Boolean Synthesis via Decomposition

Lucas M. Tabajara

Joint work with Supratik Chakraborty, Dror Fried and Moshe Y. Vardi

lucasmt@rice.edu
Rice University
Boolean Synthesis

Our goal: To decompose the specification into formulas that are easier to synthesize.

Specification of a system encoded as a Boolean formula

\[
(x_0 \oplus y_0 = 0) \\
\land \\
(x_1 \oplus y_1 \oplus (x_0 \land y_0) = 0)
\]

Boolean function implementing system behavior

\[
y_0 := x_0 \\
y_1 := x_1 \oplus x_0
\]

Lucas M. Tabajara (Rice University)
Decomposition using Factored Formulas

\[F(\vec{x}, y_1, y_2, y_3, y_4) = F_1(\vec{x}, y_2, y_4) \land F_2(\vec{x}, y_1, y_2, y_3) \land F_3(\vec{x}, y_3) \]

- Easy to perform decomposition.
- Has been shown to significantly improve synthesis algorithms.

However: Dependences between factors prevent us from taking full advantage of the decomposition.
Sequential Decomposition

Given: A Boolean formula $F(\vec{x}, \vec{y})$ between input variables \vec{x} and output variables \vec{y}.

Return: Two Boolean formulas $F_1(\vec{x}, \vec{z})$ and $F_2(\vec{z}, \vec{y})$ that can be composed back into F.
Sequential Decomposition

\[F \]

\[F_1 \quad F_2 \]

\[g_1 \quad g_2 \]
Sequential Decomposition

\[\vec{x} \xrightarrow{g_1} \vec{z} \xrightarrow{g_2} \vec{y} \]