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High level specification of hardware design
(in C, C++, System C, etc.)

Compiler Transformations
(e.g., dead code elimination) Behavioral
v synthesis tool

Scheduling Transformations (e.q.,
(e.g< Loop pipelining): AUutoESL,
K CtoSilicon,

Resource Allocation Cynthesizer)
and Control Synthesis

Implementation in hardware description language
(in VHDL, Verilog, etc.)
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Problem: a will be overwritten by X, before being read by Z,
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Problem: Attempt to read i before it has been written
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Problem: If the cond is true, Z, is never executed



Algorithm:

o Define a generic framework of pipelining

orimitives to handle these challenges

e Develop a simple pipelining algorithm using a
combination of these primitives to generate reference
loop pipelines

Certification:

e Prove using ACL2 theorem prover that these
orimitives are correct

e Prove using ACL2 theorem prover that the algorithm
correctly applies these primitives.
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