
Forward and Backward : Bounded Model Checking
of Linear Hybrid Automata From Two Directions

Yang Yang∗, Lei Bu∗†, and Xuandong Li∗

Abstract—Instead of encoding the bounded state space of a
linear hybrid automaton(LHA) in given threshold k into SMT
formulas then solving them by SMT solvers, the authors proposed
a different approach to handle the bounded reachability verifica-
tion(BMC) of LHA in the previous work. First, the reachability
specification along one abstract path in LHA can be checked by
linear programming (LP). Then, all the abstract paths under the
threshold can be checked one by one by depth-first-search (DFS)
traversing. This approach was implemented in a prototype tool
BACH, and the experiment result shows it is efficient.

As BACH uses DFS to traverse the bounded state space,
clearly, if DFS traverses more quickly, the BMC can be finished
more efficiently. Nevertheless, in many cases, the path segments
which make the system infeasible are hidden “deeply” in the
model or have many entry points which makes the DFS difficult
to find them or has to traverse them many times. This burdens
the DFS-style BMC approach a lot.

To handle this problem, in this paper, the authors propose
a backward-DFS BMC approach for LHA. First, reverse the
graph structure of LHA. Then, conduct the DFS-style BMC on
the reversed LHA. In this way, the “deep” path segments in the
forward-DFS can be found very quickly to prune the DFS tree
which is needed to be traversed. This backward-DFS approach is
implemented into BACH. The experiment shows the performance
of BACH is optimized significantly to handle large cases.

I. I

Reachability verification of Linear Hybrid Automata (LHA)
[1] is a very difficult and important problem. Currently,
researchers always try to handle this problem in two ways:

Classical Model Checking(CMC)[4]: Compute the com-
plete state space by methods like polyhedra computation,
like HYTECH[6] and PHAVer[7]. First of all, the classical
reachability verification problem of LHA is proven to be
undecidable[2], [3]. Furthermore, these methods are very com-
plex and sensitive to the number of variables. Thus, they do
not scale well to the size of practical problems.

Bounded Model Checking(BMC)[5]: Encoding the bounded
reachability problem into the satisfiability problem of a
boolean combination of propositional variables and linear
mathematical constraints, which can be solved by SMT
solvers[8], [9]. As this technique requires to encode the
bounded problem space firstly, when the system size or the
given threshold is large, the object problem will be very huge,
which restricts the size of the problem that can be solved.

Both classical and bounded model checking are feeding
the (partly) complete state space to the underlying solver

∗State Key Laboratory for Novel Software Technology, Department of
Computer Science and Technology, Nanjing University, Nanjing, Jiangsu,
P.R.China, 210046 Email: yangyang@seg.nju.edu.cn,{bulei, lxd}@nju.edu.cn
† Corresponding author.

at one time which suffers from the state explosion problem
and restricts the problem size that can be solved. Study[13]
proposed a linear programming (LP)-based approach to check
one abstract path at one time to find whether there exists
a behavior of LHA along this path and satisfy the given
reachability specification. Study[15] extended this approach
by using forward depth-first-search (F-DFS) to traverse on the
graph structure of LHA to enumerate and check all the abstract
paths with length no longer than the threshold one by one to
answer the bounded reachability problem. Furthermore, when
the DFS is finished before touching the bound, this approach
can prove the given specification is not satisfied in general, not
only in the given bound. A prototype tool BACH[15], [16] was
implemented based on this idea. The experiments show that
BACH is efficient in many cases.

Clearly, if DFS traverses more quickly, the BMC can be
finished more efficiently. In BACH, once a path is found to
be infeasible, the DFS will ask the underlying LP solver to
locate the path segment which makes this path infeasible and
backtrack to the path segment to prune the behavior tree which
is needed to be traversed [17]. Nevertheless, in many cases,
the path segments which make the path infeasible are hidden
“deeply” or have many entry points in the graph structure
which makes the DFS difficult to find these path segments or
has to traverse them time and time again. This asks the DFS to
traverse a lot of obviously infeasible paths, which makes the
backtracking strategy inefficient in many cases and burdens
the DFS-style BMC a lot.

To handle this problem, in this paper, the authors propose a
backward-DFS BMC (B-DFS)[10], [11] approach to comple-
ment the classical F-DFS. First, reverse the graph structure of
LHA. Mark the original target location as initial location, and
mark the original initial location as target. Then, conduct the
F-DFS BMC on the reversed LHA. As these path segments
are “deep” in the original graph structure, clearly, if the DFS
is conducted in a backward way, the path segments will
be “shallow” in the reversed graph and can be found more
quickly. Furthermore, for those path segments which have
many entry points, the abstract paths with these path segments
as suffix will be pruned easily in the reversed LHA to shrink
the size of the DFS tree which is needed to be traversed.

This B-DFS BMC idea is implemented into BACH as a
complement to the F-DFS BMC. Once a LHA and a reach-
ability specification is given, BACH will start two threads,
one conducts the F-DFS BMC on the original LHA and the
other conducts the B-DFS BMC on the reversed model. The
procedure terminates when any of these two threads finish.
We conduct a series of case studies on the new BACH, and

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

204204978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 204978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

compare it with both state-of-the-art classical model checker
PHAVer and SMT solver MathSAT. The experiment results
show that:

• By B-DFS, the state space needed to search and verify is
pruned substantially. Therefore, BACH outperforms the
other competitors significantly.

• In many cases, the DFS is finished before touching the
bound. Then, in this situation, BACH can prove the given
specification is not satisfiable in general, not only in the
given bound, which is incapable for other BMC checkers.

II. T U T

A. Forward-DFS Approach

Now, let’s recall the F-DFS BMC approach given in
study [15]. The main idea is to traverse all the abstract paths
with length shorten than or equal to the bound by DFS on
the graph structure of the LHA. Whenever an abstract path
ρ, which contains the target location, is found, a decision
procedure will be called to check whether the LHA has a
feasible behavior according withρ. The decision procedure
will encode all the syntax elements, i.e., invariants, guards
and e.t.c., inρ into a linear constraint setR as guided by
[13] and [14]. In this manner, the reachability problem ofρ is
transformed into the feasibility ofR which can be answered
by an LP solver very efficiently.

It is obvious that the performance of the F-DFS-based BMC
depends on the performance of the DFS algorithm. If the DFS
can be finished more quickly, the BMC can be finished more
efficiently. Therefore, we gave an optimization technique to
generate unsatisfiable core from the proven infeasible paths
to tailor the state space needed to be traversed[17]. Onceρ is
proved to be infeasible by the underlying LP solver, the solver
will provide a infeasible irreducible set (IIS) [18] ofR, which
is a minimal set of constraints inR that makesR infeasible.
Then the constraint setR′ that IIS located can be mapped
back to a path segmentρ′ in the pathρ, which meansρ′ is
the infeasible core in the path that makesρ infeasible. Since
removing any constraint inR′ will make it feasible, so the
DFS will backtrack to the location preceding the last location
in ρ′.

Take the sample LHA in Fig.1 for example. We want
to check whether locationv6 is reachable within bound 20.
Suppose the current visiting path isρ = 〈v1〉 −→

e1
〈v2〉 −→

e2

〈v3〉 −→
e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉 which is proved to be infeasible

by an LP solver, and the infeasible path segment located by
IIS is ρ′ = 〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉, so the location that DFS will

backtrack to isv3 instead ofv5. Then the DFS will begin to
search the next branch underρ′′ = 〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉, which

is 〈v1〉 −→
e1
〈v2〉 −→

e2
〈v3〉 −→

e9
〈v1〉 −→

e8
〈v5〉 −→

e5
〈v6〉. As we can see,

the subtree beneathρ′′ −→
e3
〈v4〉 is pruned completely to speed

up the DFS.
Nevertheless, let’s look at the following pathρ1 = 〈v1〉 −→

e1

〈v2〉 −→
e2
〈v3〉 −→

e9
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉.

ρ1 is a graphically correct path beneathρ′′ and contains target
locationv6. Therefore, the F-DFS BMC will ask the underlying

Fig. 1. Sample Automaton

decision procedure to check whetherρ1 is feasible or not.
Indeed, asρ1 containsρ′, it can be proved to be infeasible at
once. Then DFS will backtrack to the secondv3 in ρ1. But, as
the bound 20 is not reached yet, the DFS will traverse the loop
〈v1〉 −→

e1

〈v2〉 −→
e2

〈v3〉 for the third time and thenρ′ again, i.e.,

traverse a new path〈v1〉 −→
e1
〈v2〉 −→

e2
〈v3〉 −→

e9
〈v1〉 −→

e1
〈v2〉 −→

e2

〈v3〉 −→
e9
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉. In this

manner, lots of time will be wasted on DFS to traverse these
paths which are doomed to be infeasible. Obviously, if there
is a method to prune the DFS tree and avoid the visiting of
such paths, the DFS-BMC will be much more efficient.

B. Backward-DFS Approach

As discussed above, in many times, the path segments which
make the path infeasible are hidden quite “deeply” or could
have many entries in the graph structure which makes the
F-DFS difficult to find them or has to traverse them lots of
times. To solve this problem, in this paper we propose to
conduct the DFS search in a backward way(B-DFS BMC):
First, reverse the transition relation of the LHA model. For
each transition〈v1〉 −→

e1

〈v2〉 in LHA H, there will be a

transition〈v2〉 −→
e1

〈v1〉 in the reversed LHA¬H. Then mark

the original target location as initial location, and mark the
original initial location as target. For example, Fig.2 is the
reversed model of the LHA given in Fig.1.

Now, we can conduct the F-DFS BMC on the reversed LHA,
which means searching for a reversed path from the original
target location to the initial location. Once a reversed path is
found, we will ask the LP solver to check the accordingly path
in the original model and locate the infeasible path segments
as well. As many infeasible path segments are “deep” in the
original graph structure, if the DFS is conducted in a backward
way, these path segments will be “shallow” in the reversed
structure and can be found more quickly. Furthermore, for
those path segments which have many entry points, all the
paths containing those path segments as “suffix” will be
reversed, then those infeasible path segments will become
“prefix” now. As a result, these paths can be pruned easily

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

205205205

in the reversed LHA to shrink the size of the DFS tree which
is needed to be traversed.

Fig. 2. Reversed Sample Automaton

Now, let’s look at the previous example again (whetherv6 is
reachable within bound 20 in Fig.1). On the reversed model,
Fig.2, the first path that is traversed and solved is:¬ρ1 =

〈v6〉 −→
e5
〈v5〉 −→

e4
〈v4〉 −→

e3
〈v3〉 −→

e2
〈v2〉 −→

e1
〈v1〉. The accordingly

path in the original model isρ1 = 〈v1〉 −→
e1
〈v2〉 −→

e2
〈v3〉 −→

e3

〈v4〉 −→
e4
〈v5〉 −→

e5
〈v6〉. Therefore,ρ1 is given to the underlying

LP solver. The LP solver can tell thatρ1 is infeasible and
ρ
′
1 = 〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 is the infeasible core. The according

infeasible core in¬ρ1 is ¬ρ′1 = 〈v4〉 −→
e3
〈v3〉 −→

e2
〈v2〉. So, the

location which is backtracked to isv3 in ¬ρ1. As v3 has no
other successor locations in¬H, the DFS keeps backtracking
to v5 and traverses the next path¬ρ2 = 〈v6〉 −→

e5
〈v5〉 −→

e8
〈v1〉.

Similarly, LP solver locates the infeasible core path segment
of ¬ρ2 as ¬ρ′2 = 〈v6〉 −→

e5
〈v5〉 −→

e8
〈v1〉. In this case, the DFS

backtracks tov5 in ¬H again and finds there is no more path
to travel. This means there doesn’t exist a feasible path which
can go from the initial location to the target. Therefore, the
target locationv6 can be proved to be not reachable in general,
not only within bound 20!

Clearly, in this example, the DFS tree that needed to be
traversed are shrunk significantly by B-DFS BMC. Many paths
like (〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉)k −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉 in F-DFS

are pruned. The B-DFS only needs to check two paths at all
to tell locationv6 is unreachable.

C. Bidirectional-DFS Implementation

As discussed above, if the path segment which makes the
whole path infeasible is “deep” or has many entry points,
the B-DFS BMC method will be more efficient than the F-
DFS BMC method. Nevertheless, in another word, if the path
segment is “shallow” or has many exit points, then F-DFS
BMC will outperform B-DFS BMC. So, none of these two
techniques can take over the other one.

Therefore, we combine the F-DFS and B-DFS BMC to
together, which results in a bidirectional-DFS BMC. In our
bidirectional-DFS, the algorithm will start two threads, one

TABLE I
P   B-DFS BMC

S (HybridAutomataha)
1 . HybridAutomatahar=reverse(ha);
2 . Threadt1=new subSolver(ha);
3 . Threadt2=new subSolver(har);
4 . while t1.isAlive() and t2.isAlive()
5 . sleep(10);
6 . if (t1.isAlive())
7 . return t2.result();
8 . else
9 . return t1.result();
10 . return 0;

conducts the F-DFS BMC on the original LHA and the other
conducts the B-DFS on the reversed model. Be different
from classical bidirectional-DFS algorithms like[11], [12],
where the two threads can cooperate with each other, in our
algorithm, these two threads work in a competition nature,
that these two threads will not communicate with each other
during searching, and the algorithm terminates when any of
these two threads finish the searching. Under this setting, no
matter where the infeasible path segment is, our bidirectional-
DFS BMC can traverse the state space efficiently. The pseudo
code for our implementation is shown in Table. I.

III. C S

We implement the bidirectional-DFS BMC, (F-DFS plus
B-DFS), into our LHA bounded model checker BACH [15],
[16] as guided by the last section. The latest version of BACH
(V4.0) is implemented in Java, and can be downloaded from
http://seg.nju.edu.cn/BACH/. As the LP solver underlying the
previous versions of BACH is OR-objects[19] which does not
support the functionality of IIS analysis, BACH 4 calls the
IBM CPLEX[20] instead, which gives a nice support of IIS
analysis. The main functionality of BACH is provided by the
following set of services:

• Graphical LHA Editor: This component allows users to
construct, edit, and perform syntax analysis of LHA
interactively. This Editor can also transform the graphical
representation of LHA to a readable text file which is used
as the input file for reachability checking.

• Path-Oriented Reachability Checker: The checker re-
quires users to select a specific path in the model. Then,
it can check whether the reachability specification is
satisfied along with the given path.

• Bounded Reachability Checker: This checker uses the
path-oriented checker as underlying solver. It traverses
the behavior tree of the model under the threshold by our
adapted DFS algorithm, and checks the related path for
reachability to perform bounded reachability checking.

In order to evaluate the performance of the BACH 4.0, we
conduct a series of case studies on a set of well-known cases,
which includes the temperature control system in Fig.3 and
water-level monitor system in Fig.4, the scalable automated
highway system in Fig.5, and the sample automaton given in
Fig.1. The target locations are all marked by double circle in
the models and they are all unreachable.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

206206206

We compare the BMC performance of BACH 4.0, marked
as BACHF+B, with the previous BACH, which only in-
cludes F-DFS and marked asBACHF, and the-state-of-the-
art SMT solver MathSAT5[9]. The experiments are conducted
on a Think Center desktop machine(Intel Core2 Quad CPU
2.83GHz, 4GB RAM and Ubuntu 10.04). The time limit for
experiment is set as one hour. The input models we used in ex-
periments are all available from http://seg.nju.edu.cn/BACH/.

Fig. 3. Temperature Control System

Fig. 4. Water-Level Monitor System

Fig. 5. Automated Highway System

The experiment data for the time (second) spent in each
benchmark is shown below in Table.II-V respectively. If the
checker fails to give a result in the time limit, the correspond-
ing blank is marked as N/A. The number of bound means the
largest number of discrete locations that a path can have in
the state space under searching. Furthermore, as we mentioned
that if the DFS finished before touching the bound, then BACH
can prove the target is not reachable in general. In such cases,
the time that BACH spent for solving the problem are marked
with subscript G. For example, for the sample automaton, no
matter how large the bound is, the new BACH only needs to
check two paths to tell that the locationv6 is not reachable in
general which only took 0.01 second. Therefore, in Table.II,
all the blanks in columnBACHF+B are combined to together.
Besides of that, a special row∞ is added to emphasise this
problem can be proved in general not only in given bound.

As we can see from these tables that, for sample, water and
highway system, new BACH can all give a general proof of the
unreachability of the targets. Therefore, we make a comparison
of new BACH with PHAVer[7] which is the-state-of-the-art
classical model checker for LHA. We find that for sample
automaton and water automaton, both BACH and PHAVer can
finish in 0.01 second. For highway system which size, number
of locations and variables, is scalable by increasing the number
of vehicles in the system, the experimental data is plotted in
Fig.6. We can see that the largest highway system that new
BACH solved in one hour has 150 vehicles included, which
is a big model of 150 variables and 151 locations, while in
one hour, PHAVer can only solve a system with 6 vehicles.
Furthermore, the only model that new BACH can not give
a general proof is the temperature control system, while the
computation of PHAVer can not terminate on this model and
it fails to give any result about this model.

 0.01

 0.1

 1

 10

 100

 1000

 3600

 3 4 5 6 8 10 20 40 60 80 100 150

T
im

e
(S

ec
on

d)

The Number of Vehicles

BACHF+B
PHAVer

Fig. 6. BACH VS PHAVer on Automated Highway System

From these data, we can see that:

• By the help of integrating backward-DFS into BACH, the
performance of BACH is optimized significantly.

• As BACH only checks one path at a time, the complexity
of the verification is well controlled. As a result, the
scalability of BACH is much better than the SMT-style
BMC solvers, like MathSAT.

• When the DFS terminates before touching the bound,
DFS-style BMC can prove the unreachability of certain

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

207207207

TABLE II
P O T S A

X
X

X
X

X
X

XX
Bound

Tech.
BACHF BACHF+B MathSAT

40 0.798

0.01G

4.44
60 86.303 17.977
80 N/A 38.006
200 N/A 2597.77
∞ N/A N/A

TABLE III
PO T T C S

X
X

X
X

X
X

XX
Bound

Tech.
BACHF BACHF+B MathSAT

20 0.201 0.136 0.748
40 140.618 0.665 7.896
100 N/A 6.903 613.774
600 N/A 1399.473 N/A

TABLE IV
P O TW-M A

X
X

X
X

X
X

XX
Bound

Tech.
BACHF BACHF+B MathSAT

50 0.016

0.01G

3.544
150 0.046 139.141
250 0.167 2050.204
8000 2194.268 N/A
∞ N/A N/A

TABLE V
PO T A H S  10 V

X
X

X
X

X
X

XX
Bound

Tech.
BACHF BACHF+B MathSAT

10 1.882

0.733G

0.648
50 N/A 21.157
100 N/A 146.665
150 N/A 3100.934
∞ N/A N/A

targets in general which is incapable for SMT-style BMC
checker.

• The underlying decision procedure of BACH is LP. It
is well known that LP is much cheaper than polyhedral
computation which is under PHAVer. As polyhedral com-
putation is extremely sensitive to number of variables, we
can see BACH outperforms PHAVer substantially when
facing system with large number of variables.

IV. C  FW

The state-of-the-art tools for the bounded reachability anal-
ysis of LHA can only analyze systems with small dimension
and bound. In the previous work, we present a DFS-style BMC
method to traverse and check each abstract path in bound in
the graphical structure of the LHA. Clearly, the DFS finishes
more quickly, the bounded model checking can be conducted
more efficiently.

In this paper, we present a backward searching technique
for the DFS-style traversing strategy and combine it with the
classical forward DFS in our tool BACH to accelerate the
DFS traversing. The experiments show that the size of the
problem that BACH can solve is increased substantially. By
this forward plus backward DFS approach, BACH outperforms
the-state-of-the-art competitors significantly.

In the current setting, the F-DFS and B-DFS are running
independently. In the future, we will try to let these two threads
to cooperate with each other. Then the state space has been
pruned by one thread can benefits the other one, and the DFS-
based BMC shall be finished more efficiently.

A

We would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work is sup-
ported by the National Natural Science Foundation of China
(No.61100036, No.90818022, and No.61170066), the Na-
tional Grand Fundamental Research 973 Program of China
(No.2009CB320702), the National 863 High-Tech Programme
of China (No.2011AA010103, No.2012AA011205) and by the
Jiangsu Province Research Foundation (No.BK2011558).

R

[1] Thomas A. Henzinger. The theory of hybrid automata. InProceedings
of LICS 1996, IEEE Computer Society Press, 1996, pp. 278-292.

[2] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s Decidable About Hybrid Automata? InJournal of Computer and
System Sciences, 57:94-124, 1998.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H.Ho, X.
Nicollin, A. Olivero, J. Sifakis, S. Yovine. The algorithmic analysis of
hybrid systems. InTheoretical Computer Science, 138(1995), pp.3-34.

[4] E. Clarke, O. Grumburg, and D. Peled. Model Checking. The MIT Press,
1999.

[5] A. Biere, A. Cimatti, E. Clarke, O. Strichman, Y. Zhu. Bounded Model
Checking. InAdvance in Computers, Vol.58, Academic Press, 2003,
pp.118-149

[6] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: a model checker
for hybrid systems. InSTTT, 1:110-122, Springer, 1997.

[7] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past
HyTech. InProceedings of HSCC’05, LNCS 2289, pp.258-273.

[8] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure. InJournal on Satisfiability, Boolean Modeling and
Computation, 2007, vol.1, pp.209-236

[9] Gilles Audemard, Marco Bozzano, Alessandro Cimatti, Roberto Sebas-
tiani. Verifying Industrial Hybrid Systems with MathSAT. InProceed-
ings of BMC 04, ENTCS 119:2, Elsevier Science, 2005, pp. 17-32.

[10] Ofer Strichman. Accelerating Bounded Model Checking of Safety
Properties”, InFormal Methods for System Design, 24, pp.5-24, 2004.

[11] Dennis de Champeaux, Lenie Sint. An improved bidirectional heuristic
search algorithm, InJournal of the ACM24:(2), pp.177-191, 1977.

[12] Ira Pohl. Bi-directional Search, InMachine Intelligence, 6, Edinburgh
University Press, pp.127C140, 1971.

[13] X. Li, S. Jha, and L. Bu. Towards an Efficient Path-Oriented Tool
for Bounded Reachability Analysis of Linear Hybrid Systems using
Linear Programming. InProceedings of BMC06, ENTCS 174:3, Elsevier
Science, 2007, pp.57-70.

[14] L. Bu, and X. Li. Path-Oriented Bounded Reachability Analysis of Com-
posed Linear Hybrid Systems, InSoftware Tools Technology Transfer,
13:4, pp.307-317, Springer, 2011.

[15] L. Bu, Y. Li, L. Wang and X. Li. BACH: Bounded Reachability Checker
for Linear Hybrid Automata. InProceedings of FMCAD 08, IEEE
Computer Society, pp.65-68,2008.

[16] L. Bu, Y. Li, L. Wang, X. Chen and X. Li. BACH 2: Bounded
ReachAbility CHecker for Compositional Linear Hybrid Systems, In
Proceedings of the 13th Design Automation& Test in Europe Confer-
ence, Dresden, Germany, pp. 1512-1517, 2010.

[17] L. Bu, Y. Yang and X. Li. IIS-Guided DFS For Efficient Bounded
Reachability Analysis of Linear Hybrid Automata, InProceedings of
HVC 2011.

[18] Chinneck, J., Dravnieks, E. Locating minimal infeasible constraint sets
in linear programs. InORSA Journal on Computing, 3 (1991), 157-168.

[19] OR-Objects. http://OpsResearch.com/ OR-Objects/index.html.
[20] CPLEX. http://www-01.ibm.com/software/integration/optimization/cplex-

optimizer/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

208208208

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

