
This work has been conducted within the ENABLE-S3 project that has received funding from the ECSEL joint undertaking under grant agreement no 692455. ENABLE-S3 is funded by BMVIT under the program "ICT of the

Future" via FFG project number 853308. Furthermore, the work is supported by FFG project number 845582 (TRUCONF) and FWF project W1255-N23 (LogiCS Doktoratskolleg).

Model Based Testing with MoMuT

[2] B. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran, “MoMuT::UML Model-Based Mutation Testing for UML”

in Software Testing, Verification and Validation (ICST), 2015

[3] B. Aichernig, J. Auer, E. Jöbstl, R. Korošec, W. Krenn, R. Schlick, and B. Schmidt, “Model-Based Mutation Testing of an Industrial Measurement Device”

in Tests and Proofs (TAP), 2014

Related Publications

Contact

www.momut.org

ANDREAS FELLNER

andreas.fellner@ait.ac.at
Dependable Systems Engineering
Center for Digital Safety & Security

AIT Austrian Institute of Technology GmbH

Donau-City-Straße 1

1220 Vienna
www.ait.ac.at

Model-based, mutation-driven test case generation

via heuristic-guided branching search

Mutation

• Small change of the system

• Test case kills a mutant if

• Original system has output X

• Mutated system has output X != Y

• Mutation coverage criterion

• Kill x% of produced mutants

• Equivalent mutants

• Can not be killed by any test

Branching Search for Test Case Generation

Where to Start New Branches?

• Initial state

• Random state

• Rare state

• Distance based

• Round robin

Explore model in parallel

Future Work

• Semi-symbolic exploration techniques

• Concolic execution

• Distance based on mutant constraints

• Static analysis to improve heuristics

• Translate OOAS to Petri Nets

Andreas Fellner (AIT/TUW)
Willibald Krenn (AIT), Rupert Schlick (AIT), Thorsten Tarrach (AIT), Georg Weissenbacher (TUW)

This work introduces a heuristic-guided branching search algorithm for model-based, mutation-driven test case
generation. The algorithm is designed towards the efficient and computationally tractable exploration of discrete,
non-deterministic models with huge state spaces. Asynchronous parallel processing is a key feature of the algorithm.
The algorithm is inspired by the successful path planning algorithm Rapidly exploring Random Trees (RRT).
We adapt RRT towards test case generation by introducing parametrized heuristics for start and successor state
selection, as well as a mechanism to construct test cases from the data produced during search. With our new
algorithm, we are now able to produce test cases for models consisting of over 2300 concurrent objects.

Abstract

MoMuT

• Automated and Model Based Test Case
Generation Tool

• Developed at AIT and TU Graz

• www.momut.org

Supported modelling formalisms

• UML

• Event-B

• Object Oriented Action Systems (OOAS)

Contributions
• Branching Search For Test Case Generation

• Fully leverage parallelism

• Flexibility through set of heuristics

• Shorter and more effective tests

• Extensive evaluation on large models

Why Model Based Testing?

• Model reflects requirements

• Verify high level correctness instead of
properties of code

• Split roles of test- and the system- designer

• Domain independence

• Essential during model-driven development

Why Mutation Coverage

• Tests directly relate to implementation faults

• Cover much high level behaviour per test case

• Prune irrelevant test steps

• Fine tunable due to choice of mutants

1

Algorithm Sketch & Example

Abstract Model

UML / Event-B

Executable Model

Action System
Test Cases

Test 1

Test 2

Test 3

Branching

search

Automatic

translation

Mutated action systems Mutants killed / alive / equivalent?

Mutation analysis

during test case

generation

Publication
[1] A. Fellner, W. Krenn, R. Schlick, T. Tarrach, and G. Weissenbacher, “Model-based, mutation-driven test case generation via heuristic-guided branching search”

in MEMOCODE, 2017

Heuristic
Model

Dist Rand Rare Init RoRo

AlarmSystem

Debounce

Defibrilator

Measurement

LoaderBucket

MMS

LBT

… significantly less
mutants found

… most mutants found

… others

Analyse mutants in parallel

2

Thread Branch

3

5

6

Thread Branch

Different branches for
different test purposes

Branching Search and Test Case Generation

Prune non killing

transitions

~70% transitions

removed

Test 1

Test 2

Test 3

Dissect into

test cases

Each test is associated

with the mutant it killed,

i.e. the faults it can detect

Bucket Loader Example

Execute mutated model
only where necessary

X
Error

Y
Error

Regular regions

correspond to joint

movement

Error signal

are counted

X/Y plane split in

9 regular- and

2 error- regions

Too many errors

result in alarm

Example Mutations

Disfunctional

error counter

Disfunctional

bucket movement

Branching Search Test Case Quality

vs

Branching No Branching

if error_signal

c := c + 1

if error_signal

c := c

if false

bucket_up()

if x_signal > 100

bucket_up()

Original Mutant

Original Mutant

mailto:andreas.fellner@ait.ac.at
https://www.ait.ac.at/

