4-34] 430
f6 1183 [0-0] 185 [1-1] 248 [2-2] 255 [3-3] 259 [4-4] 262 [5-5] 268 [6-8] 270 [9-9] 273 [10-30] 274
f7 1247 [0-0] 57 [1-1] 62 [2-2] 73 [3-7] 76
f8 1247 [0-0] 63 [1-1] 64 [2-2] 72 [3-6] 83
f9 1277 [0-0] 263 [1-1] 303 [2-2] 318 [3-3] 321 [4-4] 322 [5-5] 323 [6-26] 347
f10 1389 [0-0] 253 [1-1] 304 [2-2] 324 [3-3] 341 [4-4] 351 [5-5] 355 [6-7] 363 [8-9] 399 [10-10] 409

[11-12] 415 [13-13] 419 [14-16] 429 [17-18] 431
f11 1183 [0-0] 79 [1-1] 113 [2-9] 114
f12 1204 [0-0] 58 [1-1] 67 [2-2] 75 [3-7] 76
f13 3844 [0-0] 470 [1-1] 504 [2-2] 528 [3-3] 533 [4-4] 534 [5-11] 650
f14 3832 [0-0] 333 [1-1] 365 [2-2] 386 [3-5] 391 [6-6] 442 [7-10] 446
f15 3854 [0-0] 428 [1-1] 453 [2-2] 495 [3-3] 499 [4-4] 503 [5-5] 560 [6-6] 574 [7-7] 576 [8-10] 577
f16 3848 [0-0] 432 [1-1] 462 [2-2] 487 [3-3] 498 [4-4] 501 [5-5] 634 [6-6] 650 [7-13] 658
f17 3854 [0-0] 426 [1-1] 480 [2-2] 525 [3-3] 539 [4-4] 540 [5-5] 559 [6-11] 570
f18 3848 [0-0] 469 [1-1] 547 [2-2] 551 [3-3] 553 [4-4] 635 [5-5] 672 [6-10] 674

TABLE I: Lazy abstraction. N stands for the name of the verified property.]Vars stands for the number of state variables in the concrete model Mc.
]TF stands for the time frames and]AV represents the number of variables (defining the abstract TRi) in the abstract model Mi at the given time frame i
(appearing in the column]TF).

find a counterexample which is longer than the length of the
computed Ω. In those cases, IC3 may perform better. Note that
the scatter at the middle is a bunch of comparable properties
where both algorithms are on par.

In the given timeout, 7 properties cannot be solved by IC3
but are solved by L-IC3; 5 properties cannot be solved by L-
IC3 but are solved by IC3. There are also 5 properties that
cannot be solved by either algorithm. The overall runtime for
IC3 is 75558 seconds while for L-IC3 it is 55424 seconds.

The laziness of our abstraction-refinement algorithm is
demonstrated in Table I. The table shows how the abstraction is
refined along increasing time frames. Different frames contain
different variables that are needed in order to prove or disprove
the given property. This demonstrates the fact that L-IC3
indeed takes advantage of the lazy abstraction framework.

Table II presents runtime characteristics for L-IC3 and IC3.
In particular, it shows the number of clauses and the number
of variables in Ω when either a fixpoint or a counterexample
is found. In many of the examples the number of clauses
produced by L-IC3 for its Ω is significantly smaller than the
number of clauses produced by IC3. Recall that each of the
clauses is learned via several local reachability checks. The
reduced number of clauses thus indicates that L-IC3 applies
a smaller number of checks and therefore issues a smaller
number of calls to the SAT solver. This can explain the
speedups it obtains.

An additional reason for the speedups is the fact that the
local reachability checks of L-IC3 are easier than those of
IC3. This is because the abstract transition relations TRi are
much smaller (in number of variables) than TR (see table I).
Further, the sets Fi, computed by L-IC3 are smaller than those
computed by IC3 (see Table II).

Recall that in Section III-A we distinguish between must and
may obligations. The results reported above are obtained while
using this distinction and handling all the may obligations
after the must obligations, as described there. We also tried

N]Vars Stat]V[Ω]]V[ΩL]]C[Ω]]C[ΩL] k kL T TL

f1 11866 false 1001 818 8457 3939 15 18 1646 599
f2 5693 true 236 11 617 62 14 8 133 9.2
f3 5693 true 229 121 1314 570 13 8 351 40.5
f4 5693 true 104 24 2101 32 32 14 513 13.6
f5 5773 true > 616* 414 > 16689* 12425 7* 35 TO 1223
f6 1183 true 432 370 50511 29316 36 31 2216 2763
f7 1247 true 250 152 10732 238 11 8 432 2.6
f8 1247 true 177 96 14702 293 8 7 520 3.5
f9 1277 false 357 331 8762 3788 13 27 164 101
f10 1389 false 397 417 12455 19742 13 19 262 1268
f11 1183 true 114 106 29183 2589 9 10 1153 109
f12 1204 true 114 105 18698 229 8 8 818 3.0
f13 3844 true 320 578 547 1529 10 12 16.7 59.1
f14 3832 true 650 488 2414 1553 12 11 117 61
f15 3854 true > 470* 666 > 8320* 5363 6* 11 TO 730
f16 3848 true > 687* 826 > 7733* 5506 8* 14 TO 381
f17 3854 true 811 673 10934 1837 13 12 919 83
f18 3848 true 898 716 9889 2080 13 11 1891 84
f19 3848 true 966 > 216* 13370 > 266* 11 7* 2225 TO

TABLE II: Running parameters for various properties. N stands for the
name of the verified property.]Vars stands for the number of state variables
in the cone of influence.]V[Ω] - number of variables in Ω,]C[Ω] - number
of clauses in Ω, k - size of Ω(M,p) and T - the runtime in seconds. The
subscript L represents the value for the Lazy version (L-IC3).

other configurations. For example, we ran experiments that
do not distinguish between must and may obligations. Our
experiments show that distinguishing between the two yields
a better overall performance.

In addition to the industrial experiments, we also ran ex-
periments on the HWMCC’11 benchmark. We used the test-
cases with single properties. Most of the properties in this
benchmark are fairly easy and can be solved in a matter of
a few seconds both by IC3 and L-IC3. There are also a few
cases where IC3 performs better or even reaches a result while
L-IC3 does not. In these cases L-IC3 spends most of the time
in refinement. On the other hand, there are several test cases
that can only be solved by L-IC3 while IC3 reaches timeout.

V. ACKNOWLEDGMENTS

The authors would like to thank Håkan Hjort, Ziyad Hanna
and Yael Meller for valuable comments. Jasper Design Au-
tomation is thanked for the help in conducting the experiments.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

180180180

REFERENCES

[1] A. Biere, A. Cimatt, E. Clarke, and Y. Zhu. Symbolic Model Checking
Without BDDs. In TACAS, 1999.

[2] A. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang. An incremental
approach to model checking progress properties. 2011.

[3] A. R. Bradley. SAT-based model checking without unrolling. In VMCAI,
2011.

[4] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-
based predicate abstraction for ANSI-C. In TACAS, 2005.

[5] E. Clarke and D. Peled O. Grumberg. Model Checking. MIT press,
1999.

[6] N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of
property directed reachability. In FMCAD, 2011.

[7] A. Gupta, M. Ganai, Z. Yang, and P. Ashar. Iterative abstraction using
SAT-based BMC with proof analysis. In ICCAD, 2003.

[8] A. Gupta and O. Strichman. Abstraction refinement for bounded model
checking. In CAV, 2005.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In POPL, 2004.

[10] T.A. Henzinger and R. Majumdar R. Jhala. Lazy abstraction. In POPL,
2002.

[11] R. P. Kurshan. Computer-aided verification of coordinating processes:
the automata-theoretic approach. Princeton University Press, 1994.

[12] K. L. McMillan. Interpolation and SAT-based Model Checking. In CAV,
2003.

[13] K. L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.
[14] K. L. McMillan and N. Amla. Automatic Abstraction without Coun-

terexamples. In TACAS, 2003.
[15] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties

using induction and a SAT-solver. In FMCAD, 2000.
[16] Y. Vizel and O. Grumberg. Interpolation-sequence based model check-

ing. In FMCAD, 2009.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

181181181

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

