Discrete Bifurcation Analysis of Reactive Systems

Nikola Beneš, Luboš Brim, Martin Demko, Matej Hajnal, Samuel Pastva, and David Šafránek

Systems Biology Laboratory, Masaryk University, Brno
Discrete Bifurcation Analysis of Reactive Systems

- **Bifurcation Analysis**: *Qualitatively* classify system’s behaviour with respect to parameters → **bifurcation points**.
- Behaviour can be described in terms of phase portraits, or **patterns**.

State-of-the-art bifurcation analysis techniques are hard to automate and scale poorly in the number of parameters.

![Phase Portrait Diagram](image)
Pattern can be described in terms of **temporal logics** on a general parametrised transition system.

- **HUCTL** with hybrid, directional and backward operators as pattern specification language.

- Implemented in an open-source tool PITHYA.

- **cycle** State x lies on a cycle (not necessarily stable).

 \[\text{[bind } x: \text{ EX } EF \ x] \]

- **stable** State x lies in a stable component.

 \[\text{[bind } x: \text{ AG } EF \ x] \]