
Piecewise Linear Modeling of Nonlinear devices for
Formal Verification of Analog Circuits

Yan Zhang, Sriram Sankaranarayanan and Fabio Somenzi.
University of Colorado, Boulder, CO. Email: {yan.zhang,srirams,fabio}@colorado.edu

Abstract—We consider different piecewise linear (PWL) mod-
els for nonlinear devices in the context of formal DC operating
point and transient analyses of analog circuits. PWL models
allow us to encode a verification problem as constraints in
linear arithmetic, which can be solved efficiently using modern
SMT solvers. Numerous approaches to piecewise linearization
are possible, including piecewise constant, simplicial piecewise
linearization and canonical piecewise linearization. We address
the question of which PWL modeling approach is the most
suitable for formal verification by experimentally evaluating the
performance of various PWL models in terms of running time
and accuracy for the DC operating point and transient analyses of
several analog circuits. Our results are quite surprising: piecewise
constant (PWC) models, the simplest approach, seem to be the
most suitable in terms of the trade-off between modeling precision
and the overall analysis time. Contrary to expectations, more
sophisticated device models do not necessarily provide significant
gains in accuracy, and may result in increased running time. We
also present evidence suggesting that PWL models may not be
suitable for certain transient analyses.

I. INTRODUCTION

In this paper, we evaluate piecewise linear models (PWL)
for the verification of nonlinear analog circuits. Analog circuits
are indispensable in modern integrated circuits. Although, in a
typical IC design, the analog circuitry occupies a small fraction
of the entire die area, its design and verification requires con-
siderable effort compared to its digital counterpart [1]. Because
analog design is error-prone, many simulations, each of which
may take several hours or even several days, are needed to
convince the designers that the specification is met. Even with
this effort, many designs still fail to work after fabrication.
Therefore, formal verification techniques for analog circuits
have recently emerged, as shown in Table I. Most efforts in
formal verification have focused on two problems:

• DC Operating Point Analysis: Satisfiability solvers are
used to characterize all operating points of a circuit.
In many cases, SPICE simulations may miss metastable
operating points that can be captured by a formal ap-
proach [2], [3].

• Dynamic (Transient) Analysis: Various models of dy-
namical systems, including ODEs [2], [4]–[6], hybrid
automata [7], hybrid Petri nets [8] and frequency domain
transfer functions [9] are used to study the evolution of
a circuit in time.
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These problems are complex due to the presence of nonlin-
ear devices such as diodes, transistors, non-Ohmic resistors
and nonlinear capacitors. While solvers for reasoning about
nonlinear systems are becoming sophisticated [10]–[13], their
capabilities are far exceeded by the linear arithmetic SMT
solvers such as MathSAT, Yices and Z3 [14]. As a result, the
problem of approximating nonlinear devices by a piecewise
linear model naturally presents itself. Fortunately, PWL mod-
eling of analog devices has been well studied by the analog
circuit simulation community [15]–[17]. In this regard, a wide
variety of PWL modeling approaches for transistors have been
considered, including simplicial piecewise linearization [16],
canonical piecewise linearization [15] and their many refine-
ments. Recent work by Tiwary et al. [2] uses simple piecewise
constant (PWC) models with interval uncertainties to approx-
imate the nonlinear characteristics of transistors, encoding
DC operating point and transient analyses problems as linear
arithmetic constraint satisfaction with promising results.

The key advantage of PWL models lies in their translation
to linear arithmetic. On the other hand, the abstraction of tran-
sistor characteristics by PWL models can potentially miss DC
operating points or transient behaviors, unless the modeling
can be made “sound” as defined in Section II. However, a
sound model may introduce spurious behaviors that do not
exist in the real circuit. To address this issue, Tiwary et al.
present a model refinement procedure that constructs a PWL
model using a restricted input domain provided by results
found from a coarse model.

Thus far, little work has been done to consider the “best”
piecewise linear modeling approach for DC and transient
analyses of analog circuits. In this paper, we ask the following
question: is one modeling approach necessarily better than the
other in terms of performance (time taken) vs. accuracy (fewer
spurious DC operating points, fewer spurious paths)?

We compare three different PWL modeling approaches,
including PWL modeling with simplicial decomposition, the
canonical PWL function proposed by Chua et al. [15] and
the PWC model used by Tiwary et al. [2] with different
modeling parameters. Our comparisons are based on the DC
operating point and transient analyses framework of Tiwary et
al. [2]. Our comparisons consider the running times, number
of SMT solver queries and the precision in terms of spurious
results. Our findings are quite surprising: for DC operating
point analysis, PWC models are more efficient in terms of
performance while providing very little difference in terms
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of precision. We also present evidence suggesting that PWL
models may not be suitable for certain transient analyses.

In the next section, we discuss the device modeling ap-
proaches. In section III, we present the setup of the formal DC
operating point analysis. Next, we present the formal transient
analysis. Finally we discuss the experimental results.

II. DEVICE MODELING APPROACHES

In this section, we consider the piecewise linear (PWL)
modeling of nonlinear analog devices. We discuss the model-
ing problem based on simulation and introduce the notion of
models that are “sound” with respect to data points.

A. Modeling Nonlinear Devices

A device model is a function y = F(x,p), where y
represents the dependent variables, x the independent variables
and p the device parameters that vary with the fabrication
process, voltage and temperature (PVT). For example, a model
for a NMOS transistor is

IDS = F (VGS , VDS ,p) .

In sophisticated device models, such as BSIM4 1 and PTM 2,
F is often complicated and expressed as C (FORTRAN)
language subroutines which can be used by SPICE. In order to
enable formal verification, we need to abstract F to a simpler,
more tractable form.
Device Approximation. Approximations are achieved by
means of relational models R(VGS , VDS ,p, IDS), that relate
possible voltages, parameters values and currents over some
domain D. The domain is defined by intervals for VGS and
VDS which typically range from 0 to the supply voltage, and
some range of parameter uncertainties for p. We require the
relation R to be sound with respect to the device model.

Definition II.1 (Sound Abstraction). A relational model
of a device R(VGS , VDS ,p, IDS) is sound with respect
to a functional model IDS = F (VGS , VDS ,p) if for all
(VGS , VDS ,p) ∈ D,

IDS = F (VGS , VDS ,p) ⇒ R(VGS , VDS ,p, IDS) .

In other words, the relation R over-approximates the behavior
of the device modeled using the function F .

The purpose of piecewise linear modeling of a device is
to find a relation R that is sound with respect to some
device model such that R is expressible as a linear arithmetic
formula. A standard approach for piecewise linear modeling
is to find a piecewise linear approximation F̃ (VGS , VDS ,p)
that minimizes some penalty function

ε = max
(VGS ,VDS ,p)∈D

|F (VGS , VDS ,p)− F̃ (VGS , VDS ,p)| .

Given such an F̃ , we can obtain a relation R by “bloating” F̃
using the error ε:

R(VGS , VDS , IDS ,p) : IDS ∈ F̃ (VDS , VGS ,p) + [−ε, ε] .

1Cf. http://www-device.eecs.berkeley.edu/bsim/.
2Cf. http://ptm.asu.edu/.

If F̃ can be expressed in linear arithmetic, then R itself can be
expressed in linear arithmetic. In practice, however, the device
model F is often not available in a simple closed form, which
makes the computation of ε difficult. Instead, we use a large
number of samples
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each consisting of observed voltages, currents and parameter
values, to compute the F̃ that minimizes the sample error. We
then compute the relation R by using the interval defined by
the sample error. The resulting relation R is sound with respect
to samples, but not necessarily with respect to F . Often, the
samples are divided into a smaller training set that is used
to find F̃ , and a large evaluation set that is used to compute
the error estimate ε. If the number of sample points is large
and the sampling is uniform, then soundness with respect to
samples can be used as a basis for constructing formal models.

Through the rest of the paper, whenever we claim “sound-
ness” of a device model, it refers to soundness with respect to
some pre-specified, sufficiently large number of data points.

B. Piecewise Linear Functions

We now discuss various forms of piecewise linear functions
and the approximation of nonlinear devices using them.

Consider a domain D ⊆ Rn. A function f(x) : D → Rm

is piecewise linear (PWL) if there exists a K-piece partition
S1, . . . , SK of D such that f(x) can be written as

f(x) =


a1 +B1x x ∈ S1

· · · · · ·
aK +BKx x ∈ SK

(1)

where ai are m× 1 vectors, x is an n× 1 vector, and Bi are
m × n matrices. We call Equation (1) the conventional form
of PWL functions.

Any continuous function g(x) over a bounded domain D
can be approximated to arbitrary accuracy by a PWL function
g̃(x) with a large enough K. However, as K grows, PWL
functions become unwieldy.

Simplicial Form. One way to construct a PWL function in
conventional form is based on simplicial decomposition [39],
which subdivides a domain into many simplices S1, . . . , SK .
Recall that an n dimensional simplex is a polyhedron with
n + 1 vertices. For instance, a 2-simplex is a triangle and
a 3-simplex is a tetrahedron. Algorithms for simplicial de-
composition of a domain are well-known. If the domain D
is a box, a simplicial decomposition can be constructed in
two steps: (1) partition D into smaller boxes D1, . . . ,Dk by
choosing cutpoints along each dimension; (2) subdivide Dj

into simplices. For example, a rectangle yields 2 simplices, and
a cuboid yields 5 simplices. Known simplicial decomposition
schemes yield O(n!) simplices of n dimensions.

Once we decompose D into K simplices S1, . . . , SK , we
assume that for Si, the linearization is an unknown function
fi = ai+〈bi,x〉, where 〈〉 denotes inner product. Since Si has
n+1 vertices, we evaluate the function f(x) at each vertex and
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TABLE I
A CROSS SECTION OF VERIFICATION APPROACHES FOR ANALOG CIRCUITS.

References Description
Althoff et al. [7] Verification of Phase Locked Loop.
Frehse et al. [18] Using Phaver [19] to verify oscillators.
Dang et al. [20] Verification of ∆− Σ modulator.
Gupta et al. [21] Using checkmate to verify ∆− Σ modulator [22], [23].
Tiwary et al. [2] SAT-based D.C analysis, piecewise interval device modeling.
Zaki et al. [6] Taylor Models Interval Arithmetic [24], [25].
Zaki et al. [3] DC operating point analysis using nonlinear solvers [10].
Steinhorst et al. [26] Specification language and model checking by guaranteed integration.
Hartong et al. [4], [27] Discretization of dynamics and Model checking.
Hartong et al. [28] Equivalence checking by sampling vector fields at finitely many points.
Little et al. [29]–[31] Translation to Hybrid Petri Nets and model-checking.
Clarke et al. [32], [33] Stat. model checking [34] of ∆− Σ modulators.
Singhee et al. [35], [36] Monte Carlo methods, rare event simulations [37], [38].
Denman et al. [9] Deriving Laplace transfer functions and verifying using theorem proving.

set up n+1 linear equations in terms of ai and bi, which yields
a unique solution. The resulting f is continuous since the
values of fi and fj agree at the common vertices of Si and Sj .
A PWL function constructed using simplicial decomposition
is said to be a simplicial PWL (SPWL) function.

SPWL functions are practical when the number of inputs is
relatively small. For instance, if we assume that the parameters
of an NMOS device are fixed, SPWL decomposes the input
space in terms of VGS and VDS into triangles. However,
if there are many inputs (e.g., VGS , VDS and a number
of uncertain transistor model parameters), models based on
SPWL can be quite expensive due to the exponential blowup
in the number of simplices.

Canonical Form. A continuous PWL function can also be
written as:

f(x) = a+Bx+
σ∑

i=1

ci |〈αi,x〉+ βi| (2)

where a and ci are m×1 vectors, x and αi are n×1 vectors,
B is an m×n matrix, and βi is a scalar. Equation (2) is known
as the canonical form [15], which is more succinct than the
conventional form.

We construct a PWL function in canonical form (CPWL) as
follows. First, we sample over D to obtain N samples xi, yi,
where 1 ≤ i ≤ N . Next, we use a gradient descent method that
minimizes the error between the output values and the sample
points. The gradient descent method is detailed in [15]. Here
we present a brief description.

Consider a real-valued function f(x) and a CPWL function

f̂(x) = a+ bx+
σ∑

j=1

cj |〈αj ,x〉+ βj | ,

where a, b, cj , αj and βj are unknown coefficients. Given a
set of N samples {(xi, yi) | yi = f(xi)}, let

z1 ≡ [a b1 · · · bn c1 · · · cσ]T ,

z2 ≡ [α1,1 · · ·αk,n β1 · · ·βk]
T ,

and define the L2-norm error as

E(z1, z2) ≡
N∑
i=1

[
w(i)

(
f̂(xi)− f(xi)

)2
]
,

where w(i) is the weight of the i-th sample. The L2-norm error
E(z1, z2) is minimized by iteratively moving z2 along the
steepest descent direction and computing the local minimum
with respect to z1. When the error reaches a minimum, or is
below some threshold, we find an approximation f̂ .

We simplify the above algorithm as follows. We fix z2 such
that it subdivides the domain D into hyper-rectangles. Then
we compute the local minimum of E, where we get a set of
values for z1. The resulting z1, along with the pre-selected z2,
leads to a function that generally does not have the minimal
error. As shown later, we will “bloat” this function into a
sound abstraction. Therefore, instead of getting the CPWL
function with minimal error, our concern is more on obtaining
a reasonable approximation with low computational effort.

Piecewise Constant Functions. When B1, . . . ,BK in
Equation (1) are set to zero, a useful sub-class of functions is
obtained: piecewise constant functions (PWC). They trade off
accuracy for computational efficiency.

C. PWL Device Modeling

A PWL device model of a set of samples {xi, F (xi)}
is a pair of PWL functions F̃l and F̃u such that for all i,
F̃l(xi) ≤ F (xi) ≤ F̃u(xi). Hence, a PWL device model is a
relational model that is sound with respect to the samples. We
assume that for x ∈ D, F (x) can be evaluated. Without loss
of generality, we also assume that D is a box obtained as the
Cartesian product of intervals I1, . . . , In for each xi of x.

Model Generation. We generate a PWL model for F (x) as
follows. First, we construct a PWL function F̃ (x) using the
procedures described in the previous section. Then for a set
of N samples {xi, F (xi)}, which we call the evaluation set,
we compute an empirical error estimate

ε̂ = max
1≤i≤N

|F (xi)− F̃ (xi)| .
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We add the interval [−ε̂, ε̂] to the function f̃ to obtain a
relational model that is sound with respect to the samples.

One refinement of this approach computes ε̂l and ε̂u that
capture the under-approximation and over-approximation er-
rors respectively. Furthermore, ε̂l and ε̂u can be computed for
each Si, which provides a more fine-grained error estimation.
For CPWL functions, the piecewise estimation is not imme-
diate since the subdivisions are represented implicitly.

The construction of a PWC model is straightforward. Given
a partition S1, . . . , SK , we simply compute the minimal and
maximal values of F (x) for each Si. This results in a function
interval [F̃l, F̃u] that contains all the samples.

Model Encoding. Finally, we consider the encoding of the
models in linear arithmetic. Figure 1 shows the schema for
encoding PWC, SPWL and CPWL models. Let n = |x| be
the number of inputs and assume that each component xi is
subdivided into k parts. We define the size of a formula in
terms of n and k. A PWC model considers K = kn boxes.
For each box, the size of the formula is O(n). Hence, the size
of the encoding is O(knn). For an SPWL model, we have
K = O(knn!), assuming a fixed simplicial decomposition
scheme that divides a cube into n! simplices. The size of a
formula for each box is also O(n), resulting in a encoding
whose size is O(knn!). A CPWL model encodes K = (k+1)n
boundaries (the absolute value terms in the canonical repre-
sentation) rather than boxes. Each boundary equation has a
size of O(n), yielding an encoding of size O(kn2).

Thus, CPWL models have the most economical encoding,
while SPWL results are potentially the least efficient. How-
ever, note that even if two formulae are of the same size, they
are not necessarily equivalent in terms of computational effort.

III. FORMAL DC OPERATING POINT ANALYSIS

The goal of formal DC operating point analysis is to list
all DC operating points of a circuit. The standard approach to
this problem consists of two steps: [2], [3] (a) Encode the DC
operating point condition as constraints, and (b) subdividing
the input and output voltages into many regions, query the
solvers to find if an operating point can exist inside a given
input/output region pair. The nonlinear devices are modeled
as described in Section II.

We note that DC operating regions, especially metastable
regions are relatively hard to identify using simulation tools
like SPICE. A common approach is to perform simulations
with the circuit initialized near a potential DC operating point
and check if the circuit settles to a nearby DC operating point
(see, for example [40]).

Circuit Encoding. The circuit encoding consists of the
Kirchhoff’s current law (KCL) and the device models. The
KCL asserts that the current flowing into a node is equal to
the current flowing out. If a node connects to a voltage source
or ground, its encoding is unnecessary since the current of a
voltage source or ground is unconstrained. PWL device models
are generated and encoded in linear arithmetic as discussed in
Section II.

Abstraction Refinement. The DC analysis can be performed
“monolithically” by a single fine-grained encoding, followed
by numerous queries over regions that can “pinpoint” a DC
operating point to the required degree of precision. A more
efficient top-down approach is suggested by Tiwary et al. [2]
wherein the DC operating points are discovered by repeated
subdivision much like a branch-and-bound scheme. Initially,
large regions are queried for the presence of a DC operating
point using a coarse PWL model. If the solver returns a
satisfiable answer, then the regions are subdivided and refined
PWL models are fitted to these regions.

Spurious Region. We call a region spurious if it is reported
by the analysis, but does not actually contain operating points.
Spurious regions are produced by the sound abstraction of
device models which over-approximates the behavior of de-
vices. Consider the inverter in Figure 2 with its input fixed
to 0.5V . The output can vary between 0.4V and 0.6V due to
the abstraction (in contrast to 0.5V in reality). Suppose the
transistors are linearized on the regions 0.35 ≤ Vout ≤ 0.45,
0.45 ≤ Vout ≤ 0.55 and 0.55 ≤ Vout ≤ 0.65. Then the
regions [0.35, 0.45] and [0.55, 0.65] become spurious. A finer
abstraction may lead to fewer spurious regions. But it also
results in a more complicated model.

IV. FORMAL TRANSIENT ANALYSIS

The abstraction of nonlinear devices also enables formal
transient analysis. Formal transient analysis deals with reach-
ability problems, i.e, given an initial condition, whether the
circuit output can reach values in some range. A simple
approach proposed by Tiwary et al. [2], is to generate an
approximate transition relation by encoding the change in
voltages and currents across capacitors and inductors in the
circuit. The resulting change is approximated by an Euler
step. While such a transient analysis is a poor alternative
to the more sophisticated approach adopted by linear hybrid
systems based approaches [7], [41], it allows us to encode the
approximate reachability by means of a BMC formula. This
can be a potentially faster approach to exploring all possible
behaviors for a bounded time interval.

We employ the transient analysis scheme as yet another
evaluation method for comparing the various PWL models
considered in Section II. However, we note that the Euler step
can be a large over-approximation unless the time step is small.
However, a small time step also means that the depth of the
BMC encoding needs to be larger to perform time bounded
reachability up to the same time interval.

V. EXPERIMENTAL EVALUATION

In this section, we compare the various device modeling
approaches, PWC, SPWL and CPWL. We apply them to
formal DC operating point and transient analyses, as described
in Section III and Section IV. We implement (using the Python
programming language) the various modeling approaches, DC
and transient analyses. Our program processes the input circuit
as a net list and builds a linear arithmetic formula. We use the
Z3 SMT solver to check the satisfiability of these formulae
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S1(x) ⇒ y ∈ f1(x) + [−ε1, ε1]
· · ·

SK(x) ⇒ y ∈ fK(x) + [−εK , εK ]

y ∈ a+Bx+
∑K

i=1 ciri + [−ε, ε]
〈α1,x1〉+ β1 ≥ 0 ⇒ r1 = 〈α1,x1〉+ β1

〈α1,x1〉+ β1 < 0 ⇒ r1 = −(〈α1,x1〉+ β1)
· · ·

〈αK ,xK〉+ βK ≥ 0 ⇒ rK = 〈αK ,xK〉+ βK

〈αK ,xK〉+ βK < 0 ⇒ rK = −(〈αK ,xK〉+ βK)

Fig. 1. (Left) Schema for encoding SPWL and PWC models; and (Right) CPWL encoding.

Vin Vout

0.60.50.4

NMOSPMOS

Vout

IDS

Fig. 2. An inverter and its I/O characteristics. Straight lines show the PWL
models of the two devices. Dashed lines are the SPICE models. Shaded region
illustrates the approximation due to abstraction. Note that there is only one
operating point in the region.

under different input/output intervals. All experiments were
run using a Ubuntu 11.10 Desktop on a Quad-core 2.8 GHz
machine with 9 GB memory.

We list the benchmarks with brief descriptions in Table II.
The letters in the second column refer to the types of devices.
M stands for MOSFET transistors, R for linear resistors, C
for linear capacitors and L for linear inductors. The numbers
count how many devices there are in each type.

The first four benchmarks are ring oscillators with different
numbers of stages. The benchmarks starting with “evenosc”
are even-stage oscillators from [1]. Their schematic is shown
in Figure 3(a). The suffixes “lcbr” and “scbr” denote oscillator
benchmarks with known bugs: the oscillators fail due to
incorrect transistor sizing [1]. The benchmark “sqwavegen” is
a square-wave generator based on a CMOS Schmitt trigger.
The “lctankvco” is a voltage-controlled oscillator that uses
the inductors and capacitors as the source of oscillation and
the cross-coupled pair of transistors as negative resistors to
compensate the energy dissipation in the inductor resistance.
The schematics of “sqwavegen” and “lctankvco” are shown in
Figure 3(b) and 3(c), respectively.

TABLE II
BENCHMARKS FOR DC AND TRANSIENT EXPERIMENTS.

Name Size Description
ringosc3s 6M

Ring oscillatorsringosc5s 10M
ringosc7s 14M
ringosc9s 18M

evenosclcbr 16M
Even-stage oscillatorsevenoscscbr 16M

evenoscncbr 16M
sqwavegen 6M, 1R, 1C A square-wave generator
lctankvco 4M, 2R, 2C, 2L An LC-tank VCO

A. Formal DC Operating Point Analysis
In this part, our goal is to compare the performance of

different device modeling approaches in terms of accuracy
with respect to SPICE simulation, the number of SMT queries
and the running time. The setup is as follows: we fix the device
parameters and apply the abstraction refinement described in
Section III. The initial number of subdivisions is set to 2 along
each dimension. Each refinement step further subdivides each
region by splitting each axis into 2 pieces. The refinement
process is applied recursively to further subdivide regions that
are deemed to contain potential operating points. This process
stops after a depth-cutoff that is set to 3 for our experiments.

We carry out our experiments using PWL models with k
subdivisions along each dimension, where k = 1, 2, 4, 6, 8, 16.
We prefix k to denote the specific approach. For instance, 4-
PWC stands for PWC models with k = 4. We omit 1-CPWL
because it does not fit into the algorithm for generating PWL
functions in canonical form [15].

We first report the number of regions that may contain
operating points by each approach in Table III. The number
of operating regions confirmed by SPICE is shown in the
last column. The regions found by various PWL models that
are not confirmed by SPICE are spurious. In Table III, the
number of spurious regions is simply the total number of
reported regions minus the number of real operating points.
The SPICE-based DC operating point discovery is a trial-and-
error process, since the operating points may be metastable.
Accuracy. We compare accuracy in terms of the number of
spurious regions in Table III. Observe that SPWL and CPWL
are only marginally better than PWC. For the ring oscillator
examples, none of the methods reports spurious regions. For
the rest of the examples, the number of regions is generally
more than twice larger than the number SPICE confirmed.
Not surprisingly, we observe that the spurious regions are
neighbors to the confirmed regions. We also observe that
with more subdivisions, the three approaches tend to get
similar results. This shows that the error in the approaches
are negligible making their predictions very similar.
SMT Queries. Next, we compare the number of SMT queries
in Table IV. The number of SMT queries is a proxy for the
number of regions where DC queries occur for a potential
operating point. Here, we see that PWC models consistently
require more queries than SPWL and CPWL. That is because
PWC models over-approximate the underlying device behavior
the most, and therefore produce a lot of false positives that are
subsequently pruned by refinement. Also, we see that SPWL
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U1

U2

U3

U4

U1B U2B U3B U4B

M3

W/L=2

M1

W/L=2

W/L=6

M2

W/L=6

M4
M6

W/L=10

M5

W/L=2

C1

1pF

R1

VDD=1.0V

1MΩ

W/L=5

M1

W/L=5

M2

M3

W/L=10

M4
W/L=10

C2 1pF1pF C1

R1 L2L1 R2

1mH1mH

VDD=1.0V

4µA

10kΩ 10kΩ

(a) (b) (c)
Fig. 3. Circuit diagrams for (a) an even-stage oscillator [1], (b) a square-wave generator, and (c) a voltage controlled oscillator

TABLE III
THE NUMBER OF SPURIOUS REGIONS, WHICH MAY NOT CONTAIN OPERATING POINTS, REPORTED BY EACH APPROACH. THE LAST COLUMN SHOWS THE
NUMBER OF REAL OPERATING POINTS OBTAINED FROM SPICE SIMULATION. THE NUMBERS IN THE SECOND ROW REFER TO THE SUBDIVISION OF THE

CORRESPONDING APPROACH ALONG EACH DIMENSION. “TO” MEANS MORE THAN 500 SECONDS.

PWC SPWL CPWL SPICE
1 2 4 6 8 16 1 2 4 6 8 16 2 4 6 8 16

ringosc3s – 0 – 1
ringosc5s – 0 – 1
ringosc7s – 0 – 1
ringosc9s TO – 0 – TO – 0 – 1

evenosclcbr 14 4 4 4 4 0 4 4 0 0 TO TO 4 4 4 4 TO 3
evenoscscbr 10 10 6 6 6 6 6 6 6 6 TO TO 6 6 2 2 TO 3
evenoscncbr 22 12 12 12 12 12 12 12 12 TO TO TO 2 TO 2 2 TO 1
sqwavegen 7 5 4 3 3 1 2 1 3 3 3 1 3 2 2 1 1 1
lctankvco 9 9 5 5 3 3 1 3 2 2 2 2 5 5 4 3 3 1

TABLE IV
THE NUMBER OF SMT QUERIES FOR EACH APPROACH. “>” MEANS TIME-OUT WITH A 500 SECONDS LIMIT, AND THE FOLLOWING VALUE IS THE

NUMBER OF QUERIES AT TIME-OUT.

PWC SPWL CPWL
1 2 4 6 8 16 1 2 4 6 8 16 2 4 6 8 16

ringosc3s 97 13 7 7 7 7 33 13 7 7 7 7 13 7 7 7 7
ringosc5s 833 27 7 7 7 7 149 27 7 7 7 7 27 7 7 7 7
ringosc7s 7937 63 7 7 7 7 653 63 7 7 7 7 63 7 7 7 7
ringosc9s >43291 157 7 7 7 7 2841 157 7 7 7 >5 157 7 7 7 7

evenosclcbr 929 91 35 27 27 27 213 71 35 27 >26 >3 63 35 27 27 >25
evenoscscbr 801 75 63 55 47 47 221 67 63 55 >34 >3 59 55 39 31 >17
evenoscncbr 1185 119 75 63 55 55 177 79 63 >33 >14 >3 83 >67 63 55 >10
sqwavegen 161 55 25 27 19 15 57 35 25 23 17 15 51 25 27 19 13
lctankvco 149 71 29 27 17 13 59 53 15 19 17 13 71 21 19 17 13

is a slightly better than CPWL. Again, the approaches become
quite similar as the number of subdivisions increases.

Running Time. Finally, we consider the running time of each
approach with different subdivisions in Table V. It is obvious
that PWC models are superior to the remaining models, even
though they require more queries to the SMT solver. A likely
explanation is that each SMT query from the PWC approach
is simpler and far easier to solve than the corresponding
queries from the SPWL and CPWL approaches. The results
for CPWL models are interesting. First, the running times do
not necessarily grow with decreased granularity. Even for a
single SMT query, the average solving time does not increase
as fast as the other two approaches. A possible explanation

is that the complexity of CPWL models grows linearly with
the number of subdivisions, unlike the other two approaches,
whose models grow exponentially. On the other hand, even
the simplest CPWL models take considerably more time than
PWC and SPWL counterparts. It suggests that the CPWL
encoding is difficult for SMT solvers.

In summary, as the number of subdivisions in the models
increases, PWC outperforms SPWL and CPWL in the given
set of benchmarks. The running times of PWC and SPWL
grow as the granularity decreases. On the other hand, the
running times of CPWL are less predictable.
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TABLE V
RUNNING TIME FOR EACH APPROACH WITH A 500 SECONDS TIME-OUT.

PWC SPWL CPWL
1 2 4 6 8 16 1 2 4 6 8 16 2 4 6 8 16

ringosc3s <0.1 0.1 0.1 0.4 0.9 11 0.4 0.4 1.6 15 34 339 0.5 1.5 8.6 6.7 33
ringosc5s 2.8 0.3 0.2 1.5 1.5 18 2.8 1.4 3.3 17 42 365 15 4.4 8.3 13 54
ringosc7s 75 0.6 0.2 0.8 2 26 17 4.2 4.3 15 30 376 17 5.1 19 16 104
ringosc9s >500 2.1 0.3 1 2.6 33 95 16 6.8 18 44 >500 61 17 36 82 247

evenosclcbr 7.4 1.1 1.3 3.2 9.2 146 17 29 152 368 >500 >500 59 158 111 171 >500
evenoscscbr 6.5 1 2.2 7 16 277 17 29 169 406 >500 >500 85 300 371 319 >500
evenoscncbr 9.7 1.7 3.5 11 29 444 22 73 246 >500 >500 >500 199 >500 343 438 >500
sqwavegen 0.2 0.5 0.5 1.6 2.7 27 0.9 1.1 3.5 9.2 16 120 0.8 1.1 2.6 4 19
lctankvco 0.3 0.7 0.6 2 2.7 35 0.6 1.4 2 8.4 15 125 0.9 0.8 1.8 2.7 22

B. Formal Transient Analysis
We use the ring oscillator benchmarks to compare the per-

formance of the three approaches, PWC, SPWL and CPWL,
on formal transient analysis. The setup is as follows: for
each method, we perform time-bounded reachability queries
for different time frames, and compare the accuracy of the
results relative to SPICE simulations, which report a single
concrete voltage value at each time interval. A reachability
query checks whether the output can reach a certain interval
in a specified time frame. We set the initial output voltage
to 1.0V and subdivide the range of the output voltages into
ten intervals, each of which is queried individually. We use
backward Euler integration to solve the transient behavior of
active devices. The time step is fixed to a value that is small
enough to obtain accurate integration results.

TABLE VI
REACHABLE INTERVALS (OVER-APPROXIMATIONS) FOUND BY VARIOUS
APPROACHES FOR DEPTHS 1, 5 AND 10 STEPS OF TRANSIENT ANALYSIS
FOR THE THREE-STAGE RING OSCILLATOR. THE REACHABLE SETS ARE
INDEPENDENT OF TRANSISTOR SIZING. RUNNING TIMES ARE LISTED IN

TABLE VII.

Reachable Interval Approach
1-step [0.9,1.0] all approaches

5-step [0.7,1.0] 16-PWC
[0.6,1.0] remaining approaches

10-step [0.4,1.0] 4-PWC, 6-PWC and 8-PWC
[0.3,1.0] remaining approaches

We simulate for one time frame, five time frames and ten
time frames respectively. The results are shown in Table VI
and Table VII. Barring timeouts, the three approaches produce
almost identical reachability results.

First, let us observe that a better model is helpful in getting a
more accurate reachable interval. For instance, 4-PWC reports
a reachable interval of [0.4, 1.0] at the tenth time frame,
while 2-PWC concludes a larger reachable interval: [0.3, 1.0].
However, notice that the reachable intervals are generally too
over-approximate compared to the SPICE simulations which
report a single concrete value at each time step. Therefore,
the approximations seem to be too coarse to provide useful
reachability information. On the other hand, increasing the
number of subdivisions makes the computation intractable
(Table VII).

In terms of running time, there are many time-outs for each
approach. This may seem surprising since the benchmarks

are small and the number of time frames is not large. We
suspect that the PWL encoding forces the SMT solver to
explore a large set of transistor mode combinations, wherein
each subdivision in the PWL represents a transistor mode. The
number of such mode combinations increases exponentially
as the unrolling depth is increased. The observations suggest
that a simple BMC-style encoding of transient analysis may
be suboptimal in terms of performance and accuracy.

VI. CONCLUSION

To summarize this paper, we compare the applicability of
three device modeling approaches, PWC, SPWL and CPWL,
to the formal DC operating point and formal transient anal-
ysis. We find that PWC is the most suitable approach for
operating point analysis. Both SPWL and CPWL generate
more complicated models. The benefits from those models,
for instance, fewer spurious regions and fewer SMT queries,
do not compensate the extra cost in terms of solving time.

On the other hand, none of the approaches performs well for
transient analysis with the described simulation scheme in the
selected benchmark set. The results suggest that with a sound
abstraction of device models, the simple BMC-style unrolling
does not work well.

In the future, it is interesting to identify whether a region
contains a stable or metastable operating point. Also, we
can utilize the unsatisfiable core of SMT queries, which
can potentially rule out more than one region each time.
Techniques from unsatisfiablity solvers, such as iSAT [10],
can also be applied to the DC operating points analysis.
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