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Writing accurate numerical software is hard because of many
sources of unavoidable uncertainties

® measurement uncertainties
® finite precision arithmetic

® |imited resources



What if you could write your program in reals!?

* programmer can reason in real arithmetic
e verification algorithm can reason in reals
* this approach enables the developers and tools to quantify
the deviation of implementation outputs to ideal ones
e compiler can perform sound optimizations
(example: associativity)
* this approach supports external uncertainties, not only

roundoff errors



def sineTaylor(x: Real): Real = {

require(-2.0 < x && x < 2.0)

X - (x*x*x)/6.0 + (x*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def sineOrder3(x: Real): Real = {
require(-2.0 < x && x < 2.0)
0.954929658551372 * x - 0.12900613773279798*(x*x*x)
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def checkApproximation(x:
require(-2.0 < x && x<2.0)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 - z2
} ensuring(res => ~res <= 0.1)
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key enabling technology is precise reasoning
about ranges of variables in the presence of
non-linear arithmetic




