
1

Formal for Everyone
Challenges in Achievable Multicore

Design and Verification

FMCAD 25 Oct 2012

Daryl Stewart

2

ARM is an IP company

 ARM licenses technology to a network of more than 1000

partner companies within the ARM® Connected Community®,

spanning the semiconductor supply chain

 ARM provides developers with intellectual property (IP)

solutions in the form of

 CPUs/GPUs

 Physical IP

 Cache and SoC designs

 Application-specific standard products (ASSPs)

 Related software and development tools

3

Our Partners Supply the Silicon

 ARM silicon partners supply chips into 90% of smart phones,

80% of digital cameras, and 28% of all electronic devices –

over 20 billion chips to date.

 ARM technology is used in a wide variety of applications

ranging from mobile handsets and digital set top boxes to car

braking systems and network routers.

4

 800MHz to 1 GHz+ in 65G at under 2 mm2

 1 to 4 cores in an SMP cluster

 32-bit SIMD for media processing

 Physically tagged caches

 Tightly coupled memories

 ARM TrustZone™ security

ARM11™ MPCore™ processor

5

 Heterogeneous system with

Cortex-A15/Cortex-A7

processor clusters:

“ARM big.LITTLE™

processing”

 AMBA®4 ACE™

interconnect

 Shared interrupt

controller

ARM Cortex™-A Series processors

 Applications processors for mobile computing

 Single to Quad core clusters

 Fully coherent L1 cache via Snoop Control Unit

 Accelerator Coherence Port shares cache with peripherals

 Multi cluster coherency with AMBA Coherency Extension

6

FORMAL IN ARM

7

Avoidance, Hunting, Absence, Analysis
Technique Advantages Avoiding Drawbacks

Bug Avoidance

• Improve quality before

property checks are run

• Improve quality during

design

• Biggest ROI

Usually at block level
– E.g. visualisation by designer

May not involve tooling
– E.g. formal modeling, proofs

Bug Hunting

• Looking for bugs

• Do not worry if proofs do not

complete

• Aim for “No failures”

• Ease of set-up

• Corner cases

• Low cost, starts early

in design process

False failures
– Run at higher structural level

– Only leads to wasted debug

Non-exhaustive checks
– full proofs are welcome, but not required

Non-uniform run times
– checks are run just for the time available.

Bug Absence

• Aim to get a “complete” set of

properties

• Aim to prove properties

– under certain constraints

• Only way to get 100%

assurance

• Cover corner cases

Non-uniform run times
– Use different proof engines with the tool

– Use “invariants” (helper properties) (this adds non-

uniform/non-predictable engineering time)

– Use safe abstractions

– Prove under certain condition (Add extra

constraints)

Bug Analysis

• For bugs in FPGA prototypes

or in Silicon
– write symptom of bug as a property,

generate waveform

• Ease of setup if

constraints exist

• Can investigate silicon

bugs

• Can confirm fix

Interactive generation of constraints to

generate legitimate failure scenario

8

Formal in the Design Flow

 Formal used at

 Low-level by designers: design bring-up & embedded properties

 Medium-level by validation engineers: end-to-end properties

 High-level by architects: architectural formal specification and validation

Architecture

definition

Micro-architecture

definition
Design

Verification Maturity Support

X-propagation

Low-level assertion flow Formal

errata

analysis

High-level proofs

LAC

Design

Bring-up
Review

Project timeline

Proof

convergence

techniques

Formal

specification

and

validation
U-arch explorations

Interface

specifications

9

RTL Bugs Found by Method

2K Hours

1,439K Hours

ARM1 3 24K T 6 My

Cortex-M0+ 20nm 32K T 11 My

Autochecks

DAPTB

flycatcher_dvs

Formal

Integration Kit

Lint

MBTB

OS / Debug Tools

Other

Partner raised

Review

SBTB

Speculation

Synthesis

Toplevel s/w Config

v6m avs

Seq-X

Power Intent Checks

Constrained Random

AVS

Reviews

DVS

Formal

Integration

10

Bottom Up Formal

 Software Tools

 Each level relies on levels around it

AND the Architectural behaviour

 In return the Architecture expects

certain behaviour

 Architectural behaviour

 E.g. Deadlock freedom, power modes,

coherency

 Combine techniques to give chain

of verification from RTL to Apps

11

RTL verification

 Microarchitectural specification for

designers is in natural language

 RTL level assertions as standard

 Written by designers

 Difficult to write end to end

properties in terms of RTL state

 Architectural state is smeared across

time and space, or implicit

 Use of abstract models written in

SystemVerilog with refinement to

RTL level

 Describing lifecycle of transactions

rather than block functionality

12

Formal for Designers

Early bug discovery

Higher quality sooner

13

Proof Progress and Scaling

 Historically: hard to track progress of formal proof coverage

 ARM developed progress metrics for proofs and methodology and

deployed during a Bug Analysis project

 Technique for partial proof allowing identification of bug free code

 Enables focussed review and simulation for weakest blocks

 Historically: architectural properties involve too much RTL

detail for tools to handle

 Developed micro architectural model of SCU

 SCU Transaction Ordering proven on this specification model

 RTL shown to meet specification, hence RTL preserves transaction

ordering

 These demonstrate proof is now measurable and scalable

14

Partial Proof

Unproven lemma D focuses

Simulation and Review

15

Micro Architectural Models

 Formal Model

 An abstraction expressed as transactors, FSMs, assumptions…

 Provides vocabulary of abstract events

 Desired Model Properties

 Properties which should arise from a correct implementation

 Safety or liveness assertions

 High Level Behaviour

 What implementation is sufficient?

 assume to prove formal model exhibits desired properties

 assert on RTL to deduce that it satisfies specification

 Covers

 sanity check the formal specification

 RTL bring up

16

Micro Architectural Models

Model

RTL

High Level Behaviours imply Desired Properties

17

Architecture

 The architecture defines several

envelopes of reliable behaviour:

 ISA – programmer’s view of instruction

 Weak Memory – implementation

freedom, unintuitive behaviour

 Coherent interconnect – AMBA4 ACE

transactions

 Power modes – domains, required

functionality

 Security – Trustzone

 Debug and trace behaviour

 How to verify individually and

interdependently?

 How to specify non-determinism?

18

Architecture Validation

 SystemVerilog model of AMBA4 ACE

 Deadlock discovered in draft specification using JasperGold

 4 master system, unlikely to find by hand

 Murphi model of AMBA4 ACE master with bridge to

alternative interface for

 Protocol deadlock

 System coherency

 PReach Murphi

 25 threads, 1Tb

 Smallest case completed

 Several bugs found during

development

Master

nodes

IDs Result

2 1 3 hours

2 2 -

3 1 -

3 2 -

4 1 -

4 2 -

19

Systems and Software

 System level testing

 Requires accurate models of expected

behaviour

 Relate testing to coverage of

specification

 What useful IP can we supply to

our partners for software

development?

20

Sequentially Consistent execution

ARM SB

"PodWR Fre PodWR Fre"

 {R2=x; R3=y;}

 P0

 MOV R0, #1

 STR R0, [R2]

 LDR R1, [R3]

 MOV R0, #1

 STR R0, [R3]

 LDR R1, [R2]

 {R3=y; R2=x;}

 P1

Observe P0 end with R1=0 and P1 end with R1=1

Ry0 Rx1

y=0 x=0

Wx1 Wy1

PodWR PodWR

Rfe

Program order candidate relations

PodWR = Program order different address Write then Read

Coherency ordering (Communication) relations

Rfe = Target Reads its value from a source on an external processor

Fre = Source reads From a write that precedes target (on an external processor) in coherence order

Fre

Rf

21

Relaxing candidate relations

ARM SB

"PodWR Fre PodWR Fre"

 {R2=x; R3=y;}

 P0

 MOV R0, #1

 STR R0, [R2]

 LDR R1, [R3]

 MOV R0, #1

 STR R0, [R3]

 LDR R1, [R2]

 {R3=y; R2=x;}

 P1

Observe both threads ending with R1=0

Ry0 Rx0

y=0 x=0

Wx1 Wy1

PodWR PodWR

Fre Fre

Rf Rf

Program order candidate relations

PodWR = Program order different address Write then Read

Coherency ordering (Communication) relations

Rfe = Target Reads its value from a source on an external processor

Fre = Source reads From a write that precedes target (on an external processor) in coherence order

Relaxing PodWR breaks the cycle

22

The ARM ARM

23

ARMv7 specification

24

ARMv7 support functions

Type Inference

Dependent Types

Enumerations

Unbounded Precision Ints

(and Rationals)

Bounded Precision Ints

Indentation-based Syntax

Imperative

Exceptions

25

What ARM uses ISA spec for

CPU

• Design

• Licensing

• Validation

• Test suites

• Test tools

Models
• Design

• Validation

Dev

Tools

• Asm/dasm/ld

• Compiler

• Debugger

• Validation

26

Summary

 “Systems design today is on the same level of development

as mechanics in the middle ages - based on experiences with

no formal theory of design.” J. Sifakis FMCAD 2010

 We have made good progress on pieces of the puzzle,

designers are turning to formal to relieve the pain

 A combination of tools and techniques

 Use those best suited to each problem domain

 Must be able to relate to each other, and simulation

 The system design does not end with us – enable partners

27

THE END

