Lazy Abstraction and SAT-

based Reachability in Hardware
Model Checking

Yakir Vizel
Orna Grumberg
Sharon Shoham

FMCAD 2012

Computer Science Department, Technion, Israel

Outline

* Background
— Reachability Analysis
— Abstraction
—Lazy Abstraction
—IC3

* Lazy Abstraction with IC3

Model Checking

« Given a system and a specification, does
the system satisfy the specification.

Reachability Analysis

Does AGp hold?

Abstraction

* Fights the state explosion problem

» Removes or simplifies details that are
irrelevant

 Abstract model contains less states

Visible Variables Abstraction

»
-
=
»
-
g
-
=0~
b

Abstraction-Refinement

» Abstract model may contain spurious
behaviors

— Spurious counterexample may exist

« Refinement is applied to remove the
spurious behavior

Lazy Abstraction

« Different abstractions at different
steps of verification

« Refinement applied locally, where needed

SAT-based Reachability with IC3

IC3 Basics

Iteratively compute Over-approximated
Reachability Sequence (OARS) <F,,F;,... F> s.1.
— Fy = INIT
—-F.=>P
-Fi=Fi4
-F.ATR=F ;4

F. - CNF formula represented by a set of clauses
TR - the concrete transition relation
F'.., is over the next state variables

Tteration of IC3

Fk/\ TR =ﬁ F'k+1

Locality in IC3

« IC3 applies checks of the form
— F,ATRA AP’
* Finds a state in F, that can reach -P
—FATRAYS
 Finds a predecessor in F; to the state s

* Using only one TR
—No unrolling

Our Approach - L-IC3

« Use IC3's local checks for Lazy
Abstraction

— Different abstraction at different time
frames

— Use visible variables abstraction

— Different variables are visible at different
time frames

Concrete Model

14

Using Abstraction

15

Using Lazy Abstraction

16

Lazy Abstraction + IC3 = L-IC3

e <Fo,F;....,F..> - Reachable states

e <U,,U,,...U,,> - Abstractions

— U. - set of visible variables
« U.variables have a next state function
* The rest, inputs

- uU.cu.,,
e U, is arefinement of U.

L-IC3 Iteration

 Initialize Fy,; To P
 Tnitialize U,,; to U,

» Same problem, the sequence may not be
an OARS

Abstract Counterexample

F.ATR, AS FuA TRy AP

Check Spuriousness

* An abstract CEX of length k+1 exists

e Use an IC3 iteration with the concrete
TR

e If a real CEX exists, it will be found

Check Spuriousness (2)

e If no real CEX exists:

— Compute a strengthened sequence
<Fro,Fri . Fries®

— The strengthened sequence is an OARS

— Strengthening eliminates all CEXs of length
k+1

Lazy Abstraction Refinement

« If no real CEX is found by (concrete) IC3

even though (abstract) L-IC3 strengthening
failed

— Abstraction is too coarse

« Refine the sequence <U,;,U,,..,U,,> as
follows:
e Since F" ATR = F".,
—Fr.A TR A=F"™.,;is unsatisfiable
— Use the UnSAT Core to add visible variables
e Ur.,, = U,, U UCore.

Incrementality

« The concrete IC3 iteration works on the
already computed sequence <Fy,F;,... Fy.;>

e At the end of refinement, L-IC3 continues
from iteration k+2

Experi ments

5693

5693 T 104 24 2101 32 32 14 513 13.6
11866 F 1001 816 8457 3939 15 18 1646 599
1204 T 114 105 18698 229 8 8 818 3
3854 T >470 666 >8320 5363 >6 11 TO 730

1389 F 397 417 12455 19742 13 19 262 1268

Experimen‘rs - Laziness

Lbs 5693 1-7 31 10-14 54

P 11866 1 323 2 647 3 686 4 699 5 705
6 713 7 714 8 728 9 743

3854 1 428 2 453 3 495 4 499 5 503

6 560 7 574 8 576 9-11 577

Conclusions

* Novel lazy abstraction algorithm for
hardware model checking

« Abstraction-Refinement is done
incrementally

« More efficient generalization

Up to two orders of magnitude runtime
improvement

 Also in the paper: may vs. must proof obligations

Thank You

