
Building a Symbolic Execution Engine 
for Haskell 

William Hallahan 
Anton Xue 

Ruzica Piskac 



Functional languages - why? 

●  A different way of problem solving 

○  Pattern matching, Higher Order Functions, Algebraic Data Types… 

●  Functional languages allow for easier equational reasoning 

○  Objects are described by what they are rather than how they are constructed 

●  Strong static type system catches many errors at compile time 

○  Many safeguards (e.g. null pointer checks) can be encoded as types 



●  Use Glasgow Haskell Compiler API to extract Core Haskell from source 

○  GHC Pipeline: Source → AST → Core Haskell → … 

 

 

●  Further translate Core Haskell to custom language (G2 Core) 

○  Close one-to-one representation of Core Haskell 

○  Simplifies and discards extraneous data present in Core Haskell annotations 

Full Language AST Core Haskell 

Traceable from Source Yes Somewhat 

Concise Representation No Yes 

Easily Manipulatable No Yes 

Extraction from source code 



●  General functional language: run reductions until a normal form is reached 

●  Challenge: symbolic execution requires symbolic variables 

○  Augment Haskell lazy evaluation semantics with reduction rules for symbolic variables 

○  Semantics: Making a Fast Curry: Push/Enter vs Eval/Apply ... [SPJ, SM 2004] 

●  Approach: treat symbolic execution as a bounded model-checking problem 

○  Implement reduce function that applies augmented reduction execution rules one at a time 

○  Apply reduction rules repeatedly to perform execution 

■  Regular Haskell: apply until normal form is reached 

■  Symbolic execution: apply until normal form is reached or we hit a counter limit 

Execution 



Constraint solving 
●  Most basic feature of symbolic execution is reachability testing 

○  Can convert many problems such as assertion violation into state reachability problems 

●  Constraint solving: interface with SMT solver 

○  Convert path constraints from execution to SMT-LIB2 files 

■  SMT-LIB2 format supports all the constructs necessary 

●  Equivalents for primitives such as Int, Float, Rational, etc 

●  Can declare new algebraic data types 

○  Run a SMT solver on these files 


