Towards Certifiable Loop Pipelining
Algorithms In Behavioral Synthesis

Disha Purli

215t Oct 2013
Computer Science Department
Portland State University

High level specification of hardware design
(in C, C++, System C, etc.)

Compiler Transformations
(e.g., dead code elimination) Behavioral
v synthesis tool

Scheduling Transformations (e.q.,
(e.g< Loop pipelining): AUutoESL,
K CtoSilicon,

Resource Allocation Cynthesizer)
and Control Synthesis

Implementation in hardware description language
(in VHDL, Verilog, etc.)

—> Exit

Sequential Execution order after pipelining

Execution “Pipeline interval is 1” 3

Pipeline
Reference
Model 4

Sequential
Execution

Entry Entry

} J

el x [
| l | Y, | ' - Wriltea | X,
| Re\ild a |— Z, | Rei’d 3 |>| ‘ Y,
—> Exit | Rei/d a |z

Problem: a will be overwritten by X, before being read by Z,

Entry Entry

— Readi ¢ X,| Readi |
! !
| | v T
v :
| Write i I— le Write i |>| ‘ Y,
| v
—> Bt | writei |z,

Problem: Attempt to read i before it has been written

Entry Entry
if cond if cond

— X _
goto Exit < 1| goto Exit

| | Yl | |> If Cond- X2
goto Exit

—> Exit | | .

Problem: If the cond is true, Z, is never executed

Algorithm:

o Define a generic framework of pipelining

orimitives to handle these challenges

e Develop a simple pipelining algorithm using a
combination of these primitives to generate reference
loop pipelines

Certification:

e Prove using ACL2 theorem prover that these
orimitives are correct

e Prove using ACL2 theorem prover that the algorithm
correctly applies these primitives.

	Towards Certifiable Loop Pipelining Algorithms in Behavioral Synthesis
	Behavioral Synthesis
	Motivation behind Loop Pipelining
	Goal: A Certifiable Loop Pipelining Algo
	Challenges in Loop Pipelining # 1
	Challenges in Loop Pipelining # 2
	Challenges in Loop Pipelining # 3
	Approach
	Thanks!

