A Backward Reachability Algorithm for S U';ég?ls

Parameterized Systems on WeakMemory

construire l'avenir

Sylvain Conchon, David Declerck and Fatiha Zaidi

Tool Download

The algorithm described in this poster has been successfully implemented in a new version of the Cubicle model checker

called Cubicle-W. This tool, as well as various examples, can be downloaded here :

@ https://www.lri.fr/~declerck/cubiclew/

Weak Memory Parameterized Systems jl Cubicle-)V code

The automaton on the left can be expressed as a parame-
terized transition system in the language of Cubicle-W.

% Weak memory :

e order of memory accesses # interleaving of memory in-
structions : algorithms are harder to check type loc = Idle | Want | Crit
different "flavors" of reorderings : TSO, PSO, ARM...

e we adopt a TSO-like model, as shown on the left array PC[proc] : loc

e reorgerings can be prevented using fences
weak array X[proc] : bool

Shared Memory

init (p) { PC[p] = Idle X[p] = False }

unsafe (pl p2) { PC[pl] = Crit PC[p2] = Crit }

transition t req ([p])
requires { PC[p] = Idle }

7 i { PC[p] := Want; X[p] := True }
f transition t _enter ([p])

requires { PC[p] = Want fence(p)

% Parameterized systems : forall_other p. X[p] = False }
e concurrent systems { PClp] := Crit }

e unbounded number of processes

e process-indexed arrays transition t_cancel ([p] q)
requires { PC[p] = Want fence(p)

Our example : a (naive and inefficient) mutual exclusion X[pl = True }

algorithm using a process-indexed array of booleans X, and { PC[p] := Idle; Xlp] := False }
each process p executes the automaton on the right.

Write buffer

transition t_exit ([p])
Our approach requires { PC[p] = Crit }

{ PC[p] := Idle; X[p] := False }

Note the use of the fence predicate, that allows a transi-
tion to be taken only when the process’ buffer is empty.

% The base framework :
Model Checking Modulo Theories (MCMT)
checks safety properties of parameterized systems
assumes a sequentially consistent (SC) memory
uses a backward reachability algorithm Benchmarks
% Our extension : The implementation was tested on some typical concur-
e adds weak memory reasoning using an axiomatic model rent algorithms. Some algorithms are incorrect due to the
e maps memory instructions to read/write events effects of weak memory. In this case, we created fixed ver-
e builds a global-happens-before relation over events sions of these algorithms by adding fences. The test machine
features an Intel Core 17 CPU @ 2.9 Ghz and 8GB of RAM.

: Benchmark Name | Correct ? | Analysis Time
PC[4#1] = Want A PC[#2] = Idle o #1 = Want \ PC|#2] = Ldie :
R (e1, #2,#1) A Val(er) — 1 2 1) A Vol naive mutex N No 0,05s

Rdx(eg, #1, #2) AN Val(eg) =1

Wrx(es, 42,42 naive mutex f N Yes 0,06s
fence(#2,e1) N fence(#1,e3) — _

ghb(es, e1) Val(es) = Val(es) -l. a pO I"t_N NO 0,4:2 S
Here, we consider -l. ampO I"t_f_N YeS O, 625

the case where O] — Want 0 PCL22] — Wan IiIeII‘{e, We.:::ll;y to :
doesn’t satisf = Wan = Wan Ink e; with e,
3 any read y Rdx (e, #2,#1) AVal(ey) = L but the values S p l n -l. O C k_N YeS O’ O 7S
Rdx (e2, #1,#2) A Val(ez) = L don’t match
fence (#1,e2)

(#2,00) A fence sense rev N Yes 0,15s

Note how ej3 is .
ghb-beforegel, t enter(#l m S l_N YeS O’ O 9 S
thanks to fence(#2,e;) 1

)
moes1i N Yes 0,21s
PC[#1] = Crit N PC[#2] = Want —
Rdx(e1,#2,#1) ANVal(ey) = L
#2) Reads and fences

t_enter(#2 are simply accumulated AC kn OW]_e dg enme nts

This work is supported by the French ANR project PARDI
(DS0703)

