Programming with
Uncertainties

Eva Darulova

Writing accurate numerical software is hard because of many
sources of unavoidable uncertainties

® measurement uncertainties
® finite precision arithmetic

® |imited resources

What if you could write your program in reals!?

* programmer can reason in real arithmetic
e verification algorithm can reason in reals
* this approach enables the developers and tools to quantify
the deviation of implementation outputs to ideal ones
e compiler can perform sound optimizations
(example: associativity)
* this approach supports external uncertainties, not only

roundoff errors

def sineTaylor(x: Real): Real = {

require(-2.0 < x && x < 2.0)

X - (x*x*x)/6.0 + (x*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def sineOrder3(x: Real): Real = {
require(-2.0 < x && x < 2.0)
0.954929658551372 * x - 0.12900613773279798*(x*x*x)
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def checkApproximation(x:
require(-2.0 < x && x<2.0)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 - z2
} ensuring(res => ~res <= 0.1)

ranges for inputs

def sineTaylor(x: Real): Real
requir’fi 0 < X & x < 2 O)
X - (X*x*X)/6.0 + (X*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def sineOrder3(x: Real): Real = {
require(-2.0 < x && x < 2.0)
0.954929658551372 * x - 0.12900613773279798*(x*x*x)
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def checkApproximation(x: Real)
require(-2.0 < x && x < 2.0) -
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 - z2
} ensuring(res => ~res <= 0.1)

ranges for inputs

def sineTaylor(x: Real): Real
require '2 0 < X & x < 2 O)
X - (X*x*X)/6.0 + (X*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def sineOrder3(x: Real): Real = {
require(-2.0 < x && x < 2.0)

0.954929658551372 * x - 0.12900613773279798* (x*x*x)

} ensuring(res =>-1.0 < res && res < 1.0 &&.‘rﬂes/+/

speciﬁcation of uncertainties

require(-2.0 < x && x < 2 O)
val z1 = sineTaylor(x)
val z2 = sineOrder3(x)
z1 - z2
} ensuring(res => ~res <= 0.1)

ranges for inputs

def sineTaylor(x: Real): Real
requir’{i 0 < X & x < 2 O)
X - (X*x*X)/6.0 + (X*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def sineOrder3(x: Real): Real ={
require(-2.0 < x && x < 2.0)

0.954929658551372 * x - 0.12900613773279798* (x*x*x)

} ensuring(res =>-1.0 < res && res < 1.0 &&.‘r‘es/+/

speciﬁcation of uncertainties

require(-2.0 < x && x < 2 O)

val z1 = sineTaylor(x)

val z2 = sineOrder3(x)

z1 - 22 ____ value actually computed
} ensuring(res = =0.1)

ranges for inputs

def sineTaylor(x: Real): Real
requir{i 0 < X & x < 2 O)
X - (X*x*X)/6.0 + (X*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def sineOrder3(x: Real): Real ={
require(-2.0 < x && x < 2.0)

0.954929658551372 * x - 0. 12900613773279798A)

} ensuring(res =>-1.0 < res && res < 1.0 &&. +/

specification of uncertainties

def checkApproximation(x: {
require(-2.0 <x && x < 2.0) ~ compiler selects data type automatically
val z1 = sineTaylor(x) (floating-point or fixed-point)
val z2 = sineOrder3(x)
z1 - 22 ____ value actually computed
} ensuring(res =>~res}

ranges for inputs

def sineTaylor(x: Real): Real
requir’{i 0 < X & x < 2 O)
X - (X*x*X)/6.0 + (X*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0
} ensuring(res =>-1.0 < res && res < 1.0 && res +/- 1e-14)

def sineOrder3(x: Real): Real ={
require(-2.0 < x && x < 2.0)

0.954929658551372 * x - 0. 129006137732797984 X*X)

} ensuring(res =>-1.0 < res && res < 1.0 &&."e +/

specification of uncertainties

def checkApproximation(x: {
require(-2.0 <x && x < 2.0) o compiler selects data type automatically
val z1 = sineTaylor(x) (floating-point or fixed-point)
val z2 = sineOrder3(x)
z1 - 22 ____ value actually computed

} ensuring(res =

key enabling technology is precise reasoning
about ranges of variables in the presence of
non-linear arithmetic

