
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

FMCAD’2012, Cambridge
Formal methods in Avionics tutorial

22th october 2012

Marc Pantel – ACADIE team
Assistance à la Certification

d’Applications DIstribuées et Embarquées

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Safe MDE concerns

Main purpose : Safety critical systems

Main approach : formal specification and verification

Problems : expressiveness, decidability, completeness, consistency

Proposals : Raise abstraction
Higher level programming languages and frameworks
Domain specific (modeling) languages

easy to access for end users
with a simple formal embedding
with automatic verification tools
with usefull validation and verification results
that are accepted by certification authorities

Needs :
methods and tools to ease their development
algebraic and logic theoretical fondations
proof of transformation and verification correctness
links with certification/qualification

ACADIE team
(2 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Safe MDE concerns

Main purpose : Safety critical systems

Main approach : formal specification and verification

Problems : expressiveness, decidability, completeness, consistency

Proposals : Raise abstraction
Higher level programming languages and frameworks
Domain specific (modeling) languages

easy to access for end users
with a simple formal embedding
with automatic verification tools
with usefull validation and verification results
that are accepted by certification authorities

Needs :
methods and tools to ease their development
algebraic and logic theoretical fondations
proof of transformation and verification correctness
links with certification/qualification

ACADIE team
(2 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Safe MDE concerns

Main purpose : Safety critical systems

Main approach : formal specification and verification

Problems : expressiveness, decidability, completeness, consistency

Proposals : Raise abstraction
Higher level programming languages and frameworks
Domain specific (modeling) languages

easy to access for end users
with a simple formal embedding
with automatic verification tools
with usefull validation and verification results
that are accepted by certification authorities

Needs :
methods and tools to ease their development
algebraic and logic theoretical fondations
proof of transformation and verification correctness
links with certification/qualification

ACADIE team
(2 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Related past projects

RNTL COTRE : Transformation to verification languages

ACI FIACRE : Intermediate verification language

ITEA GeneAuto : Qualified Simulink/Stateflow to C code generator

ITEA ES PASS : Static analysis for Product insurance

ITEA SPICES : AADL behavioral annex

ANR OpenEmbedd : AADL to FIACRE verification chain (Kermeta
based)

CNES (French Space Agency) AutoJava : profiled UML to RTSJ
code generator

FUI TOPCASED : Metamodels semantics, Model animators,
Verification chains based on model transformations

ANR SPaCIFY : GeneAuto + AADL = Synoptic↔ Polychrony
(Kermeta based)

ANR iTemis : SOA/SCA verification

JTI ARTEMIS CESAR : V & V view for safety critical components.

ACADIE team
(3 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Related current projects

FRAE quarteFt : model transformation based on Java/TOM for
AADL to FIACRE

ITEA2 OPEES : Formal methods and Certification authorities

FUI Projet P : Qualified code Generation for Functional and
Architecture models

EuroStars HiMoCo : High Integrity Model Compilers

ITEA2 openETCS : Formal specification and verification for Train
Control Systems

ANR INS GeMoC : Execution of heterogeneous models

ANR ASTRID VORACE :

ACADIE team
(4 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178/ED-12 safety standards : Certification

Onboard software in aeronautics : Design Assurance Level
Failure impact : DAL A – Catastrophic failure . . .DAL E – No impact

Early releases in the 80s, major revision in 1992 (B – 3 years of
work), and 2012 (C – 7 years of work) : adaptation to technological
changes

Most constraining standard up to now
accepted by other standards (automotive, space, . . .)

Main concern : Safety of passengers
System requirement : 10−9 per flight hour for DAL A – ARP 4754

Main purpose :
Provide confidence in the system and its development

ACADIE team
(5 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178/ED-12 safety standards : Certification

Onboard software in aeronautics : Design Assurance Level
Failure impact : DAL A – Catastrophic failure . . .DAL E – No impact

Early releases in the 80s, major revision in 1992 (B – 3 years of
work), and 2012 (C – 7 years of work) : adaptation to technological
changes

Most constraining standard up to now
accepted by other standards (automotive, space, . . .)

Main concern : Safety of passengers
System requirement : 10−9 per flight hour for DAL A – ARP 4754

Main purpose :
Provide confidence in the system and its development

ACADIE team
(5 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178/ED-12 safety standards : Certification

Key issue :
Choose the strategy and technologies that will minimize risks

Assessment : Stochastic for system, Zero-default for Software

Process and test-centered approach
Definition of a precise process (development/verification)
MC-DC test coverage for DAL A
truth-table lines of sub-expressions in conditions (some can be merged)
Asymmetry with independence argument : several activities (and
products) by different teams, with different tools, . . .

ACADIE team
(6 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Process centered approach

Requirement : What is expected from a system
High level (HLR) : focus on end users needs (user provided)
Low level (LLR) : focus on technical solutions (developer provided)

Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements explicit specification
(make the right product)

Validation : System fulfills its requirements implicit human needs
(make the product right)

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, ISO-26262, . . .)

Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, . . .up to DO-178C/ED-12C)

ACADIE team
(7 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Process centered approach

Requirement : What is expected from a system
High level (HLR) : focus on end users needs (user provided)
Low level (LLR) : focus on technical solutions (developer provided)

Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements explicit specification
(make the right product)

Validation : System fulfills its requirements implicit human needs
(make the product right)

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, ISO-26262, . . .)

Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, . . .up to DO-178C/ED-12C)

ACADIE team
(7 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Process centered approach

Requirement : What is expected from a system
High level (HLR) : focus on end users needs (user provided)
Low level (LLR) : focus on technical solutions (developer provided)

Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements explicit specification
(make the right product)

Validation : System fulfills its requirements implicit human needs
(make the product right)

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, ISO-26262, . . .)

Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, . . .up to DO-178C/ED-12C)

ACADIE team
(7 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Process centered approach

Requirement : What is expected from a system
High level (HLR) : focus on end users needs (user provided)
Low level (LLR) : focus on technical solutions (developer provided)

Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements explicit specification
(make the right product)

Validation : System fulfills its requirements implicit human needs
(make the product right)

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, ISO-26262, . . .)

Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, . . .up to DO-178C/ED-12C)

ACADIE team
(7 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Process centered approach

Requirement : What is expected from a system
High level (HLR) : focus on end users needs (user provided)
Low level (LLR) : focus on technical solutions (developer provided)

Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements explicit specification
(make the right product)

Validation : System fulfills its requirements implicit human needs
(make the product right)

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, ISO-26262, . . .)

Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, . . .up to DO-178C/ED-12C)

ACADIE team
(7 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178/ED-12 Global process
ED-12/DO-178 – Verification Process

!"#$%&
'%()*+%&%,$#

-*./ 0%1%2
'%()*+%&%,$#

!34$56+%
7+8/*$%8$)+%

!3)+8% 93:%

;<%8)$6=2%
>=?%8$ 93:%

035 0%1%2
'%()*+%&%,$#

93&@2*6,8%
'3=)#$,%##

93&@6$*=2% A*$/ B6+.%$

93&@2*6,8%
'3=)#$,%##

788)+68" C 93,#*#$%,8"
-A 93&@6$*=*2*$"
D%+*4*6=*2*$"
93,43+&6,8%
72.3+*$/& 788)+68"

D%+*4*6=*2*$"
93,43+&6,8%
788)+68" C 93,#*#$%,8"

93&@2%$% C 93++%8$

93&@2*6,8%
B+68%6=*2*$"

7+8/*$%8$)+% 93&@6$*=*2*$" 93&@2*6,8%
B+68%6=*2*$"

93&@2*6,8%
93&@2*6,8%
B+68%6=*2*$"

788)+68" C 93,#*#$%,8"
-A 93&@6$*=*2*$"
D%+*4*6=*2*$"
93,43+&6,8%
72.3+*$/& 788)+68"

93,#*#$%,8"
-A 93&@6$*=*2*$"
D%+*4*6=*2*$"
93,43+&6,8%
E6+$*$*3, F,$%.+*$"

7G D%+*4*86$*3, 34 1%+*4*86$*3,
HI),8$*3,62 C !$+)8$)+62 831%+6.%J

!"

ACADIE team
(8 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Phase 1 : Process definition and early certification

Plan for Software Aspects of Certification (PSAC)

Software Development Plan (SDP)

Software Verification Plan (SVP)

Software Configuration Management Plan (SCMP)

Software Quality Assurance Plan (SQAP)
applied only to the other plans

Tool Qualification Plan (TQP)
it tools are used to automatize activities

ACADIE team
(9 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178/ED-12 Software verification process
ED-12/DO-178 – Verification Process

!"#$%&
'%()*+%&%,$#

-*./ 0%1%2
'%()*+%&%,$#

!34$56+%
7+8/*$%8$)+%

!3)+8% 93:%

;<%8)$6=2%
>=?%8$ 93:%

035 0%1%2
'%()*+%&%,$#

93&@2*6,8%
'3=)#$,%##

93&@6$*=2% A*$/ B6+.%$

93&@2*6,8%
'3=)#$,%##

788)+68" C 93,#*#$%,8"
-A 93&@6$*=*2*$"
D%+*4*6=*2*$"
93,43+&6,8%
72.3+*$/& 788)+68"

D%+*4*6=*2*$"
93,43+&6,8%
788)+68" C 93,#*#$%,8"

93&@2%$% C 93++%8$

93&@2*6,8%
B+68%6=*2*$"

7+8/*$%8$)+% 93&@6$*=*2*$" 93&@2*6,8%
B+68%6=*2*$"

93&@2*6,8%
93&@2*6,8%
B+68%6=*2*$"

788)+68" C 93,#*#$%,8"
-A 93&@6$*=*2*$"
D%+*4*6=*2*$"
93,43+&6,8%
72.3+*$/& 788)+68"

93,#*#$%,8"
-A 93&@6$*=*2*$"
D%+*4*6=*2*$"
93,43+&6,8%
E6+$*$*3, F,$%.+*$"

7G D%+*4*86$*3, 34 1%+*4*86$*3,
HI),8$*3,62 C !$+)8$)+62 831%+6.%J

!"

ACADIE team
(10 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Phase 2 : Process application verification

User requirements (HLR)

Software architecture (elementary parts and their assembly)

Software requirements (Detailled design of elementary parts) :
Can be refined user requirements or derived requirements (linked to
technology choices, should be avoided or strongly justified)

Executable Object Code (EOC) integration on Hardware

Verification results

Traceability links between requirements and software

ACADIE team
(11 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178C/ED-12C : Main changes

Convergence with DO-278 (ground software)

Merge elements from DO-248 and many CASTs

Supplements :
DO-331 : Model based development and verification
DO-332 : Object oriented technologies and related technics
DO-333 : Formal methods

New document : DO-330 Tool Qualification

ACADIE team
(12 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Model based development and verification

Use of models as requirements : HLR from System phases and LLR
from Design

Applies to any models related to Software elements (including
System phases)

Can be used for communication or automatization (analysis, code
generation)

Models can be more abstract the Software and partial

Requires Higher Lever Requirements (HiLR) to assess the models

Modeling language must be precise and appropriate
Specification models : HLR (can be Design models HiLR)
Design models : LLR (requires test based on HiLR)

ACADIE team
(13 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Formal methods

A formal method must be correctly defined, justified and appropriate
Correctly defined :
precise, unambiguous, mathematically defined syntax and semantics
Justified :
Sound (never assert a false property)
Appropriate :
All assumptions required for the formal analysis should be described
and justified

Requirement formalization correctness
Formal analysis can replace :

Review and analysis objectives
Conformance tests versus HLR and LLR
Robustness tests
Compatibility with the hardware (WCET, . . .)

Adapted coverage analysis :
Complete coverage of each requirement
Completeness of the requirements
Detection of unintented data flow
Detection of extraneous code (dead or deactivated)

But : Formal analysis cannot replace hardware/software integration
tests. Tests is still a required activity at higher level

ACADIE team
(14 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Formal methods

A formal method must be correctly defined, justified and appropriate
Correctly defined :
precise, unambiguous, mathematically defined syntax and semantics
Justified :
Sound (never assert a false property)
Appropriate :
All assumptions required for the formal analysis should be described
and justified

Requirement formalization correctness
Formal analysis can replace :

Review and analysis objectives
Conformance tests versus HLR and LLR
Robustness tests
Compatibility with the hardware (WCET, . . .)

Adapted coverage analysis :
Complete coverage of each requirement
Completeness of the requirements
Detection of unintented data flow
Detection of extraneous code (dead or deactivated)

But : Formal analysis cannot replace hardware/software integration
tests. Tests is still a required activity at higher level

ACADIE team
(14 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Formal methods

A formal method must be correctly defined, justified and appropriate
Correctly defined :
precise, unambiguous, mathematically defined syntax and semantics
Justified :
Sound (never assert a false property)
Appropriate :
All assumptions required for the formal analysis should be described
and justified

Requirement formalization correctness
Formal analysis can replace :

Review and analysis objectives
Conformance tests versus HLR and LLR
Robustness tests
Compatibility with the hardware (WCET, . . .)

Adapted coverage analysis :
Complete coverage of each requirement
Completeness of the requirements
Detection of unintented data flow
Detection of extraneous code (dead or deactivated)

But : Formal analysis cannot replace hardware/software integration
tests. Tests is still a required activity at higher level

ACADIE team
(14 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Formal methods

A formal method must be correctly defined, justified and appropriate
Correctly defined :
precise, unambiguous, mathematically defined syntax and semantics
Justified :
Sound (never assert a false property)
Appropriate :
All assumptions required for the formal analysis should be described
and justified

Requirement formalization correctness
Formal analysis can replace :

Review and analysis objectives
Conformance tests versus HLR and LLR
Robustness tests
Compatibility with the hardware (WCET, . . .)

Adapted coverage analysis :
Complete coverage of each requirement
Completeness of the requirements
Detection of unintented data flow
Detection of extraneous code (dead or deactivated)

But : Formal analysis cannot replace hardware/software integration
tests. Tests is still a required activity at higher level

ACADIE team
(14 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Formal methods

A formal method must be correctly defined, justified and appropriate
Correctly defined :
precise, unambiguous, mathematically defined syntax and semantics
Justified :
Sound (never assert a false property)
Appropriate :
All assumptions required for the formal analysis should be described
and justified

Requirement formalization correctness
Formal analysis can replace :

Review and analysis objectives
Conformance tests versus HLR and LLR
Robustness tests
Compatibility with the hardware (WCET, . . .)

Adapted coverage analysis :
Complete coverage of each requirement
Completeness of the requirements
Detection of unintented data flow
Detection of extraneous code (dead or deactivated)

But : Formal analysis cannot replace hardware/software integration
tests. Tests is still a required activity at higher level

ACADIE team
(14 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178B/ED-12B standards : Qualification

Apply to the tools the same rules as the developped system at the
same level

Not really adequate : Additional documents (CAST) were provided

Tool Operational Requirements (TOR) :
Tool user point of view (similar to System requirements – HLR)

Tool Requirements (TR) :
Tool implementor point of view (LLR)

Tool kind :
Development tools :
Tools whose output is part of airborne software and thus can introduce
errors (same constraints as the developed system).
Verification tools :
Tools that cannot introduce errors, but may fail to detect them (much
softer constraints : black box V & V).
No proof of error absence category

ACADIE team
(15 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178B/ED-12B standards : Qualification

Apply to the tools the same rules as the developped system at the
same level

Not really adequate : Additional documents (CAST) were provided

Tool Operational Requirements (TOR) :
Tool user point of view (similar to System requirements – HLR)

Tool Requirements (TR) :
Tool implementor point of view (LLR)

Tool kind :
Development tools :
Tools whose output is part of airborne software and thus can introduce
errors (same constraints as the developed system).
Verification tools :
Tools that cannot introduce errors, but may fail to detect them (much
softer constraints : black box V & V).
No proof of error absence category

ACADIE team
(15 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178C/ED-12C standards : Qualification

DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

Tool Qualification Level (1 downto 5) related to DAL

Tool kind :
Criteria 1 : A tool whose output is part of the resulting software and
thus could insert an error (TQL-1 for DAL A).
Criteria 2 : A tool that automates verification process(es) and thus
could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

verification process(es) other than that automated by the tool (TQL-4 for
DAL A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3 : A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

ACADIE team
(16 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178C/ED-12C standards : Qualification

DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

Tool Qualification Level (1 downto 5) related to DAL

Tool kind :
Criteria 1 : A tool whose output is part of the resulting software and
thus could insert an error (TQL-1 for DAL A).
Criteria 2 : A tool that automates verification process(es) and thus
could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

verification process(es) other than that automated by the tool (TQL-4 for
DAL A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3 : A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

ACADIE team
(16 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178C/ED-12C standards : Qualification

DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

Tool Qualification Level (1 downto 5) related to DAL

Tool kind :
Criteria 1 : A tool whose output is part of the resulting software and
thus could insert an error (TQL-1 for DAL A).
Criteria 2 : A tool that automates verification process(es) and thus
could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

verification process(es) other than that automated by the tool (TQL-4 for
DAL A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3 : A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

ACADIE team
(16 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178C/ED-12C standards : Qualification

DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

Tool Qualification Level (1 downto 5) related to DAL

Tool kind :
Criteria 1 : A tool whose output is part of the resulting software and
thus could insert an error (TQL-1 for DAL A).
Criteria 2 : A tool that automates verification process(es) and thus
could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

verification process(es) other than that automated by the tool (TQL-4 for
DAL A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3 : A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

ACADIE team
(16 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

DO-178C/ED-12C standards : Qualification

DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

Tool Qualification Level (1 downto 5) related to DAL

Tool kind :
Criteria 1 : A tool whose output is part of the resulting software and
thus could insert an error (TQL-1 for DAL A).
Criteria 2 : A tool that automates verification process(es) and thus
could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

verification process(es) other than that automated by the tool (TQL-4 for
DAL A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3 : A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

ACADIE team
(16 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Some comments

Standards were designed for systems not tools :
Adaptation required

MCDC not mandatory for tools,
but similar arguments might be required

Traceability of all artefacts in the development, relate requirement
(HLR)s, design (LLR) and implementation choices

Purpose is to provide confidence

Both cooperative and coercive approach

Any verification technology can be used,
from proofreading to automatic proof
if confidence is given

Choose the strategy and technologies that will best reduce risks

ACADIE team
(17 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Some comments

Standards were designed for systems not tools :
Adaptation required

MCDC not mandatory for tools,
but similar arguments might be required

Traceability of all artefacts in the development, relate requirement
(HLR)s, design (LLR) and implementation choices

Purpose is to provide confidence

Both cooperative and coercive approach

Any verification technology can be used,
from proofreading to automatic proof
if confidence is given

Choose the strategy and technologies that will best reduce risks

ACADIE team
(17 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Some comments II

Must be applied as soon as possible (cost reduction)

Small is beautiful (simplicity is the key)

Certification authorities need to understand the technologies

Cross-experiments are mandatory (classical w.r.t. alternative
methods)

ACADIE team
(18 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Some comments II

Must be applied as soon as possible (cost reduction)

Small is beautiful (simplicity is the key)

Certification authorities need to understand the technologies

Cross-experiments are mandatory (classical w.r.t. alternative
methods)

ACADIE team
(18 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Transformation verification technologies

Verification subject :
Transformation :
done once, no verification at use, white box, very high cost
Transformation application :
done at each use, black box, easier, complex error management

Classical technologies :
Document independant proofreading (requirements, specification,
implementation)
Test

Unit, Integration, Functional, Deployment level
Requirement based test coverage
Source code test coverage
Structural coverage, Decision coverage,
Multiple Condition Decision Coverage (MCDC)

ACADIE team
(19 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Transformation verification technologies II

Formal technologies (require formal specification) :
Automated test generation
Model checking (abstraction of the system)
Static analysis (abstraction of the language)
Automated proof
Assisted (human in the loop) proof

Transformation case
Transformation specification : Structural/Behavioral
Proof of transformation correctness
Links with certification/qualification

ACADIE team
(20 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Classical development and verification process

Tool development, verification and qualification plans

Tool Operational Requirements

Tool Requirements (human proofreading)

Test plan (requirements based coverage, code coverage
verification)

Implementation and test application

ACADIE team
(21 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

GeneAuto experiment : Proof assistant based

Derived from the classical process, early review by french
certification bodies

Formal specification using Coq of tool requirements,
implementation and correctness

Proofreading verification of requirements specification

Automated verification of specification correctness

Extraction of OCaML source implementation

Proofreading verification of extracted OCaML source

Integration of OCaML implementation with Java/XML
implementation (communication through simple text files with
regular grammars)

Proofreading verification of OCaML/Java wrappers (simple regular
grammar parsing)

Test-based verification of user requirements conformance

ACADIE team
(22 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Open questions ?

What are :

User requirement (TOR) for a transformation/verification ?

Developer requirement (TR) for a transformation/verification ?

Formal specification for a transformation/verification ?

Test coverage for a transformation/verification ?

Test oracle for a transformation/verification ?

Qualification constraint for transformation/verification languages ?

Best strategy for tool verification (once vs at each use) ?

ACADIE team
(23 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

GeneAuto feedbacks

From the certification perspective : Very good but...
Still some work on qualification of the proof assistant tools

Proof verifier
Program extractor

Complex management of input/output

From the developer perspective :
High dependence to the technologies
Very high cost to use the technology
Not easy to subcontract
Scalability not ensured
Bad separation between semantics-based verification and
requirements-based specification
Hard to assess development time

On the use of Java : How to provide confidence in the libraries ?

ACADIE team
(24 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Going further : CompCert use experiment

CompCert : C to PowerPC optimising code generator developed at
INRIA by Xavier Leroy

PhD thesis at Airbus : Improve certified code efficiency
Metrics : WCET, Code and memory size, Cache and memory accesses
Improvements of the various phases from models to embedded binary
code
New verification process using formal methods
First CompCert experiments : -12% WCET, -25% code size, -72%
cache read, -65% cadre write
Design of a CompCert dedicated verification process
Feed static analysis results (Astrée, frama-C) from C to binary through
CompCert (improve WCET precision)
Improve SCADE block scheduling to reduce memory accesses (signal
liveness)
Design of a whole development cycle verification process
with tools qualification

ACADIE team
(25 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Going further : CompCert use experiment

CompCert : C to PowerPC optimising code generator developed at
INRIA by Xavier Leroy

PhD thesis at Airbus : Improve certified code efficiency
Metrics : WCET, Code and memory size, Cache and memory accesses
Improvements of the various phases from models to embedded binary
code
New verification process using formal methods
First CompCert experiments : -12% WCET, -25% code size, -72%
cache read, -65% cadre write
Design of a CompCert dedicated verification process
Feed static analysis results (Astrée, frama-C) from C to binary through
CompCert (improve WCET precision)
Improve SCADE block scheduling to reduce memory accesses (signal
liveness)
Design of a whole development cycle verification process
with tools qualification

ACADIE team
(25 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Proposal : Mixed approach

Separate specification verification from implementation verification

Define explicitly semantics traceability link metamodel

Specify transformation as properties of links
Implementation verification (mostly syntactic)

Implementation must generate both target and links
Implementation verification checks properties on generated links links
By the way, these links are already mandatory but hand made

Specification verification : Prove the semantics equivalence
between source and target in a trace link

Ongoing PhDs in project OPEES, P and HiMoCo (industrial
cooperation)

ACADIE team
(26 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Early feedbacks

Separation of concerns :
Industrial partners : Specification, Implementation, Implementation
verification (mainly syntactic)
Academic partners : Specification verification (semantics)

Very good subcontracting capabilities

Almost no technology constraints on the industrial partner (classical
technologies)

Good scalability

Rely on already mandatory traceability links (formalized and
verified)

Easy to analyse syntactic error reports

Enables to modify generated code and links

Parallel work between syntactic and semantics concerns

ACADIE team
(27 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Work in progress

Positive first experiments on simple use cases from GeneAuto
But requires some grayboxing (expose parts of the internals)

Flattening of statecharts
Either very complex specification (doing the flattening)
Or express the fixpoint nature of implementation (in the specification)

Require full scale experiments

Require exchange with certification authorities

Require qualified syntactic verification tool (OCL-like, but simpler)

Require explicit relations between syntactic and semantics work

Require explicit description of semantics in metamodels

ACADIE team
(28 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Static analysis tools

Several kind of tools
Qualitative and quantitative properties
Fixed or user defined properties
Semantic abstraction or Proof technologies

Common aspects : Common pre-qualification
Product (source of binary code) reader : fully common ?
Configuration (properties, . . .) reader : partly common
Result writer and browser : partly common ?

Split the verification tool in a sequence of elementary activities
Common ones (pre-qualification could be shared)
Technology specific ones
Easier to specify, to validate and to verify
Can be physical or virtual (produce intermediate results even in a
single tool)

ACADIE team
(29 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Required activities

Specify user requirements

Specify tool architecture (elementary tools and their assembly)

Specify tool level requirements (elementary tools and their
assembly)

Specify functional test cases and results

Choose verification strategy :
Tool verification or Result verification
Integration and unit tests (eventually with test generators and oracles)
Proof reading of tool source or test results
Formal verification of the verification tool itself (i.e. Coq in Coq,
Compcert in Coq, . . .)

ACADIE team
(30 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Abstraction kind

Translate to non standard semantics

Compute recursive equations

Compute fixpoint of equations
Fixpoint algorithm
Abstract domains and operators
Widening, narrowing

Check that properties are satisfied on the abstract values

Produce user friendly feedback (related to product and its standard
semantics)

ACADIE team
(31 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Deductive kind

Produce proof obligations (weakest precondition, verification
condition, . . .)

Check the satisfaction of proof obligations
Proof term rewriting to simpler language
Split to different sub-languages (pure logic, arithmetic, . . .)
Apply heuristics to produce a proof term
Check the correctness of the proof term
Produce failure feedback or proof certificate (related to product and its
standard semantics)

Produce user friendly feedback

ACADIE team
(32 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Common parts

Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters

Reader and writer :
Cross-reading
Introduce dual reader/writer : check composition is identity
Asymmetric implementation : Several independent implementations
and results comparison

Code generation and transformation can be formally specified and
verified :

Formal tool requirements : foreach source construct, what are the
generated targets and the links with the source
Syntactic verification : properties of the trace links given as tool
requirements
Semantic verification : validation of the technology

User-friendly feedback : Code generation based on trace links

ACADIE team
(33 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Common parts

Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters

Reader and writer :
Cross-reading
Introduce dual reader/writer : check composition is identity
Asymmetric implementation : Several independent implementations
and results comparison

Code generation and transformation can be formally specified and
verified :

Formal tool requirements : foreach source construct, what are the
generated targets and the links with the source
Syntactic verification : properties of the trace links given as tool
requirements
Semantic verification : validation of the technology

User-friendly feedback : Code generation based on trace links

ACADIE team
(33 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Common parts

Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters

Reader and writer :
Cross-reading
Introduce dual reader/writer : check composition is identity
Asymmetric implementation : Several independent implementations
and results comparison

Code generation and transformation can be formally specified and
verified :

Formal tool requirements : foreach source construct, what are the
generated targets and the links with the source
Syntactic verification : properties of the trace links given as tool
requirements
Semantic verification : validation of the technology

User-friendly feedback : Code generation based on trace links

ACADIE team
(33 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Common parts

Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters

Reader and writer :
Cross-reading
Introduce dual reader/writer : check composition is identity
Asymmetric implementation : Several independent implementations
and results comparison

Code generation and transformation can be formally specified and
verified :

Formal tool requirements : foreach source construct, what are the
generated targets and the links with the source
Syntactic verification : properties of the trace links given as tool
requirements
Semantic verification : validation of the technology

User-friendly feedback : Code generation based on trace links

ACADIE team
(33 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Abstraction kind

Non-standard semantics and recursive equation production are
similar to code generation

Semantic verification : monotony at the equations-level
Semantic verification : soundness of the abstraction

No verification on the fixpoint computation
Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, α ◦ γ, widening, narrowing, monotony, . . .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)
Related to code generation
Semantic verification : soundness of the abstraction

ACADIE team
(34 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Abstraction kind

Non-standard semantics and recursive equation production are
similar to code generation

Semantic verification : monotony at the equations-level
Semantic verification : soundness of the abstraction

No verification on the fixpoint computation
Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, α ◦ γ, widening, narrowing, monotony, . . .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)
Related to code generation
Semantic verification : soundness of the abstraction

ACADIE team
(34 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Abstraction kind

Non-standard semantics and recursive equation production are
similar to code generation

Semantic verification : monotony at the equations-level
Semantic verification : soundness of the abstraction

No verification on the fixpoint computation
Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, α ◦ γ, widening, narrowing, monotony, . . .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)
Related to code generation
Semantic verification : soundness of the abstraction

ACADIE team
(34 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Abstraction kind

Non-standard semantics and recursive equation production are
similar to code generation

Semantic verification : monotony at the equations-level
Semantic verification : soundness of the abstraction

No verification on the fixpoint computation
Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, α ◦ γ, widening, narrowing, monotony, . . .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)
Related to code generation
Semantic verification : soundness of the abstraction

ACADIE team
(34 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Potential strategy : Deductive kind

Proof obligation computation is a kind of code generation
Semantic verification : correctness of the axiomatic semantics

Satisfaction of the proof obligations :
No verification on proof certificate generation
Verification of the certificate itself (much simpler than some
heuristic-based automatic prover)
Term rewriting can be considered as code generation (endogenous)
Curry-Howard type checking can be verified in a similar way
Rely on Coq In Coq, Isabelle in Isabelle, . . .

ACADIE team
(35 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

What about validation of the technologies ?

Mainly scientific work and a lot of publications

Brings confidence but paperwork is not enough

Mechanized is better but still not enough

Functional user level tests still mandatory currently

Mixed system verification experiments (both tests and static
analysis)

Reverse analysis of existing systems

ACADIE team
(36 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Synthesis

Technical exchange with certification authorities mandatory

Cross experiments and reverse engineering experiments mandatory

Verification strategy must be designed early to choose the right
architecture and trace information

Semi-formal (even formal) requirements must be written as soon as
possible

ACADIE team
(37 / 38)

DO178/ED12
safety
standards

Application to
Code
generation
tools

Application to
Static
analysis tools

Synthesis :
Open
questions ?

Synthesis : Open questions ?

For model management, verification, transformation, what are :

User requirement format (TOR) ?

Developer requirement format (TR) ?

Formal specification of these requirements ?

Test coverage based on requirements and structure ?

Test oracles ?

Qualification constraint for implementation languages and tools ?

Best strategy for tool verification (once vs at each use) ?

ACADIE team
(38 / 38)

National Aeronautics and Space
Administration

www.nasa.gov

Aviation Safety Program
System-Wide Safety and Assurance Technologies (SSAT) Project

Assurance of Flight Critical Systems

October 22, 2012

Dr. Guillaume Brat, NASA Ames Research Center

A window into AFCS

Impact: Cost, and Constraints on Innovation

System Lines of Code

Mars Reconnaissance Orbiter 545K

Orion Primary Flight Sys. 1.2M

F-22 Raptor 1.7M

Seawolf Submarine Combat System AN/
BSY-2

3.6M

Boeing 777 4M

Boeing 787 6.5M

F-35 Joint Strike Fighter 5.7M

Typical GM car in 2010 100M

Size Comparisons of
Embedded Software

NASA Study
Flight Software Complexity, 4/23/2009

Boehm, B. 1981 Software Engineering Economics, as cited in DAA, 2008
10/22/12

Requirements Design Code Development
Test

Acceptance
Test

Operation

DO-333 Formal Methods

DO-331
Model-based
Development

DO-332
Object-

Oriented
code

DO-178C

Software Considerations
in Airborne Systems and
Equipment Certification

DO-278A
Software Integrity Assurance

Considerations for Communication,
Navigation, Surveillance and Air

Traffic Management Systems

10/22/12

Certification Aspect

10/22/12

Accomplishment: we have designed and implemented IKOS, a
static analysis framework, which allows the custom design
of mathematically sound analyzers, e.g., no false negatives,
producing less than 10% false positives.

ü  We implemented a generalization of the array-out-of-bound
accesses analysis

ü New Gauge abstraction domain (CAV 2012)
ü  The framework is being processed to be released under a NOSA
license
ü  Initial experiments show that we have achieved less than 10%
false positive on embedded system code.

code Size Analysis time Precision
Paparazzi 35 KLOC 22s 99%
Gen2 22 KLOC 1mn03s 98%
FLTz 144 KLOC 10mn30s 91%
Arduplane 278 KLOC 6mn30s 94%

No 3 on the CWE/
SANS Top 25 Most

Dangerous Software
Errors

(MITRE)

IKOS
Inference Kernel of Open Static analyzers

Recent Advances

•  The analysis of the OpenSSH code required a sophisticated
abstraction based on higher-dimensional convex polyhedra:
–  Combinatorial explosion
–  Brittle abstraction
–  A nightmare to analyze 700 lines of code

•  Developed a new abstraction in IKOS: the Gauge Domain
–  Published in CAV 2012
–  Accuracy comparable to convex polyhedra
–  Analyzes 150 KLOC in minutes
–  Scales linearly with the size of the code
–  Commercial analyzer (PolySpace) takes hours on the same code

Gauges

•  In our experience with analyzing large NASA codes, we have observed that most of the
time, the value of a scalar variable inside a loop nest was entirely determined by the
control structure in terms of symbolic bounds of the form a0 +a1λ1 +···+akλk, where λ1,...,
λk denote loop counters and a1,...,ak are integer coefficients.

10/22/12

p = &msg;

for (i = 0; i < n; i++) {

if(*p == ...) {

...

p += 16;

} else {

...

p += 32;

}

}

Convex polyhedra:

⇢
0 i n� 1
16i p 32i

Gauges:

⇢
� i �
16� p 32�

Additional properties:

⇢
� n� 1
� 2 [0, +1]

Fig. 1. Loop invariant expressed with convex polyhedra and gauges

Attempts have been made to improve the performance of the polyhedral
domain. They essentially consist in finding more tractable albeit less precise
alternatives to those domain operations that may exhibit exponential complexity
(join, projection) without modifying the expressiveness of the domain itself [26,
22]. Linear programming techniques are used instead of the double-description
method to compute approximate versions of operations on polyhedra. The idea
is that the Simplex algorithm exhibits better runtime performance in practice,
although still exponential in the worst case. However, available experimental data
make it di�cult to predict how these techniques would scale to real applications.

Another and more popular approach consists in identifying a subclass of
convex polyhedra that possess better algorithmic properties. Notable domains
include template polyhedra [24], octahedra [5], subpolyhedra [15], simplices [25],
symbolic ranges [23] and the family of two-variables per inequality domains [18–
20, 17, 27]. Two members of the latter class, di↵erence-bound matrices [18] and
octagons [19], are particularly important since, to the best of our knowledge,
they are the only general-purpose relational abstract domains that have been
applied to the verification of large applications [10, 1, 28, 3].

Among relational domains that can express inequalities, octagons and dif-
ference-bound matrices have the lowest computational complexity: quadratic in
space and cubic in time in the worst case. However, due to the nature of the
closure algorithm employed to normalize their representation, the worst-case
complexity is always attained in practice, which makes this kind of domain un-
usable for codes with more than a few dozen variables [28]. In order to address
this issue, it is necessary to break down the set of program variables into small
groups on which the abstract domain can be applied independently. This variable
packing can be performed statically before analysis using knowledge on the ap-
plication [10], or at analysis time, for example, by using dependency information
computed on the fly [28].

However, the limited expressiveness of weakly relational domains precludes
the direct analysis of pointer arithmetic, which requires more general forms of
inequality constraints. This issue is addressed in C Global Surveyor [28] by using
templates for access paths in data structures. The parameters appearing in the

Analysis of Floating-Point Computations

•  Challenging problem
•  Solutions exist for a very small class of codes

–  ASTREE analyzer developed in France for Airbus
–  In practice only works for Airbus code

•  Ongoing development of abstractions for floating-point
computations in IKOS
–  Broader class of codes (UAVs, ground control)
–  Performance is the key issue

Analysis of Autocoded Systems

•  Model-based development:
–  Specify a controller in a mathematical modeling environment

(MATLAB/Simulink)
–  Do all the verification at the model level
–  Automatically generate code from the model

•  Question:
–  Does the generated code verify the same properties established

at the model level?
–  Use static analysis to answer this question automatically

Example: Stability of Control Systems

•  Lyapunov theory
•  Well understood at the model

level: find an ellipsoidal invariant
•  Does this hold for the generated

code?
–  Discretization
–  Floating-point arithmetic

•  Development of a suitable domain
of ellipsoids for static analysis

4 Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron

�
x
�� xT Px 1

�
Ax

�� xT Px 1

{Axk + Bu | ||u||1 1}

xk

Axk

Fig. 2: Illustration of the stability con-
cepts: if xk is in the light gray el-
lipse, then, after a time step, Axk is
in the dark gray ellipse, which is ex-
actly what is expressed by Equation (4).
The white box represents the poten-
tial values of xk+1 after adding the ef-
fect of the bounded input uk.We see
here the necessity that the dark gray
ellipse be stricly included in the light
gray one, which is the stronger condi-
tion expressed by Equation (6).

Now, to account for the presence of
an external input to the system (which
is usually the case with controllers:
they use data collected from sensors
to generate their output), the model
is usually extended into the form

xk+1 = Axk + Buk, ||uk||1 1. (5)

To study this di↵erence equation as
precisely as possible, another model,
expressing the behavior of the con-
trolled system (the plant), is usually
introduced. The two systems taken to-
gether form a closed system with no
inputs which can be analyzed by look-
ing for a P matrix matching the cri-
teria mentioned before. Such an anal-
ysis is refered to as ’closed loop sta-
bility analysis’. Here we seek not to
model the plant, instead we only re-
quire for ||u||1 to remain bounded3.
Then, through a slight reinforcement
of Equation (4) into

AT PA � P � 0 (6)

we can still guarantee that the state
variables of (5) will remain in a sub-
level set

�
x 2 Rn

�� xT Px �

(for
some � > 0), which is an ellipsoid in
this case. This approach only enables us to study control laws that are inherently
stable, i.e stable when taken separately from the plant they control. Nevertheless
a wide range of controllers remain that can be analyzed, and this encompasses in
particular all those handled by Astrée. In addition, inherent stability is required
in a context of critical applications.

These stability proofs have the very nice side e↵ect that they provide a
quadratic invariant on the state variables, which can be used at the code level to
find bounds on the program variables. Furthermore, there are many P matrices
that fulfill the equations described above. This gives some flexibility as to the
choice of such a matrix: by adding relevant constraints on P , one can obtain
increasingly better bounds.

3 While we could consider di↵erent bounds for each component of the input u, we will
only deal with ||u||1 1 for simplicity of the exposition.

IKOS: Applications

•  Applied to UAV autopilots (40 to 250 KLOC)
–  Few inconclusive reports (< 2%)

•  Running on LADEE (Lunar Atmosphere and Dust
Environment Explorer) flight software

•  Ongoing:
–  Scientific computation code (Corey Ippolito)
–  Image processing code for GOES-R (Geostationary Operational

Environmental Satellite R-Series)

10/22/12

composi'onal	 verifica'on	
safety-‐cri+cal	 property	 P	

local	 P1	

local	 P3	

local	 P2	

local	 P4	

•  performed	 at	 design	 +me	
•  local	 proper+es	 guarantee	 P	
•  decomposi+on	 can	 be	

performed	 manually	 (e.g.,	 	 	 for	
system	 architectures)	 	

•  we	 provide	 automated	
techniques	 based	 on	 learning	
component	 interfaces	

•  individual	 components	 can	 	 be	
checked	 against	 local	 proper+es	
using	 model	 checking	 or	 tes+ng	

10/22/12

what	 local	 proper'es	 express	 (CEV)	

 lasJettison[altitude > 120000]

lasJettison[altitude > 120000]

lsamRendezvous

•  constraints	 on	 inputs	 for	 correct	 opera+on	
•  constraints	 on	 sequences	 of	 method	 /	 service	 invoca+ons	

10/22/12

verifica'on	 of	 separa'on	 assurance	 systems	 	

• 	 AutoResolver	 is	 a	 NextGen	 air	 traffic	 management	 system	 developed	 by	 Prof.	 Heinz	
Erzberger	 and	 his	 team	 in	 Code	 A	

• 	 it	 is	 high	 in	 complexity	 (non-‐linear	 math	 and	 heuris+cs)	 with	 over	 50k	 lines	 of	 Java;	
it	 has	 a	 complex	 interac+on	 mechanism	 via	 callbacks	 into	 the	 Airspace	 Concept	
Evalua+on	 System	 or	 ACES,	 a	 simulator	 that	 captures	 the	 key	 feedback	 response	
mechanism	 of	 the	 Na+onal	 Airspace	 System	 (NAS)	

	

10/22/12

AutoResolver	

Conflicts

Conflicts to
resolve? Resolve Compute

trajectory

Conflicts
remain?

AutoResolver ACES

iterate

yes

no

resolution

yes

no

10/22/12

our	 efforts	

•  abstract	 ACES	 –trajectory	 computa+on	
•  generate	 conflicts	
•  work	 with	 Code	 A	 to	 iden+fy	 proper+es:	

–  “If	 the	 resolu-on	 produced	 for	 a	 conflict	 results	 in	 a	 secondary	
conflict,	 then	 the	 -me	 to	 loss	 of	 separa-on	 for	 the	 secondary	
conflict	 should	 be	 greater	 than	 the	 -me	 to	 loss	 of	 separa-on	 for	
the	 original	 conflict”	

•  developing	 advanced	 automated	 tes+ng	 techniques	 that	
ensure	 coverage	 of	 all	 the	 paths	 of	 the	 AutoResolver	

•  working	 on	 developing	 and	 connec+ng	 all	 the	 parts	 of	 the	
composi+onal	 verifica+on	 picture	 	 	
10/22/12

Conclusions

•  Stable research program under ARMD for developing
safety assurance techniques for flight-critical systems

•  The main focus is on formal methods
–  Abstract interpretation
–  Compositional verification
–  Advanced test generation techniques

•  Collaboration with
–  NASA Langley
–  Industry
–  International partners (ONERA, IRIT, may be VERIMAG)

10/22/12

Formal Methods for Aerospace
Applications: A control engineer’s

perspective

Eric Feron
Dutton/Ducoffe Professor of Aerospace Engineering

Georgia Institute of Technology

feron@gatech.edu

Take-Home Message

Safety-critical embedded software design best
tackled through proper specification, followed

by automatic coding of specs AND their
semantics

Analyze and Design Early
Most errors arise during specification of

software, not coding.
• Allow the engineer to specify, analyze,

then auto-code.
• SCADE/Esterel Technologies,

Picture2code/Pratt & Whitney, Realtime
Workshop/Mathworks, Gene-
auto/ENSEEIHT, Gryphon/Rockwell-
Collins.

A simple control example

d
dt

∙
x
ẋ

¸
=

∙
0 1
−1 0

¸ ∙
x
ẋ

¸
+

∙
0
1

¸
u, x(0) = x0, ẋ(0) = ẋ0

y = [1 0]

∙
x
ẋ

¸
.

A simple control example
ỹ(t) = SAT(y(t)),

u(s) = 128
s+ 1

s+ 0.1

s/5 + 1

s/50 + 1
ỹ(s),

Step response

xc,k+1 =

∙
0.499 −0.050
0.010 1.000

¸
xc,k +

∙
1
0

¸
SAT(yk)

uk = − [564.48 0]xc,k + 1280 SAT(yk)

Discrete time
Implementation
100Hz

Controller implementation

+- ++

0.4990

0.0500

1280

564.48

-+

SAT 1
Z

1
Z0.0100 ++

+-
y

yd

+-+-+- ++++++

0.4990

0.0500

1280

564.48

-+

SAT 1
Z
1
Z

1
Z
1
Z0.0100 ++++++

+-+-+-
y

yd

u

Control system design as seen by control
engineers

System
Identification/
Validation

Controller
design

Control system
analysis

Matlab/
Simulink/
Real-time
Workshop

MatrixX

Picture 2 code
(UTC)

Manual coding

Compiler

System
data

System
model

Controller

V
alidated

C
ontroller

Invalidated
Controller

Source
code

ExecutableVerification
and
Validation

Good
to go

Not good to
go

Code-level analyses of control software
• Most significant contribution is from Patrick Cousot’s research group at

Ecole Normale Superieure, Paris.
• Abstract interpretation aims at capturing semantics of programs
• Most important application is ASTREE analyzer for Airbus A380 control

code.
• From Feret, “Static Analysis of Digital Filters”, 2004 (also with ASTREE).

A Paradigm Shift Enabled by Good
Specification Analyses

Credible autocoder (a la Rinard)

Controller
Specifications
+proof

Credible
autocoder

Documented
(auto)-code

Proof
checker

Go/no-go

(third party)

(user)

(certification
Authority)

(auto) Code analyzer

Controller
Specifications
(+proof)

Autocoder (auto)-code Code
analyzer

(third party)

(user)

(certification
Authority)

Proof
Go/no Go

Desirable attributes of “system
proofs”

• Must be expressive enough to tell nontrivial
statements about system

• Must speak the language of system
representation, eg: “IEEE Transactions on
Automatic Control proofs” written in natural
language (one wonders…), “Simulink proofs”
expressed in Simulink, “Program proofs”
expressed in formal languages.

• Must be “elementary enough” to be easily
checked wherever necessary.

Lyapunov functions and invariant
ellipses

5 4 32

φ

φdot

Back to the Example
The control-systemic way:

Assume the controller state is initialized at xc,0 = 0

What range of values could be reached by the state xc,k and the control
variable uk?
There is a variety of options, including computation of -1 norms.
A Lyapunov-like proof (from Boyd et al., Poola):

The ellipsoid EP =
©
x ∈ R2 | xTPx ≤ 1

ª
.

is invariant. None of the entries of x exceeds 7 in size.

P =10−3
∙
0.6742 0.0428
0.0428 2.4651

¸
.

xc,k+1 =

∙
0.499 −0.050
0.010 1.000

¸
xc,k +

∙
1
0

¸
SAT(yk)

uk = − [564.48 0]xc,k + 1280 SAT(yk)

A proof for control people

Indeed a linear combination of (*) and xTPx ≤ 1 and w2 ≤ 1 yields the
desired property.

P that works is P =10−3
∙
0.6742 0.0428
0.0428 2.4651

¸
, with μ = 0.9991 and tautology

(*) is 10−3
∙
x
w

¸T ⎡⎣ −0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

⎤⎦∙ x
w

¸
≤ 0.

∀t, xTPx ≤ 1 is equivalent to xTk Pxk ≤ 1⇒ xTk+1Pxk+1 ≤ 1

Or (Ax+Bw)TP (Ax+Bw) ≤ 1 whenever xTPx ≤ 1 and w2 ≤ 1

True if there exists μ such that (Ax+Bw))TP (Ax+Bw)−μxTPx−(1−μ)w2 <
0, (*) a tautology.

+- ++

0.4990

0.0500

1280

564.48

-+

SAT 1
Z

1
Z0.0100 ++

+-
y

yd

+-+-+- ++++++

0.4990

0.0500

1280

564.48

-+

SAT 1
Z
1
Z

1
Z
1
Z0.0100 ++++++

+-+-+-
y

yd

x(t)10−3
∙
0.6742 0.0428
0.0428 2.4651

¸
10−3

∙
0.6742 0.0428
0.0428 2.4651

¸
Quadratic
form

<1

10−3

⎡⎣ −0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

⎤⎦10−3

⎡⎣ −0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

⎤⎦10−3

⎡⎣ −0.5044362 −0.0135878 0.3374606
−0.0135878 −0.0003759 0.00909
0.3374606 0.00909 −0.2258

⎤⎦Quadratic
form<0

x2

<1

Simulink, Discrete Time Formal Semantics

x2(0) = 0

x1(0) = 0

{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}
2: C = [-564.48, 0];

{true}
3: B = [1;0];D=1280

{true}
4: x = zeros(2,1);

{x ∈ EP }
5: while 1

{x ∈ EP }
6: y = fscanf(stdin,"%f")

{x ∈ EP }
7: y = max(min(y,1),-1);©
x ∈ EP , y2 ≤ 1

ª
8: u = C*x+D*y;

{x ∈ EP , u2 ≤ 2(CP−1CT +D2), y2 ≤ 1}
9: fprintf(stdout,"%f\n",u)
{x ∈ EP , y2 ≤ 1, (Ax+By)TP (Ax+By)− 0.01xTPx− 0.99y2 ≤ 0}
skip©
Ax+By ∈ EP , y2 ≤ 1

ª
10: x = A*x + B*y;

{x ∈ EP }
11: end

{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}
2: C = [-564.48, 0];

{true}
3: B = [1;0];D=1280

{true}
4: x = zeros(2,1);

{x ∈ EP }
5: while 1

{x ∈ EP }
6: y = fscanf(stdin,"%f")

{x ∈ EP }
7: y = max(min(y,1),-1);©
x ∈ EP , y2 ≤ 1

ª
8: u = C*x+D*y;

{x ∈ EP , u2 ≤ 2(CP−1CT +D2), y2 ≤ 1}
9: fprintf(stdout,"%f\n",u)
{x ∈ EP , y2 ≤ 1, (Ax+By)TP (Ax+By)− 0.01xTPx− 0.99y2 ≤ 0}
skip©
Ax+By ∈ EP , y2 ≤ 1

ª
10: x = A*x + B*y;

{x ∈ EP }
11: end

Commented code

Front End: Formal comment writing

• ANSI/ISO C Specification Language (ACSL) can
be used to formally comment C programs and
can be handled by Frama-C.

• Start from Simulink
• End with commented C code

Controller
Specifications
+proof

Credible
autocoder

Documented
(auto)-code

Proof
checker

Go/no-go

(third party)

(user)

(certification
Authority)

A prototype front-end built on Gene-Auto
Thank you Marc Pantel, Arnaud Dieumegard, Andres Toom

Back End: Verification of Code Semantics

Controller
Specifications
+proof

Credible
autocoder

Documented
(auto)-code

Proof
checker

Go/no-go

(third party)

(user)

(certification
Authority)

A physical example: 3 DOF
helicopter

And it still works!!!

F-18 replica from Rockwell-Collins

http://www.youtube.com/watch?v=QJkIONTzbNM

Application to Collision avoidance
TCAS / last resort safety net

Conclusion

• It is possible to generate safety-critical
control code from specifications, all-
equipped with semantics and proofs.

• With that, code-level analyses are
possible, and much easier than analyses
from code alone.

Acknowledgements
• Army Research Office
• Dutton/Ducoffe professorship at Georgia Tech
• Fondation STAE Toulouse
• Ecole Nationale de l’Aviation Civile
• Institut National Polytechnique de Toulouse
• National Science Foundation
• NASA
• ONERA DCSD and DTIM
• Fernando Alegre, Arnaud Dieumegard, Alwyn Goodloe, Heber

Herencia, Pierre-Loic Garoche, Romain Jobredeaux, Sam
Owre, Marc Pantel, Pierre Roux, Andres Toom, Arnaud Venet,
Tim Wang.

Analyzing control command software: the need for non
linear invariants
Formal methods for Aerospace Applications - FMCAD’12 Tutorial

Pierre-Loïc Garoche – Onera

Mon October 22nd 2012

CONTENT

Need for non linear invariants

Proving stability at code level

Non linear invariant synthesis
Quadratic invariants for linear systems
Linear systems with guards
Beyond linear systems: polynomial controllers

Conclusion

CONTENT

Need for non linear invariants

Proving stability at code level

Non linear invariant synthesis
Quadratic invariants for linear systems
Linear systems with guards
Beyond linear systems: polynomial controllers

Conclusion

NON LINEAR INVARIANTS IN CONTROL COMMAND SOFTWARE

Properties of controllers:
open-loop stability
close-loop stability
tracking
. . .

(Most|All) of them can be expressed as invariants over the system’s
variables.

=⇒ Lyapunov functions

OPEN-LOOP STABILITY
A controller is open-stable

, its output stay bounded for any bounded input.
Example: in0 ∈ [−1, 1], in1 ∈ [−1, 1]

x0

x1

x2

x3

 =

0.6227 0.3871 0.0102 0.3064
−0.3407 0.9103 −0.3388 0.0649
0.0918 −0.0265 −0.7319 0.2669
0.2643 −0.1298 −0.9903 0.3331

x0

x1

x2

x3

+

0.3064 0.1826
−0.0054 0.6731
+0.0494 1.6138
−0.0531 0.4012

(

in0

in1

)

Proof?

a Lyapunov function exists ! (Which one ? Existential proof)
0.14× x2

3 − 0.22× x3 × x2 + 0.07× x3 × x1 − 0.03× x3 × x0 + 0.13× x2
2 − 0.08×

x2 × x1 + 0.02× x2 × x0 + 0.06× x2
1 − 0.04× x1 × x0 + 0.05× x2

0 is a Lyapunov
function (Constructive proof)

Theorem

Any stable linear controller admits a quadratic Lyapunov function

OPEN-LOOP STABILITY
A controller is open-stable

, its output stay bounded for any bounded input.
Example: in0 ∈ [−1, 1], in1 ∈ [−1, 1]

x0

x1

x2

x3

 =

0.6227 0.3871 0.0102 0.3064
−0.3407 0.9103 −0.3388 0.0649
0.0918 −0.0265 −0.7319 0.2669
0.2643 −0.1298 −0.9903 0.3331

x0

x1

x2

x3

+

0.3064 0.1826
−0.0054 0.6731
+0.0494 1.6138
−0.0531 0.4012

(

in0

in1

)

Proof?
a Lyapunov function exists ! (Which one ? Existential proof)

0.14× x2
3 − 0.22× x3 × x2 + 0.07× x3 × x1 − 0.03× x3 × x0 + 0.13× x2

2 − 0.08×
x2 × x1 + 0.02× x2 × x0 + 0.06× x2

1 − 0.04× x1 × x0 + 0.05× x2
0 is a Lyapunov

function (Constructive proof)

Theorem

Any stable linear controller admits a quadratic Lyapunov function

OPEN-LOOP STABILITY
A controller is open-stable

, its output stay bounded for any bounded input.
Example: in0 ∈ [−1, 1], in1 ∈ [−1, 1]

x0

x1

x2

x3

 =

0.6227 0.3871 0.0102 0.3064
−0.3407 0.9103 −0.3388 0.0649
0.0918 −0.0265 −0.7319 0.2669
0.2643 −0.1298 −0.9903 0.3331

x0

x1

x2

x3

+

0.3064 0.1826
−0.0054 0.6731
+0.0494 1.6138
−0.0531 0.4012

(

in0

in1

)

Proof?
a Lyapunov function exists ! (Which one ? Existential proof)
0.14× x2

3 − 0.22× x3 × x2 + 0.07× x3 × x1 − 0.03× x3 × x0 + 0.13× x2
2 − 0.08×

x2 × x1 + 0.02× x2 × x0 + 0.06× x2
1 − 0.04× x1 × x0 + 0.05× x2

0 is a Lyapunov
function (Constructive proof)

Theorem

Any stable linear controller admits a quadratic Lyapunov function

OPEN-LOOP STABILITY
A controller is open-stable

, its output stay bounded for any bounded input.
Example: in0 ∈ [−1, 1], in1 ∈ [−1, 1]

x0

x1

x2

x3

 =

0.6227 0.3871 0.0102 0.3064
−0.3407 0.9103 −0.3388 0.0649
0.0918 −0.0265 −0.7319 0.2669
0.2643 −0.1298 −0.9903 0.3331

x0

x1

x2

x3

+

0.3064 0.1826
−0.0054 0.6731
+0.0494 1.6138
−0.0531 0.4012

(

in0

in1

)

Proof?
a Lyapunov function exists ! (Which one ? Existential proof)
0.14× x2

3 − 0.22× x3 × x2 + 0.07× x3 × x1 − 0.03× x3 × x0 + 0.13× x2
2 − 0.08×

x2 × x1 + 0.02× x2 × x0 + 0.06× x2
1 − 0.04× x1 × x0 + 0.05× x2

0 is a Lyapunov
function (Constructive proof)

Theorem

Any stable linear controller admits a quadratic Lyapunov function

OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)

Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.

Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level

OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

Linear invariants – intervals, octagons, polyhedra – commonly used in static
analysis are not well suited:

at best costly;
at worst no result.

x

y

Few non linear proposals:
Feret’s digital filters in Astrée
work on a subclass of open-stable linear
system: second order filters
Template domains instrumented with
Policy Iteration
existing instantiation limited to quadratic templates

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)
Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.
Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level

OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

Linear invariants – intervals, octagons, polyhedra – commonly used in static
analysis are not well suited:

at best costly;
at worst no result.

x

y

Few non linear proposals:
Feret’s digital filters in Astrée
work on a subclass of open-stable linear
system: second order filters
Template domains instrumented with
Policy Iteration
existing instantiation limited to quadratic templates

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)
Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.
Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level

OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

Linear invariants – intervals, octagons, polyhedra – commonly used in static
analysis are not well suited:

at best costly;
at worst no result.

x

y

Few non linear proposals:
Feret’s digital filters in Astrée
work on a subclass of open-stable linear
system: second order filters
Template domains instrumented with
Policy Iteration
existing instantiation limited to quadratic templates

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)
Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.
Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level

OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

Linear invariants – intervals, octagons, polyhedra – commonly used in static
analysis are not well suited:

at best costly;
at worst no result.

x

y
Few non linear proposals:

Feret’s digital filters in Astrée
work on a subclass of open-stable linear
system: second order filters
Template domains instrumented with
Policy Iteration
existing instantiation limited to quadratic templates

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)
Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.
Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level

OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

Linear invariants – intervals, octagons, polyhedra – commonly used in static
analysis are not well suited:

at best costly;
at worst no result.

x

y
Few non linear proposals:

Feret’s digital filters in Astrée
work on a subclass of open-stable linear
system: second order filters
Template domains instrumented with
Policy Iteration
existing instantiation limited to quadratic templates

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)
Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.
Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level

OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

Linear invariants – intervals, octagons, polyhedra – commonly used in static
analysis are not well suited:

at best costly;
at worst no result.

x

y
Few non linear proposals:

Feret’s digital filters in Astrée
work on a subclass of open-stable linear
system: second order filters
Template domains instrumented with
Policy Iteration
existing instantiation limited to quadratic templates

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)
Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.
Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level

OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)

Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.

Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level

CONTENT

Need for non linear invariants

Proving stability at code level

Non linear invariant synthesis
Quadratic invariants for linear systems
Linear systems with guards
Beyond linear systems: polynomial controllers

Conclusion

PROVING STABILITY AT CODE LEVEL
input: C code annotated with ACSL describing quadratic invariants
goal: prove the validity of each Hoare triple

AN ELLIPSOID-AWARE HOARE LOGIC

To use ellipsoids to formally specify bounded input, bounded state
stability in.

Typically, an instruction S would be annotated in the following way:

{x ∈ EP} y = Ax + b {y− b ∈ EQ} (1)

where the pre- and post- conditions are predicates expressing that the
variables belong to some ellipsoid, with Ep = {x : Rn|xTP−1x 6 1} and
Q = APAT.

AN ELLIPSOID-AWARE HOARE LOGIC

To use ellipsoids to formally specify bounded input, bounded state
stability in.
Typically, an instruction S would be annotated in the following way:

{x ∈ EP} y = Ax + b {y− b ∈ EQ} (1)

where the pre- and post- conditions are predicates expressing that the
variables belong to some ellipsoid, with Ep = {x : Rn|xTP−1x 6 1} and
Q = APAT.

AN ELLIPSOID-AWARE HOARE LOGIC

The mathematical theorem that guarantees the relations is :

Theorem

If M, Q are invertible matrices, and
(x− c)TQ−1(x− c) 6 1 and
y = Mx + b
then
(y− b−Mc)T(MQMT)−1(y− b−Mc) 6 1

We will refer to it as the ellipsoid affine combination theorem.

DEDUCTIVE METHODS

Predicate transformer + external automatic decision procedure (e.g.
SMT solver)
Weakest precondition computation: Pre =⇒ WP(Code,Post)
expressiveness of predicate vs. power of decision procedures

In our case:
code: linear controller
Post, Pre: quadratic expressions

To ease the process, we can split proofs

c

WP(c,Post)

Post

In-the-middle annotations act as proof cuts.

DEDUCTIVE METHODS

Predicate transformer + external automatic decision procedure (e.g.
SMT solver)
Weakest precondition computation: Pre =⇒ WP(Code,Post)
expressiveness of predicate vs. power of decision procedures

In our case:
code: linear controller
Post, Pre: quadratic expressions

To ease the process, we can split proofs

c

c1

c2

WP(c,Post)

Post Post2

In-the-middle annotations act as proof cuts.

DEDUCTIVE METHODS

Predicate transformer + external automatic decision procedure (e.g.
SMT solver)
Weakest precondition computation: Pre =⇒ WP(Code,Post)
expressiveness of predicate vs. power of decision procedures

In our case:
code: linear controller
Post, Pre: quadratic expressions

To ease the process, we can split proofs

c

c1

c2

WP(c,Post)

Post

Cut =⇒ WP(c2,Post)

Post2

In-the-middle annotations act as proof cuts.

DEDUCTIVE METHODS

Predicate transformer + external automatic decision procedure (e.g.
SMT solver)
Weakest precondition computation: Pre =⇒ WP(Code,Post)
expressiveness of predicate vs. power of decision procedures

In our case:
code: linear controller
Post, Pre: quadratic expressions

To ease the process, we can split proofs

c

c1

c2

WP(c,Post)

Post

Cut =⇒ WP(c2,Post)

Pre =⇒ WP(c1,Cut)

Post2

In-the-middle annotations act as proof cuts.

DEDUCTIVE METHODS

Predicate transformer + external automatic decision procedure (e.g.
SMT solver)
Weakest precondition computation: Pre =⇒ WP(Code,Post)
expressiveness of predicate vs. power of decision procedures

In our case:
code: linear controller
Post, Pre: quadratic expressions

To ease the process, we can split proofs

c

c1

c2

WP(c,Post)

Post

Cut =⇒ WP(c2,Post)

Pre =⇒ WP(c1,Cut)

Post2
In-the-middle annotations act as proof cuts.

AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
matrices, vectors
properties over matrices
ellipsoids
link between C variables and matrices/vectors

//@ type matrix; type vector
ACSL

@ logic real mat_select(matrix A, integer i, integer j);
@ logic integer mat_row(matrix A);
@ logic integer mat_col(matrix A);

ACSL

AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
matrices, vectors
properties over matrices
ellipsoids
link between C variables and matrices/vectors

//@ type matrix; type vector
ACSL

@ logic real mat_select(matrix A, integer i, integer j);
@ logic integer mat_row(matrix A);
@ logic integer mat_col(matrix A);

ACSL

AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
matrices, vectors
properties over matrices
ellipsoids
link between C variables and matrices/vectors

inverse of a matrix A, mat_inverse(A) is defined using the predicate
is_invertible(A) as follows:

/*@ axiom mat_inv_select_i_eq_j:
@ ∀matrixA, integer i, j;
@ is_invertible(A) && i == j ==>
@ mat_select(mat_mult(A,mat_inverse(A)), i, j) = 1
@
@ axiom mat_inv_select_i_dff_j:
@ ∀matrixA, integer i, j;
@ is_invertible(A) && i! = j ==>
@ mat_select(mat_mult(A,mat_inverse(A)), i, j) = 0
@*/

ACSL

AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
matrices, vectors
properties over matrices
ellipsoids
link between C variables and matrices/vectors

Complex constructions or relations can be defined as uninterpreted
predicates.

The following predicate is meant to express that vector x belongs to
EP :
//@ predicate in_ellipsoid(matrix P, vector x);

ACSL

mat_of_array or vect_of_array, is used to associate an ACSL matrix type
to a C array.
//@ logic matrix mat_of_array{L}(float *A, integer row,
integer col);

ACSL

AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
matrices, vectors
properties over matrices
ellipsoids
link between C variables and matrices/vectors

Complex constructions or relations can be defined as uninterpreted
predicates.

The following predicate is meant to express that vector x belongs to
EP :
//@ predicate in_ellipsoid(matrix P, vector x);

ACSL

mat_of_array or vect_of_array, is used to associate an ACSL matrix type
to a C array.
//@ logic matrix mat_of_array{L}(float *A, integer row,
integer col);

ACSL

A PVS LIBRARY FOR ELLIPSOIDS

A NASA PVS Library to manipulate
matrices, vectors
ellipsoids
affine combination of ellipsoids (thm1)
S-procedure (thm2)

Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
[Vector[dom]->Vector[codom]] #]

PVS

L(n,m)(f) = (# rows:=m, cols:=n, matrix:=λ(j,i):
f‘mp(e(n)(i))(j) #)
T(n,m)(A) = (# dom:=n, codom:=m, mp:=λ(x,j): ΣA‘cols−1

i=0 (λ(i):
A‘matrix(j,i)*x(i) #))

PVS

Matrix_inv(n):TYPE = {A: Square | squareMat?(n)(A) and
bijective?(n)(T(n,n)(A))}

PVS

inv(n)(A) = L(n,n)(inverse(n)(T(n,n)(A)))
PVS

A PVS LIBRARY FOR ELLIPSOIDS

A NASA PVS Library to manipulate
matrices, vectors
ellipsoids
affine combination of ellipsoids (thm1)
S-procedure (thm2)

Vector_no_param: TYPE = [# length: posnat, vect:
vectors[length].Vector #]

PVS

in_ellipsoid?(P: Matrix, x:Vector_no_param):
MACRO bool =
IF x’length = P’cols AND P’cols=P’rows
THEN ((x’vect)*(P*(x’vect)) <=1)
ELSE FALSE
ENDIF

PVS

A PVS LIBRARY FOR ELLIPSOIDS

A NASA PVS Library to manipulate
matrices, vectors
ellipsoids
affine combination of ellipsoids (thm1)
S-procedure (thm2)

ellipsoid_affine_comb: LEMMA ∀ (n:posnat, Q, M:
SquareMat(n), x, y, b, c: Vector[n]):
bijective?(n)(T(n,n)(Q)) AND bijective?(n)(T(n,n)(M))
AND (x-c)*(inv(n)(Q)*(x-c))6 1
AND y=M*x + b
IMPLIES
(y-b-M*c)*(inv(n)(M*(Q*transpose(M)))*(y-b-M*c))6 1

PVS

USING FRAMA-C/JESSIE/WHY DO GENERATE PVS PROOF
OBJECTIVE

Generating PVS PO with
Frama-C/Jessie/Why:

www.frama-c.com (open
source C code analysis
framework)
axiomatize C semantics
into Why (Jessie)
WP computation (Why)
PVS backend to express PO

THEORY INTERPRETATION: MAPPING PVS CONCEPTS

Theory interpretation is a logical technique for relating one axiomatic
theory to another.

IMPORTING acsl_theory{{ matrix := Matrix,
vector := Vector_no_param,
vect_length := LAMBDA (v:Vector_no_param): v’length,
mat_row := LAMBDA (M:Matrix): M’rows,
mat_col := LAMBDA (M:Matrix): M’cols,
mat_mult := *,
in_ellipsoid := in_ellipsoid?
mat_inv := LAMBDA (M:Matrix): IF square?(M) THEN IF
bijective?(M’rows)(T(M’rows,M’rows)(M))
THEN inv(M’rows)(M)
ELSE M
ENDIF
ELSE M ENDIF }}

PVS

REFORMULATED PO

in_ellipsoid?(P_0, vect_of_array(xc, 2, floatP_floatM))))))
IMPLIES
in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatM0))

PVS

vect_of_array(yc, 2, floatP_floatM0)’vect =
Ac * vect_of_array(xc, 2, floatP_floatM)’vect

PVS

For both POs,
we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.

We must then discharge the verification conditions. This is done by using
PVS and our linear algebra extension of it.

REFORMULATED PO

in_ellipsoid?(P_0, vect_of_array(xc, 2, floatP_floatM))))))
IMPLIES
in_ellipsoid?(Q, vect_of_array(yc, 2, floatP_floatM0))

PVS

vect_of_array(yc, 2, floatP_floatM0)’vect =
Ac * vect_of_array(xc, 2, floatP_floatM)’vect

PVS

For both POs,
we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.
We must then discharge the verification conditions. This is done by using
PVS and our linear algebra extension of it.

SUMMARY

We have described a global approach to validate stability properties of C
code implementing controllers.

Our approach requires the code to be annotated by Hoare triples,
proving the stability of the control code using ellipsoid affine
combinations.
We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates.
Theory interpretation maps proof obligations generated from the code to
their equivalent in this PVS library.
This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.
Linear algebra PVS libraries can be used for the formal specification of
control theory properties

SUMMARY

We have described a global approach to validate stability properties of C
code implementing controllers.
Our approach requires the code to be annotated by Hoare triples,

proving the stability of the control code using ellipsoid affine
combinations.
We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates.
Theory interpretation maps proof obligations generated from the code to
their equivalent in this PVS library.
This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.
Linear algebra PVS libraries can be used for the formal specification of
control theory properties

SUMMARY

We have described a global approach to validate stability properties of C
code implementing controllers.
Our approach requires the code to be annotated by Hoare triples,
proving the stability of the control code using ellipsoid affine
combinations.

We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates.
Theory interpretation maps proof obligations generated from the code to
their equivalent in this PVS library.
This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.
Linear algebra PVS libraries can be used for the formal specification of
control theory properties

SUMMARY

We have described a global approach to validate stability properties of C
code implementing controllers.
Our approach requires the code to be annotated by Hoare triples,
proving the stability of the control code using ellipsoid affine
combinations.
We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates.
Theory interpretation maps proof obligations generated from the code to
their equivalent in this PVS library.

This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.
Linear algebra PVS libraries can be used for the formal specification of
control theory properties

SUMMARY

We have described a global approach to validate stability properties of C
code implementing controllers.
Our approach requires the code to be annotated by Hoare triples,
proving the stability of the control code using ellipsoid affine
combinations.
We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates.
Theory interpretation maps proof obligations generated from the code to
their equivalent in this PVS library.
This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.

Linear algebra PVS libraries can be used for the formal specification of
control theory properties

SUMMARY

We have described a global approach to validate stability properties of C
code implementing controllers.
Our approach requires the code to be annotated by Hoare triples,
proving the stability of the control code using ellipsoid affine
combinations.
We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates.
Theory interpretation maps proof obligations generated from the code to
their equivalent in this PVS library.
This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.
Linear algebra PVS libraries can be used for the formal specification of
control theory properties

SUMMARY

We have described a global approach to validate stability properties of C
code implementing controllers.
Our approach requires the code to be annotated by Hoare triples,
proving the stability of the control code using ellipsoid affine
combinations.
We have defined an ACSL extension to describe predicates over the code,
as well as a PVS library able to manipulate these predicates.
Theory interpretation maps proof obligations generated from the code to
their equivalent in this PVS library.
This mapping allows to discharge POs using the ellipsoid affine
combination theorem implemented in PVS.
Linear algebra PVS libraries can be used for the formal specification of
control theory properties

CONTENT

Need for non linear invariants

Proving stability at code level

Non linear invariant synthesis
Quadratic invariants for linear systems
Linear systems with guards
Beyond linear systems: polynomial controllers

Conclusion

PROVIDING TOOLS TO MANIPULATE/SYNTHESIZE NON LINEAR
INVARIANTS

Mathematical tools exist to deal with non linear arithmetic:
Linear systems admit quadratic invariants: use semi definite
programming with LMIs
Polynomial systems admitting polynomial invariants: use Bernstein
polynomials
More complex systems: other tools

Be careful: most of them rely on floating point computations
=⇒ find ways to validate the result

PROVIDING TOOLS TO MANIPULATE/SYNTHESIZE NON LINEAR
INVARIANTS

Mathematical tools exist to deal with non linear arithmetic:
Linear systems admit quadratic invariants: use semi definite
programming with LMIs
Polynomial systems admitting polynomial invariants: use Bernstein
polynomials
More complex systems: other tools

Be careful: most of them rely on floating point computations
=⇒ find ways to validate the result

CONTENT

Need for non linear invariants

Proving stability at code level

Non linear invariant synthesis
Quadratic invariants for linear systems
Linear systems with guards
Beyond linear systems: polynomial controllers

Conclusion

QUADRATIC INVARIANTS

Goal: characterize an ellipsoid such that it is a Lyapunov function for the
system
Control theorists rely on LMI and semi definite programming to generate
Lyapunov functions.
Let’s do the same.

Overall Method

1. First determine the shape of the ellipsoid by choosing a matrix P such
that ATP A− P ≺ 0.

2. then find the smallest possible ratio λ such that xTP x 6 λ is an
invariant.

x

y

is better than

x

y

METHODOLOGY - MULTIPLE APPROACHES

Definition (Semidefinite Programming)

Minimize a linear objective function of variables yi
under constraint

A0 +

k∑

i=1

yiAi � 0

where the Ai are known matrices
and “P � 0“ means xTP x > 0 for all vector x.

Heuristics

1. Minimizing Condition Number: finding the roundest possible
solution

I � P � rI.

2. Preserving the shape: minimizing r s.t.

ATP A− rP � 0.

3. Handle the inputs (avoid the scale phase)

ROUNDING ERRORS

Actual computations are carried out with floating point numbers
leading to rounding errors.

Example
int i = 0;
float x = 0;
while (i < 1000000) {
x += 0.1;
++i;

}
printf("%.0f\n", x);

Gives 100958!

We have to distinguish two problems:
rounding errors in the analyzed program;
and rounding errors in the analyzer itself.

ROUNDING ERRORS

Actual computations are carried out with floating point numbers
leading to rounding errors.

Example
int i = 0;
float x = 0;
while (i < 1000000) {
x += 0.1;
++i;

}
printf("%.0f\n", x);

Gives 100958!

We have to distinguish two problems:
rounding errors in the analyzed program;
and rounding errors in the analyzer itself.

ROUNDING ERRORS

Actual computations are carried out with floating point numbers
leading to rounding errors.

Example
int i = 0;
float x = 0;
while (i < 1000000) {
x += 0.1;
++i;

}
printf("%.0f\n", x);

Gives 100958!

We have to distinguish two problems:
rounding errors in the analyzed program;
and rounding errors in the analyzer itself.

ROUNDING ERRORS IN THE PROGRAM

Knowing the precision of the floating point system used
and the dimensions of matrices A and B of the analyzed system,
we can compute two reals a and b such that if

(Ax + Bu)TP (Ax + Bu) 6 λ

then
fl(Ax + Bu)TP fl(Ax + Bu) 6 a2λ+ 2ab

√
λ+ b2

with fl(e) the computation of e in any order
and with any IEEE754 rounding mode
(in practice a is near from 1 and b from 0).

SOUNDNESS OF THE RESULT

Checking the soundness of the result basically amounts to
checking positive definiteness of a matrix.
This is done by carefully bounding the rounding errors
in a Cholesky decomposition.
Hence an efficient soundness check (in O

(
n3
)

for an n× n matrix).

EXPERIMENTAL RESULTS

Shape Bounds Valid.

Ex. 1
n=2, 1 input

0.07 [140.4; 189.9] 0.40 0.01
0.16 [22.2; 26.5] 0.28 0.01
0.23 [16.2; 17.6] 0.20 0.01

Ex. 2
n=4, 1 input

0.09 [18.1; 25.2; 24.3; 33.7] 0.40 0.01
0.27 [6.3; 7.7; 2.2; 3.4] 0.27 0.02
0.40 [1.7; 2.0; 2.2; 2.5] 0.21 0.01

Ex. 3 lead-lag
controller
n=2, 1 input

0.07 ⊥ ⊥ ⊥
0.17 [36.2; 36.1] 0.33 0.01
0.20 [38.8; 20.3] 0.20 0.01

Ex. 4 LQG
regulator
n=3, 1 input

0.09 [1.2; 0.9; 0.5] 0.32 0.02
0.19 [0.9; 0.9; 0.9] 0.26 0.01
0.24 [0.7; 0.4; 0.3] 0.22 0.02

Analysis times (in s) and bounds compared for the three heuristics.

EXPERIMENTAL RESULTS, CONTINUED

Shape Bounds Valid.
Ex. 5 coupled
mass system
n=4, 2 inputs

0.09 [9.8; 8.9; 11.0; 16.8] 0.43 0.03
0.24 [5.7; 5.6; 6.4; 10.1] 0.33 0.03
0.48 [5.0; 4.9; 4.8; 4.7] 0.22 0.03

Ex. 6 Butterworth
low-pass filter
n=5, 1 input

0.10 [7.5; 8.7; 6.1; 7.0; 6.5] 0.38 0.03
0.32 [3.6; 5.0; 4.7; 8.1; 8.9] 0.29 0.02
0.78 [2.3; 1.1; 1.9; 2.0; 2.9] 0.24 0.03

Ex. 7 Dampened
oscillator
n=2, no input

0.07 [1.7; 2.1] 0.23 0.01
0.15 [2.0; 2.0] 0.20 ⊥
0.27 [1.5; 1.5] 0.16 0.01

Ex. 8 Harmonic
oscillator
n=2, no input

0.08 [1.5; 1.5] 0.23 0.01
0.24 [1.5; 1.5] 0.20 ⊥
0.15 [1.5; 1.5] 0.16 0.01

Analysis times (in s) and bounds compared for the three heuristics.

EXPERIMENTAL RESULTS, CONTINUED

(a) Ex. 1 (b) Ex. 2 (c) Ex. 3 (d) Ex. 4

Figure: Comparison of obtained ellipsoids by the three methods from lighter to
darker, plus a random simulation trace ((b) and (d), being of dimension greater than
2, are cuts along planes containing the origin and two vectors of the canonical base,
to show how the three different templates compare together).

EXPERIMENTAL RESULTS, END

(a) Ex. 5 (b) Ex. 6 (c) Ex. 7 (d) Ex. 8

Figure: Comparison of obtained ellipsoids by the three methods from lighter to
darker, plus a random simulation trace (a) and (b), being of dimension greater than
2, are cuts along planes containing the origin and two vectors of the canonical base,
to show how the three different templates compare together).

CONTENT

Need for non linear invariants

Proving stability at code level

Non linear invariant synthesis
Quadratic invariants for linear systems
Linear systems with guards
Beyond linear systems: polynomial controllers

Conclusion

LINEAR SYSTEMS WITH GUARDS: EXTENSION TO POLICY
ITERATION

Real systems are not purely linear, they use saturations.

Extension to policy iterations

Build the control flow graph of the program
Rely on previous approach to compute a set of appropriate templates
Iterate on program policies with synthesized templates.

1 2

0 6 x 6 1
0 6 y 6 1 , id

0, 9 6 in 6 1 ,
x := 10in− 9
y := 10in− 9

0 6 in < 0, 9 ,
x := 0.2x− 0.7y + 0.5in
y := 0.7x + 0.2y + 0.5in

CONTENT

Need for non linear invariants

Proving stability at code level

Non linear invariant synthesis
Quadratic invariants for linear systems
Linear systems with guards
Beyond linear systems: polynomial controllers

Conclusion

BEYOND LINEAR SYSTEMS

Controllers are rarely linear:
use of trigonometric functions, exponential ...
use of polynomials

In static analysis, most complex domains only deal with quadratic
properties, using semi definite programming.

Proposal: use Bernstein polynomials to bound polynomial templates.

POLYNOMIAL TEMPLATE DOMAINS

Definition

Given a set P = { p1, . . . , pk } of k ∈ N polynomials over n ∈ N variables,
an abstract value is defined as a tuple (b1, . . . , bk) ∈ R̄k.

Concretization

γ (b1, . . . , bk) =

(x1, . . . , xn) ∈ Rn

∣∣∣∣∣∣

p1 (x1, . . . , xn) 6 b1
∧ . . . ∧
pk (x1, . . . , xn) 6 bk

.

Example

x 6 1.001
−x 6 0

y 6 0.833
−y 6 0

y− 6x3 + 9x2 − 3.2x 6 0.5 x

y

0 1.001

0.5

(1.001, 0, 0.833, 0, 0.5) with P = { x,−x, y,−y, y− 6x3 + 9x2 − 3.2x }.

BERNSTEIN POLYNOMIALS AS A POLYNOMIAL TEMPLATE
DOMAIN ENGINE

Approach: express program semantics as an optimization problem

max {p (x1, . . . , xn) | q1 (x1, . . . , xn) 6 b1 ∧ . . . ∧ qk (x1, . . . , xn) 6 bk}

Bernstein polynomials

Bernstein basis:

Bi,n(x) =

(
n
i

)
xi(1− x)n−i

Polynomials: every polynomial can be expressed in Bernstein basis

p =

n∑

i=0

bp,iBn,i.

Bound properties: For any polynomial p, for all x ∈ [0, 1],

min
{

bp,i
∣∣ 0 6 i 6 n

}
6 p(x) 6 max

{
bp,i
∣∣ 0 6 i 6 n

}
.

A TEMPLATE ABSTRACT DOMAIN

Express each program construct as an optimization problem.

Guards
Jr(x1, . . . , xn) 6 0K] (b1, . . . , bk) = (b′1, . . . , b

′
k)

with, for i ∈ J1, kK: b′i = max

pi (x1, . . . , xn)

∣∣∣∣∣∣∣∣

p1 (x1, . . . , xn) 6 b1
∧ . . . ∧
pk (x1, . . . , xn) 6 bk ∧
r (x1, . . . , xn) 6 0

Assignments

Jxi0 := r(x1, . . . , xn)K] (b1, . . . , bk) = (b′1, . . . , b
′
k)

with, for i ∈ J1, kK:

b′i = max

pi[xi0 ← r(x1, . . . , xn)] (x1, . . . , xn)

∣∣∣∣∣∣

p1 (x1, . . . , xn) 6 b1
∧ . . . ∧
pk (x1, . . . , xn) 6 bk

EXAMPLE

x := 0; y := ?(0, 0.5);
while x 6 1 do

y := y + 0.001× (18x2 − 18x + 3);
x := x + 0.001;
if y 6 0 then y := 0 else y := y fi

od

Loop invariant at loop head

x 6 1.001
−x 6 0

y 6 0.833
−y 6 0

y− 6x3 + 9x2 − 3.2x 6 0.5 x

y

0 1.001

0.5

(1.001, 0, 0.833, 0, 0.5) with P = { x,−x, y,−y, y− 6x3 + 9x2 − 3.2x }.

SOUNDNESS OF THE RESULT

All computation were done in floats

PVS NASA library for Bernstein polynomials:
Checking that the floating point result is a sound maximum value in real
computations.

See NASA Langley Grizzly

CONTENT

Need for non linear invariants

Proving stability at code level

Non linear invariant synthesis
Quadratic invariants for linear systems
Linear systems with guards
Beyond linear systems: polynomial controllers

Conclusion

SUMMARY

Identified need for avionics software: non linear reasoning
Proposals:

Proof-assistant that is able to discharge proofs about ellipsoids
∗ Backend of the Geneauto translation from Simulink + Proof to C code
∗ Targeting a fully automatic proof replay at C code level

Abstract domains building non linear abstract values
∗ quadratic invariants for linear controllers (automatic)
∗ quadratic invariants for linear controllers with guards (automatic)
∗ polynomial invariants for polynomial controllers (need to be provided with

templates)

Thanks a lot to all people that participated to these works: Adrien
Champion, Rémi Delmas, Éric Féron, Heber Herencia-Zapana, Romain
Jobredeaux, Temesghen Kahsai, Steve Miller, Sam Owre, Pierre Roux,
Cesare Tinelli, Lucas Wagner, Tim Wang, Mike Whalen.

