
Programming with 
Uncertainties 

Eva Darulová



• measurement uncertainties

• finite precision arithmetic

• limited resources

Writing accurate numerical software is hard because of many 
sources of unavoidable uncertainties



What if you could write your program in reals?

• programmer can reason in real arithmetic

• verification algorithm can reason in reals

• this approach enables the developers and tools to quantify 

the deviation of implementation outputs to ideal ones

• compiler can perform sound optimizations

(example: associativity)

• this approach supports external uncertainties, not only 

roundoff errors



def	
  sineTaylor(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  x	
  -­‐	
  (x*x*x)/6.0	
  +	
  (x*x*x*x*x)/120.0	
  -­‐	
  (x*x*x*x*x*x*x)/5040.0	
  
}	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

	
  	
  
def	
  sineOrder3(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  0.954929658551372	
  *	
  x	
  -­‐	
  	
  0.12900613773279798*(x*x*x)
	
  	
  }	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

def	
  checkApproximaNon(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  val	
  z1	
  =	
  sineTaylor(x)
	
  	
  	
  	
  val	
  z2	
  =	
  sineOrder3(x)
	
  	
  	
  	
  z1	
  -­‐	
  z2
	
  	
  }	
  ensuring(res	
  =>	
  ~res	
  <=	
  0.1)



def	
  sineTaylor(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  x	
  -­‐	
  (x*x*x)/6.0	
  +	
  (x*x*x*x*x)/120.0	
  -­‐	
  (x*x*x*x*x*x*x)/5040.0	
  
}	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

	
  	
  
def	
  sineOrder3(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  0.954929658551372	
  *	
  x	
  -­‐	
  	
  0.12900613773279798*(x*x*x)
	
  	
  }	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

def	
  checkApproximaNon(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  val	
  z1	
  =	
  sineTaylor(x)
	
  	
  	
  	
  val	
  z2	
  =	
  sineOrder3(x)
	
  	
  	
  	
  z1	
  -­‐	
  z2
	
  	
  }	
  ensuring(res	
  =>	
  ~res	
  <=	
  0.1)

ranges for inputs



def	
  sineTaylor(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  x	
  -­‐	
  (x*x*x)/6.0	
  +	
  (x*x*x*x*x)/120.0	
  -­‐	
  (x*x*x*x*x*x*x)/5040.0	
  
}	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

	
  	
  
def	
  sineOrder3(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  0.954929658551372	
  *	
  x	
  -­‐	
  	
  0.12900613773279798*(x*x*x)
	
  	
  }	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

def	
  checkApproximaNon(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  val	
  z1	
  =	
  sineTaylor(x)
	
  	
  	
  	
  val	
  z2	
  =	
  sineOrder3(x)
	
  	
  	
  	
  z1	
  -­‐	
  z2
	
  	
  }	
  ensuring(res	
  =>	
  ~res	
  <=	
  0.1)

ranges for inputs

specification of uncertainties



def	
  sineTaylor(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  x	
  -­‐	
  (x*x*x)/6.0	
  +	
  (x*x*x*x*x)/120.0	
  -­‐	
  (x*x*x*x*x*x*x)/5040.0	
  
}	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

	
  	
  
def	
  sineOrder3(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  0.954929658551372	
  *	
  x	
  -­‐	
  	
  0.12900613773279798*(x*x*x)
	
  	
  }	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

def	
  checkApproximaNon(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  val	
  z1	
  =	
  sineTaylor(x)
	
  	
  	
  	
  val	
  z2	
  =	
  sineOrder3(x)
	
  	
  	
  	
  z1	
  -­‐	
  z2
	
  	
  }	
  ensuring(res	
  =>	
  ~res	
  <=	
  0.1)

ranges for inputs

specification of uncertainties

value actually computed



def	
  sineTaylor(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  x	
  -­‐	
  (x*x*x)/6.0	
  +	
  (x*x*x*x*x)/120.0	
  -­‐	
  (x*x*x*x*x*x*x)/5040.0	
  
}	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

	
  	
  
def	
  sineOrder3(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  0.954929658551372	
  *	
  x	
  -­‐	
  	
  0.12900613773279798*(x*x*x)
	
  	
  }	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

def	
  checkApproximaNon(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  val	
  z1	
  =	
  sineTaylor(x)
	
  	
  	
  	
  val	
  z2	
  =	
  sineOrder3(x)
	
  	
  	
  	
  z1	
  -­‐	
  z2
	
  	
  }	
  ensuring(res	
  =>	
  ~res	
  <=	
  0.1)

compiler selects data type automatically 
(floating-point or fixed-point)

ranges for inputs

specification of uncertainties

value actually computed



def	
  sineTaylor(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  x	
  -­‐	
  (x*x*x)/6.0	
  +	
  (x*x*x*x*x)/120.0	
  -­‐	
  (x*x*x*x*x*x*x)/5040.0	
  
}	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

	
  	
  
def	
  sineOrder3(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  0.954929658551372	
  *	
  x	
  -­‐	
  	
  0.12900613773279798*(x*x*x)
	
  	
  }	
  ensuring(res	
  =>	
  -­‐1.0	
  <	
  res	
  &&	
  res	
  <	
  1.0	
  &&	
  res	
  +/-­‐	
  1e-­‐14)

def	
  checkApproximaNon(x:	
  Real):	
  Real	
  =	
  {
	
  	
  	
  	
  require(-­‐2.0	
  <	
  x	
  &&	
  x	
  <	
  2.0)
	
  	
  	
  	
  val	
  z1	
  =	
  sineTaylor(x)
	
  	
  	
  	
  val	
  z2	
  =	
  sineOrder3(x)
	
  	
  	
  	
  z1	
  -­‐	
  z2
	
  	
  }	
  ensuring(res	
  =>	
  ~res	
  <=	
  0.1)

compiler selects data type automatically 
(floating-point or fixed-point)

ranges for inputs

specification of uncertainties

value actually computed

key enabling technology is precise reasoning 
about ranges of variables in the presence of 
non-linear arithmetic


