Formal for Everyone

Challenges in Achievable Multicore
Design and Verification

FMCAD 25 Oct 2012
Daryl Stewart

®
The Architecture for the Digital World® ARM

ARM is an IP company

= ARM licenses technology to a network of more than 1000
partner companies within the ARM® Connected Community®,
spanning the semiconductor supply chain

= ARM provides developers with intellectual property (IP)
solutions in the form of
= CPUs/GPUs
= Physical IP
= Cache and SoC designs
= Application-specific standard products (ASSPSs)
= Related software and development tools

®
The Architecture for the Digital VWorld® ARM

Our Partners Supply the Silicon

= ARM silicon partners supply chips into 90% of smart phones,
80% of digital cameras, and 28% of all electronic devices —
over 20 billion chips to date.

= ARM technology is used in a wide variety of applications
ranging from mobile handsets and digital set top boxes to car
braking systems and network routers.

Data Processing: Processors and Multimedia
[Applications | [Real-Time] [Microcontroller | [Graphics I [Video]

System Level Integration: Fabric

Observe (CoreSight) Store Move
Debug and Trace IP | |2 Cache, Memory Controfler, | Network Interconnect

System Prototyping: System Development
I Fast Models H Hardware Platforms H Debug and Trace I

Services: Support and Active Assist

Tools: Software Development and Debug

System Prototyping: Physical IP
| Logic] [Memory I l Interface]

®
The Architecture for the Digital World® ARM

ARM11™ MPCore™ processor

= 800MHz to 1 GHz+ in 65G at under 2 mm?
=] to 4 cores in an SMP cluster
= 32-bit SIMD for media processing

- Physically tagged caches e e m ===
: . I]
= Tightly coupled memories o 5
= ARM TrustZone™ security = “ [: | | B
] P =l =l P
E lIRQ IRQ IRQ IRQ j
] vy 1y v [
- -
Hhinkinginging:

O

W< , N
ks 1D e Sno0p Conre U (1) ‘]
I]

I U D DN B B D B O B e e

®
The Architecture for the Digital World® ARM

ARM Cortex™-A Series processors

= Applications processors for mobile computing

= Single to Quad core clusters
= Fully coherent L1 cache via Snoop Control Unit
= Accelerator Coherence Port shares cache with peripherals

= Multi cluster coherency with AMBA Coherency Extension

= Heterogeneous system with
Cortex-Al15/Cortex-A7
processor clusters:

GIC-400

‘ Interrupts 1 1 Interrupts
“ A R M b I g . L I TT L E ™ Cor(t:i):;ms Cor(t:z):-ems Co(r;ts:(e-A7 Co(r:ts::A7
. 10
processing’ . - Gonern
= AMBA®4 ACE™ i § i i
Interconnect CCI-400 (Cache Coherent Interconnect)
= Shared interrupt 4 ¥
Memory Controller Ports System Port

controller

®
.. ’ The Architecture for the Digital VWorld® ARM

FORMAL IN ARM

®
The Architecture for the Digital World® ARM

Avoidance, Hunting, Absence, Analysis

Technique

Advantages

Avoiding Drawbacks

Bug Avoidance

* Improve quality before
property checks are run

* Improve quality during
design
* Biggest ROI

Usually at block level
— E.g. visualisation by designer

May not involve tooling
— E.g. formal modeling, proofs

Bug Hunting
« Looking for bugs

* Do not worry if proofs do not
complete

« Aim for “No failures”

« Ease of set-up
e Corner cases

* Low cost, starts early
in design process

False failures
— Run at higher structural level
— Only leads to wasted debug

Non-exhaustive checks
— full proofs are welcome, but not required

Non-uniform run times
— checks are run just for the time available.

Bug Absence

« Aim to get a “complete” set of
properties

« Aim to prove properties

— under certain constraints

* Only way to get 100%
assurance

« Cover corner cases

Non-uniform run times
— Use different proof engines with the tool

— Use “invariants” (helper properties) (this adds non-
uniform/non-predictable engineering time)

— Use safe abstractions

— Prove under certain condition (Add extra
constraints)

Bug Analysis
* For bugs in FPGA prototypes

or in Silicon

— write symptom of bug as a property,
generate waveform

+ Ease of setup if
constraints exist

« Can investigate silicon
bugs
« Can confirm fix

Interactive generation of constraints to
generate legitimate failure scenario

®
The Architecture for the Digital VWorld® ARM

Formal in the Design Flow

= Formal used at
= | ow-level by designers: design bring-up & embedded properties
= Medium-level by validation engineers: end-to-end properties
= High-level by architects: architectural formal specification and validation

. : . LAC
Architecture |...... Micro-architecture
definition definition _ |
Design
Verification Maturity === Support
Design Review
Bring-up
Low-level assertion flow Formal
P g | £ errata
= I Interface | X-propagation analysis
ST specifications /
specification Proof
.and. U-arch explorations convergence
validation

\ techniques w
\ - High-level proofs

Project timeline

®
The Architecture for the Digital VWorld® ARM

RTL Bugs Found by Method

m Autochecks
m DAPTB
m flycatcher_dvs
= Formal
Integration Kit
ELint
=EMBTB
OS / Debug Tools
m Other
= Partner raised
Integration EGEENEN
= SBTB
® Speculation
Synthesis
® Toplevel s/w Config
vém avs
Seg-X
Power Intent Checks

N\

Constrained Random

1,439K Hours

The Architecture for the Digital VWorld®

Bottom Up Formal

Apps = Software Tools
l T = Each level relies on levels around it
AND the Architectural behaviour
Kernel .
= |n return the Architecture expects
certain behaviour
Drivers
= Architectural behaviour
Ea |= Arch — P, = E.g. Deadlock freedom, power modes,
Epgggﬁees Prope?tzzz COherenCy
|= pArch — (F,
Refiner \J vach @ Combine techniques to give chain
roperties Properties o)
ST of verification from RTL to Apps
E —
Interface R |= @ Design
Properties Properties

®
l The Architecture for the Digital VWorld® ARM

h

RTL verification

APPS = Microarchitectural specification for
designers is in natural language
Kernel = RTL level assertions as standard
= \Written by designers
rlvers = Difficult to write end to end
properties in terms of RTL state
= Architectural state is smeared across
. Ea |= Arch — P, - time and space, or implicit
nvelope rc
iiaele ~oeeries — m | Jse of abstract models written in
uArch — (P, SystemVerilog with refinement to
??;g]:rtles Proptla?ttl‘zz RTL Ievel
= Describing lifecycle of transactions
- rface |= RTL — Demgﬂ rather than block functionality
Properties Properties

®
F

Formal for Designers

/7 Early bug discovery

/ /7 Higher quality sooner
/ m Testbench
\ ‘ I l m Properties

®
The Architecture for the Digital VWorld® ARM

Proof Progress and Scaling

= Historically: hard to track progress of formal proof coverage

= ARM developed progress metrics for proofs and methodology and
deployed during a Bug Analysis project

= Technique for partial proof allowing identification of bug free code
= Enables focussed review and simulation for weakest blocks

= Historically: architectural properties involve too much RTL
detall for tools to handle
= Developed micro architectural model of SCU
= SCU Transaction Ordering proven on this specification model
= RTL shown to meet specification, hence RTL preserves transaction
ordering

= These demonstrate proof is now measurable and scalable

1‘ | The Architecture for the Digital World® ARM®

Partial Proof

Unproven lemma D focuses
Simulation and Review

®
The Architecture for the Digital World® ARM

Micro Architectural Models

= Formal Model
= An abstraction expressed as transactors, FSMs, assumptions...
= Provides vocabulary of abstract events
= Desired Model Properties
= Properties which should arise from a correct implementation
= Safety or liveness assertions

= High Level Behaviour
= What implementation is sufficient?
= assume to prove formal model exhibits desired properties
= assert on RTL to deduce that it satisfies specification

= Covers
= sanity check the formal specification
= RTL bring up

B ®
’ The Architecture for the Digital VWorld® ARM

Micro Architectural Models

High Level Behaviours imply Desired Properties

®
The Architecture for the Digital World® ARM

Architecture

APPS ® The architecture defines several
envelopes of reliable behaviour:
Kernel = |SA — programmer’s view of instruction

= \Weak Memory — implementation
freedom, unintuitive behaviour

I'IVGI’S = Coherent interconnect — AMBA4 ACE
transactions

= Power m — domains, requir
e rropertes = Security — Trustzone
WArch — P = Debug and trace behaviour
e pmp‘;ﬁﬁ'; = How to verify individually and
Interdependently?
';‘fj;‘jﬁ,is \‘@0323122 = How to specify non-determinism?

®
F

Architecture Validation

= SystemVerilog model of AMBA4 ACE

= Deadlock discovered in draft specification using JasperGold
= 4 master system, unlikely to find by hand

= Murphi model of AMBA4 ACE master with bridge to
alternative interface for

= Protocol deadlock 182

= System coherency

2 1 3 hours
= PReach Murphi 5 5
= 25 threads, 1Tb 3 1
= Smallest case completed 3 2
= Several bugs found during 4 1
development 4 5

- ®
l The Architecture for the Digital World® ARM

.

Systems and Software

APPS = System level testing
= Requires accurate models of expected
behaviour

Kernel

= Relate testing to coverage of
specification

rlvers
= What useful IP can we supply to
= Arch — P, our partners for software
E?:;é?ﬁss Prope?tll.zz development?

|= uArch — (P,
Refine MArch
Properties Properties
RTL —
Interface Design
Properties Properties

®
The Architecture for the Digital VWorld® ARM

Sequentially Consistent execution

ARM SB Observe PO end with R1=0 and P1 end with R1=1
"PodWR Fre PodWR Fre"

{R2=x; R3=y;} y=0 x=0 {R3=y; R2=x;}
PO P1
MOV RO, #1 MOV RO, #1
STR RO, [R2]| Wx1 Wyl STR RO, [R3]
PodwWR PodwWR
LDR R1, [R3]'RyO Rx1Y DR R1, [R2]

Program order candidate relations
PodWR = Program order different address Write then Read

= Target Reads its value 'rom a source on an external processor
= Source reads From a write that precedes target (on an external processor) in coherence order

” | ®
u ‘ The Architecture for the Digital World® ARM

Relaxing candidate relations

ARM SB Observe both threads ending with R1=0

PodWR Fre PodWR Fre Relaxing PodWR breaks the cycle

{R2=x; R3=y;} y=0 x=0 {R3=y; R2=x;}
PO P1
MOV RO, #1 MOV RO, #1
STR RO, [R2]| Wx1 Wyl STR RO, [R3]
PodwWR PodwWR
LDR R1, [R3]'RyO Rx0Y DR R1, [R2]

Program order candidate relations
PodWR = Program order different address Write then Read

= Target Reads its value 'rom a source on an external processor
= Source reads From a write that precedes target (on an external processor) in coherence order

" ‘ ®
u ‘ The Architecture for the Digital World® AR I

The ARM ARM

“¢ ARCHITECTURE
’ REFERENCE
MANUAL

SECORD Eprion

.

Pavip SeaL

®
The Architecture for the Digital World® ARM

ARMv7 specification

Encoding A1 ARMv4* ARMvST*, ARMve*, ARMvT
ADC{5}<C> <Rd>,<Rn>,<Rm={,<shift=}

313020 38 27 26 25 M4 232221 20 19 18 17 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1 O
cond O o000 1 018 Rn Rd imm35 type |0 Rm

if Rd == *1111" && 5 == ‘1" then SEE SUBS PC, LR and related instructions;
d = UInt{Rd); m = UInt(Rn); m = ULnt(Rm); setflags = (5 == *1"};
(shift_t, shift_n) - DecodeImmshift(type, imm5);

Assembler syntax

ADC{5}eCreq> {<Rd=,} <Rn», <Rm> {,<shift=}

Opetration

if ConditionPassed() then
EncodingSpecificOperations();
shifted - Shift(R[m], shift_t, shift_n, AP5R.(C);
(result, carry, overfiow) - AddWithCarry(R[n], shifted, APSR.C);
if d == 15 then S/ Can only occur for ARM encoding
ALUWritePC(result); [/ setflags 15 always FALSE here
glze
R[d] = result;
if setflags then
APSR.N = result<3il>;
APSR.Z = IsferoBit(result);
APSR.C = carry;
APSR.V = overflow;

h ®
k‘_ ‘ The Architecture for the Digital World® ARM

ARMv7 support functions

(5RType, integer) DecodeImmShift{bits(2) type, bits(5) 1mm5}‘<3;

Bounded Precision Ints

case type of
when “0@°
shift_t = SRType_L5L; shift_n = UImt(immS);
when 01" ..
shift_t - SRType_LSR; shift_n - if immS —- 00000 then 32 else Ulnt(imms): Unbounded Precision Ints
when “10' _ . _ (and Rationals)
shift_t - SRType_ASR; shift_n - if imm5 —- *@@@80@" then 32 else UImt(imms);
when *11°
if imm5 -- ‘@0000° then
shift_t - SRType RRX; shift_n - 1; € Type Inference
glse

shift_t = SRType_ROR; _shift_m = UInt(imm5);
~

return (shift_t, shift_n); Enumerations

(bits{N), bit) Shift_C{bits(N)

SEType type, integer amoumnt,
assert !(type == SRType_R :

Indentation-based Syntax

if amount — @ then
(result, carry_out) - (value, carry_in);
glse
case type of
when SRType_LSL
(result, carry_out) = L5L_C{value,
when SRType_LSRK
(result, carry_out) = LSR_C{value, amount);
when SRType_ASR
(result, carry_out)} = ASR_C{value, amount);
when SRType_ROR
(result, carry_out) = ROR_C(value, amount);
when SRType_REX .
(result, carry_out) - RRX_C(value, carry_in); Exceptions

J ®
| ‘ The Architecture for the Digital World® ARM

Dependent Types

amount);

Imperative

return (result, carry_out);

What ARM uses ISA spec for

« Design

* Licensing

« Validation
« Test suites
« Test tools

#%{ ARCHITECTURE * Design
- REFERENCE . .
» Validation

MANUAL

e

« Asm/dasm/Id
« Compiler
« Debugger
 Validation

®
The Architecture for the Digital World® ARM

Summary

= “Systems design today is on the same level of development
as mechanics in the middle ages - based on experiences with
no formal theory of design.” J. Sifakis FMCAD 2010

= We have made good progress on pieces of the puzzle,
designers are turning to formal to relieve the pain

= A combination of tools and techniques
= Use those best suited to each problem domain

= Must be able to relate to each other, and simulation
= The system design does not end with us — enable partners

®
. oo The Architecture for the Digital VWorld® ARM

THE END

®
The Architecture for the Digital World® ARM

