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ARM is an IP company 

 

 ARM licenses technology to a network of more than 1000 

partner companies within the ARM® Connected Community®, 

spanning the semiconductor supply chain 

 

 ARM provides developers with intellectual property (IP) 

solutions in the form of 

 CPUs/GPUs 

 Physical IP 

 Cache and SoC designs 

 Application-specific standard products (ASSPs) 

 Related software and development tools 
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Our Partners Supply the Silicon 

 ARM silicon partners supply chips into 90% of smart phones, 

80% of digital cameras, and 28% of all electronic devices – 

over 20 billion chips to date. 

 ARM technology is used in a wide variety of applications 

ranging from mobile handsets and digital set top boxes to car 

braking systems and network routers. 



4 

 800MHz to 1 GHz+ in 65G at under 2 mm2 

 1 to 4 cores in an SMP cluster 

 32-bit SIMD for media processing 

 Physically tagged caches 

 Tightly coupled memories 

 ARM TrustZone™ security 

ARM11™ MPCore™ processor 
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 Heterogeneous system with  

Cortex-A15/Cortex-A7  

processor clusters:  

“ARM big.LITTLE™  

processing” 

 AMBA®4 ACE™ 

interconnect 

 Shared interrupt 

controller 

ARM Cortex™-A Series processors 

 Applications processors for mobile computing 

 Single to Quad core clusters 

 Fully coherent L1 cache via Snoop Control Unit 

 Accelerator Coherence Port  shares cache with peripherals 

 Multi cluster coherency with AMBA Coherency Extension 
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FORMAL IN ARM 
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Avoidance, Hunting, Absence, Analysis 
Technique Advantages Avoiding Drawbacks 

Bug Avoidance 

• Improve quality before 

property checks are run 

• Improve quality during 

design 

• Biggest ROI 

Usually at block level 
– E.g. visualisation by designer 

May not involve tooling 
– E.g. formal modeling, proofs 

Bug Hunting  

• Looking for bugs 

• Do not worry if proofs do not 

complete 

• Aim for “No failures” 

• Ease of set-up 

• Corner cases 

• Low cost, starts early 

in design process 

False failures 
– Run at higher structural level  

– Only leads to wasted debug  

Non-exhaustive checks 
– full proofs are welcome, but not required 

Non-uniform run times 
– checks are run just for the time available. 

Bug Absence 

• Aim to get a “complete” set of 

properties  

• Aim to prove properties  

–  under certain constraints 

• Only way to get 100% 

assurance 

• Cover corner cases 

Non-uniform run times 
– Use different proof engines with the tool 

– Use “invariants” (helper properties) (this adds non-

uniform/non-predictable engineering time) 

– Use safe abstractions 

– Prove under certain condition (Add extra 

constraints) 

Bug Analysis 

• For bugs in FPGA prototypes 

or in Silicon 
– write symptom of bug as a property, 

generate waveform 

• Ease of setup if 

constraints exist  

• Can investigate silicon 

bugs 

• Can confirm fix 

Interactive generation of constraints to 

generate legitimate failure scenario 
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Formal in the Design Flow 

 Formal used at 

 Low-level by designers: design bring-up & embedded properties 

 Medium-level by validation engineers: end-to-end properties 

 High-level by architects: architectural formal specification and validation 

Architecture 

definition 

Micro-architecture 

definition 
Design 

Verification Maturity Support 

X-propagation 

Low-level assertion flow Formal 

errata 

analysis 

High-level proofs 

LAC 

Design 

Bring-up 
Review 

Project timeline 

Proof  

convergence 

techniques 

Formal 

specification 

and 

validation 
U-arch explorations 

Interface 

specifications 
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RTL Bugs Found by Method 

2K Hours 

1,439K Hours 

ARM1 3  24K T 6 My 

Cortex-M0+ 20nm 32K T 11 My 

Autochecks 

DAPTB 

flycatcher_dvs 

Formal 

Integration Kit 

Lint 

MBTB 

OS / Debug Tools 

Other 

Partner raised 

Review 

SBTB 

Speculation 

Synthesis 

Toplevel s/w Config 

v6m avs 

Seq-X 

Power Intent Checks 

Constrained Random 

AVS 

Reviews 

DVS 

Formal 

Integration 



10 

Bottom Up Formal 

 Software Tools 

 Each level relies on levels around it 

AND the Architectural behaviour 

 In return the Architecture expects 

certain behaviour 

 

 Architectural behaviour 

 E.g. Deadlock freedom, power modes, 

coherency 

 

 Combine techniques to give chain 

of verification from RTL to Apps 
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RTL verification 

 Microarchitectural specification for 

designers is in natural language 

 RTL level assertions as standard 

 Written by designers 

 Difficult to write end to end 

properties in terms of RTL state 

 Architectural state is smeared across 

time and space, or implicit 

 Use of abstract models written in 

SystemVerilog with refinement to 

RTL level 

 Describing lifecycle of transactions 

rather than block functionality 
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Formal for Designers 

Early bug discovery 

Higher quality sooner 



13 

Proof Progress and Scaling 

 Historically: hard to track progress of formal proof coverage 

 ARM developed progress metrics for proofs and methodology and 

deployed during a Bug Analysis project 

 Technique for partial proof allowing identification of bug free code 

 Enables focussed review and simulation for weakest blocks 

 Historically: architectural properties involve too much RTL 

detail for tools to handle 

 Developed micro architectural model of SCU 

 SCU Transaction Ordering proven on this specification model 

 RTL shown to meet specification, hence RTL preserves transaction 

ordering 

 These demonstrate proof is now measurable and scalable 



14 

Partial Proof 

Unproven lemma D focuses 

Simulation and Review 
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Micro Architectural Models 

 Formal Model 

 An abstraction expressed as transactors, FSMs, assumptions… 

 Provides vocabulary of abstract events 

 Desired Model Properties 

 Properties which should arise from a correct implementation 

 Safety or liveness assertions 

 High Level Behaviour 

 What implementation is sufficient? 

 assume to prove formal model exhibits desired properties 

 assert on RTL to deduce that it satisfies specification 

 Covers 

 sanity check the formal specification 

 RTL bring up 
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Micro Architectural Models 

 

 

Model 

 

 

 

RTL 

High Level Behaviours imply Desired Properties  
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Architecture 

 The architecture defines several 

envelopes of reliable behaviour: 

 ISA – programmer’s view of instruction 

 Weak Memory – implementation 

freedom, unintuitive behaviour 

 Coherent interconnect – AMBA4 ACE 

transactions 

 Power modes – domains, required 

functionality 

 Security – Trustzone 

 Debug and trace behaviour  

 How to verify individually and 

interdependently? 

 How to specify non-determinism? 
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Architecture Validation 

 SystemVerilog model of AMBA4 ACE 

 Deadlock discovered in draft specification using JasperGold 

 4 master system, unlikely to find by hand 

 

 Murphi model of AMBA4 ACE master with bridge to 

alternative interface for 

 Protocol deadlock 

 System coherency 

 PReach Murphi 

 25 threads, 1Tb 

 Smallest case completed 

 Several bugs found during 

development 

 

Master 

nodes 

IDs Result 

2 1 3 hours 

2 2 - 

3 1 - 

3 2 - 

4 1 - 

4 2 - 
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Systems and Software 

 System level testing 

 Requires accurate models of expected 

behaviour 

 Relate testing to coverage of 

specification 

 

 What useful IP can we supply to 

our partners for software 

development? 
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Sequentially Consistent execution 

ARM SB 

"PodWR Fre PodWR Fre" 

 

 
 {R2=x; R3=y;} 

 P0 

 

 
 MOV R0, #1 

 STR R0, [R2] 

 

     

 

 LDR R1, [R3] 

 

 

 MOV R0, #1 

 STR R0, [R3] 

 

     

 

 LDR R1, [R2] 

 

 

 {R3=y; R2=x;} 

 P1 

 

 

Observe P0 end with R1=0 and P1 end with R1=1 

Ry0 Rx1 

y=0 x=0 

Wx1 Wy1 

PodWR PodWR 

Rfe 

Program order candidate relations 

PodWR = Program order different address Write then Read 

Coherency ordering (Communication) relations 

Rfe = Target Reads its value from a source on an external processor 

Fre = Source reads From a write that precedes target (on an external processor) in coherence order 

 

 

Fre 

Rf 
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Relaxing candidate relations 

ARM SB 

"PodWR Fre PodWR Fre" 

 

 
 {R2=x; R3=y;} 

 P0 

 

 
 MOV R0, #1 

 STR R0, [R2] 

 

     

 

 LDR R1, [R3] 

 

 

 MOV R0, #1 

 STR R0, [R3] 

 

     

 

 LDR R1, [R2] 

 

 

 {R3=y; R2=x;} 

 P1 

 

 

Observe both threads ending with R1=0 

Ry0 Rx0 

y=0 x=0 

Wx1 Wy1 

PodWR PodWR 

Fre Fre 

Rf Rf 

Program order candidate relations 

PodWR = Program order different address Write then Read 

Coherency ordering (Communication) relations 

Rfe = Target Reads its value from a source on an external processor 

Fre = Source reads From a write that precedes target (on an external processor) in coherence order 

 

 

Relaxing PodWR breaks the cycle 
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The ARM ARM 
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ARMv7 specification 



24 

ARMv7 support functions 

Type Inference 

Dependent Types 

Enumerations 

Unbounded Precision Ints 

(and Rationals) 

Bounded Precision Ints 

Indentation-based Syntax 

Imperative 

Exceptions 
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What ARM uses ISA spec for  

CPU 

• Design 

• Licensing 

• Validation 

• Test suites 

• Test tools 

Models 
• Design 

• Validation 

Dev 

Tools 

• Asm/dasm/ld 

• Compiler 

• Debugger 

• Validation 
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Summary 

 “Systems design today is on the same level of development 

as mechanics in the middle ages - based on experiences with 

no formal theory of design.” J. Sifakis FMCAD 2010 

 We have made good progress on pieces of the puzzle, 

designers are turning to formal to relieve the pain 

 A combination of tools and techniques 

 Use those best suited to each problem domain 

 Must be able to relate to each other, and simulation 

 The system design does not end with us – enable partners 
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THE END 


