Building a Symbolic Execution Engine
for Haskell

William Hallahan
Anton Xue
Ruzica Piskac

o) B
RS
--_"

Yale University



Functional languages - why?

e A different way of problem solving

o Pattern matching, Higher Order Functions, Algebraic Data Types...

e Functional languages allow for easier equational reasoning

o Objects are described by what they are rather than how they are constructed

e Strong static type system catches many errors at compile time

o Many safeguards (e.g. null pointer checks) can be encoded as types



Extraction from source code

e Use Glasgow Haskell Compiler API to extract Core Haskell from source

o GHC Pipeline: Source — AST — Core Haskell — ...

Full Language AST Core Haskell

Traceable from Source Yes Somewhat
Concise Representation No Yes
Easily Manipulatable No Yes

e Further translate Core Haskell to custom language (G2 Core)
o Close one-to-one representation of Core Haskell

o Simplifies and discards extraneous data present in Core Haskell annotations



Execution

e General functional language: run reductions until a normal form is reached

e Challenge: symbolic execution requires symbolic variables
o Augment Haskell lazy evaluation semantics with reduction rules for symbolic variables

o Semantics: Making a Fast Curry: Push/Enter vs Eval/Apply ... [SPJ, SM 2004]

e Approach: treat symbolic execution as a bounded model-checking problem
o Implement reduce function that applies augmented reduction execution rules one at a time
o Apply reduction rules repeatedly to perform execution

m Regular Haskell: apply until normal form is reached

m Symbolic execution: apply until normal form is reached or we hit a counter limit



Constraint solving

e Most basic feature of symbolic execution is reachability testing

o Can convert many problems such as assertion violation into state reachability problems

e Constraint solving: interface with SMT solver
o Convert path constraints from execution to SMT-LIB2 files
m SMT-LIB2 format supports all the constructs necessary
e Equivalents for primitives such as Int, Float, Rational, etc
e Can declare new algebraic data types

o Run a SMT solver on these files



