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Abstract—In this paper, we present a novel debugging method
for imperative software, featuring both automatic error local-
ization and correction. The input of our method is an incorrect
program and a corresponding specification, which can be given
in form of assertions or as a reference implementation. We
use symbolic execution for program analysis. This allows for a
wide range of different trade-offs between resource requirements
and accuracy of results. Our error localization method rests
upon model-based diagnosis and SMT-solving. Error correction
is done using a template-based approach which ensures that the
computed repairs are readable. Our method can handle all sorts
of incorrect expressions, not only under a single-fault assumption
but also for multiple faults. Finally, we present experimental
results, where an implementation for C programs is used to
debug mutants of the TCAS case study of the Siemens suite.

I. INTRODUCTION

A lot of research has been done in the past decades to
automate detection of errors in programs, be it software
or hardware. But once an error is detected, the hard work
only begins: the error has to be located and corrected. This
is usually done manually, which is time-consuming, costly,
frustrating, and increases time-to-market. More and better
automation in these steps is definitely needed.

Many existing approaches, especially for automatic error
correction, are based on fully formal methods with limited
scalability when it comes to larger state spaces. On the
other hand, simulation-based methods suffer from limited
accuracy. Trade-offs are usually not possible. Another often
insufficiently addressed issue is that synthesized corrections
have to be readable. A method which produces repairs as
Boolean functions that cannot be understood is of limited
use, because the repaired program cannot be maintained.
Furthermore, repairs should affect only small parts of the
program. This lowers the chances that unspecified properties
of the program get lost.

We propose a novel method for automatic error localization
and correction, explicitly addressing all these challenges. It is
outlined in Fig. 1. An incorrect program and its specification
are the inputs. The specification may be given via assertions
in the code or as a reference implementation. First, we pre-
process the program to express that components may be faulty.
Our fault model can handle all kinds of incorrect expressions
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Fig. 1. The flow of our debugging method.

and is not restricted to single-faults. Next, symbolic execu-
tion is applied to transform the debugging problem into the
domain of logic. Error localization rests upon model-based
diagnosis [27], [24]. It computes sets of components of the
program which can be replaced in such a way that the program
becomes correct. In the correction step, such replacements
are finally computed. This is done using a template-based
approach, where repairs are iteratively refined. This refinement
is guided by counterexamples. All reasoning is done with a
Satisfiability Modulo Theories (SMT) solver.

Symbolic execution is a semi-formal technique to analyze
program behavior path-by-path. This makes our method de-
grade nicely: considering more paths means better accuracy
but also higher resource requirements. Error localization and
correction provide additional parameters for trade-offs. Fine-
grained error localization leads to repairs that affect only small
program parts. Readable repairs are obtained by restricting the
search to templates for expressions. Multiple templates can be
used successively: starting with a simple template, one can
switch to a more expressive one if no repair is found. Within a
certain template, we use heuristics to find simple instantiations
first. Our debugging method is especially suited for debugging
simple pieces of software, e.g., C programs modeling hardware
designs at a high abstraction-level.

Model-based diagnosis [27], [24] has already been ap-
plied to locate errors in logic programs [7], functional pro-
grams [32], VHDL designs [14], Java programs [26], knowl-
edge bases [11], ontologies [13], and temporal logic specifi-
cations [25]. We apply the technique to an abstraction of a
program found by symbolic execution and combine it with
error correction. In [18], errors are located using a model-
checker. Our diagnosis approach is similar, but we require only
one symbolic execution pass rather than several model-checker
calls, and we compute diagnoses differently. Another related



diagnosis method is presented in [21]. It computes a maximal
set of statements that can remain unchanged for the program to
become correct for a given input. The complement forms the
diagnosis. This is encoded as a Maximum Satisfiability (MAX-
SAT) problem. In contrast, our method allows to use several
failure-inducing inputs simultaneously; a diagnosis must allow
to fix the program for all these inputs.

One approach to program repair is to transform a finite-state
program into a finite-state game and to compute a repair as a
strategy in this game [19], [20]. This has also been extended
to programs with virtually infinite state space (i.e., software)
using predicate abstraction [17]. In contrast, we use symbolic
execution, a technique especially suitable for software.

Our repair method is very related to program sketching [30],
[29], a paradigm where the user provides a program with
unknown parts (“holes”) and a specification. A tool synthesizes
the holes automatically. For complex unknowns, the user has to
provide so-called “generators”, which are functions containing
only unknown integer values. These generators serve the same
purpose as our repair templates: reducing the synthesis of
components to the search for integer constants. The main
difference is that our method works in a push-button manner,
i.e., templates do not have to be (but can be) provided by the
user. Moreover, in the repair setting, holes have to be computed
first, they should be small, and their implementation readable.
Templates for expressions are also used to synthesize loop
invariants for program verification [6]. The differences to our
approach for computing repairs lie in the constraints that have
to be fulfilled (program correctness rather than inductiveness)
and how instances are computed (iterative refinement rather
than quantifier elimination). The idea of synthesizing parts of
a program by iterative, counterexample-guided refinements has
already been used in [3] and [30]. We extend the basic idea
with a heuristic to speed up convergence. Program Synthesis
is also addressed in [31], where imperative programs are
synthesized from a given specification and flowgraph structure.
This work uses program a verification tool performing a fixed-
point computation to synthesize a solution.

A quite different repair approach is to repeatedly mutate an
incorrect program and check if it becomes correct [8]. The
problem is the huge search space for mutants. Our repair
method is much more systematic. Finally, there are genetic
programming methods, combining mutation with crossing and
selection according to some notion of fitness [1], [12].
In summary, the contributions of this paper are as following.
• We present a new debugging approach which produces

readable repairs at the source level and degrades nicely.
• We combine many existing techniques in a novel way:

symbolic execution, model-based diagnosis, templates for
unknown expressions, and iterative repair refinement.

• We show how model-based diagnosis can be applied to
a program abstraction found by symbolic execution.

• We present a heuristic to speed up repair refinement.
• Finally, we present experimental results using an imple-

mentation of our debugging approach for C programs.
This paper is organized as follows. Section II explains tech-

Fig. 2. Example: Symbolic execution.

niques underlying our approach and establishes notation. Sec-
tion III presents our debugging method as outlined in Fig. 1.
Section IV discusses alternatives and trade-offs. Section V
presents first experimental results, and Section VI concludes.

II. PRELIMINARIES

A. Symbolic Execution

Symbolic execution [5], [23] is a program analysis tech-
nique. It executes a program with symbols as inputs. Sym-
bols are placeholders that can take on any value in some
domain. Symbolic execution keeps track of the symbolic
values (expressions involving symbols and constants) of all
program variables. Whenever a branching point is reached, the
execution forks. For every branch, a condition expressing when
it is taken is computed. Along an execution path, the branch
conditions are accumulated to a path condition. Thus, a path
condition states when a certain execution path is activated. In
practice, the maximum path length and the number of paths
to analyze are limited to ensure termination.

Example 1. Fig. 2 illustrates symbolic execution on an exam-
ple. Two symbols X and Y are used for the unknown values
of x and y. Boxes contain execution states, dashed lines link
them to the program, and arrows indicate the execution flow.
In Line 3, the execution forks since both branches are feasible.
The condition which has to be fulfilled for the program to reach
a certain state is denoted as PC. The path conditions can be
read from the PC-fields in the leaves of the tree. This program
has two paths with conditions X + 1 > Y and X + 1 ≤ Y .

Concolic execution [15], [28] is a variant of symbolic
execution where the program is executed using concrete and
symbolic inputs simultaneously. The execution path is de-
termined by the concrete values. Along this path, symbolic
variable values are tracked and a path condition is computed.
After one execution, the conjuncts of the path condition are
used to compute concrete input values that trigger a different
path. For our purposes, concolic execution produces the same
outcomes as symbolic execution, namely path conditions.

B. Model-Based Diagnosis

Model-based diagnosis [24], [27] (MBD) is a method to
locate errors in a system by explaining conflicts between a
model of the system and an observation of some incorrect
behavior. We follow the notation of [27] in this work.

Let SD be a model of a system, and let OBS be an obser-
vation of an erroneous behavior, both given as sets of logical



sentences. The system consists of a set of components CMP.
A component c ∈ CMP can behave abnormally (denoted
AB(c)) or normally (written ¬AB(c)). Every component c is
described with a logical sentence of the form ¬AB(c)⇒ Nc,
with Nc defining the normal behavior of c. That is, abnormal
components can behave arbitrarily. The system description SD
is composed of component descriptions and a set of logical
sentences defining the interplay of components. The observa-
tion OBS contradicts SD in the sense that, if all components
behaved normally, it would be impossible to observe OBS.
That is, the set SD∪OBS∪{¬AB(c) | c ∈ CMP} of logical
sentences is inconsistent, i.e., contains a logical contradiction.

MBD computes diagnoses, which are sets of components
that may be responsible for observation OBS. Formally, a
set ∆ ⊆ CMP is a diagnosis iff SD∪OBS∪{¬AB(c) |
c ∈ CMP \∆} is consistent. The components in ∆ may be
responsible for OBS because assuming that these components
behave abnormally renders OBS possible. A diagnosis ∆ is
minimal if no subset ∆′ ⊂ ∆ is a diagnosis. If ∆ is a
diagnosis, then clearly every ∆′ ⊇ ∆ is a diagnosis as well.
Hence, we are only interested in minimal diagnoses.

Diagnoses can be computed via conflicts. A conflict is a set
C ⊆ CMP of components such that SD∪OBS∪{¬AB(c) |
c ∈ C} is inconsistent. I.e., a conflict is a set of components
that cannot all have behaved normally. A conflict C is minimal
if no subset C ′ ⊂ C is a conflict. A hitting set for a collection
K of sets is a set H such that ∀K ∈ K . H ∩ K 6= ∅ holds.
A hitting set H is minimal if no subset H ′ ⊂ H is a hitting
set. A set ∆ ⊆ CMP is now a minimal diagnosis iff ∆ is a
minimal hitting set for all conflicts. The intuitive reason is that
a diagnosis must explain all conflicts, so it must share at least
one element with every conflict. Reiter [27] presents a hitting
set computation algorithm which computes conflicts on-the-fly
and produces diagnoses in order of increasing cardinality.

C. Notation of Vectors and Domains

We write S for the set of finite strings. Overlines are used
to indicate vectors. For two vectors a = (a1, . . . , am) and b =
(b1, . . . , bn), we write a||b for the concatenation (a1, . . . , bn).
For symbolic execution, we assume that all symbols are taken
from a sufficiently large set S. To simplify notation, we also
assume that all symbols range over some domain D of values.
For instance, D may be Z or Bm. An extension to different
domains for different symbols is straightforward.

We denote with Dex a domain of symbolic expressions and
with Dco a domain of symbolic conditions. Let e1, e2 ∈ Dex

and c1, c2 ∈ Dco. We assume that e1 = e2, e1 ≤ e2, e1 ≥ e2,
c1∨ c2, c1∧ c2, and ¬c1 are in Dco as well, with the expected
semantics (“=” means equality here, not an assignment). For
c ∈ Dco we write c[a] with a = (a1, . . . , am) ∈ Sm to
indicate that c may only depend on the symbols a1, . . . , am.
Let b = (b1, . . . , bm) ∈ (S ∪D)m be a vector of symbols and
constants. Then c[b] denotes condition c[a] where all symbols
ai, with 1 ≤ i ≤ m, have been replaced by bi. Analogously
for expressions. Finally, we assume that a sound and complete

decision procedure (e.g., an SMT-solver) for the satisfiability
of conditions c ∈ Dco is available.

III. DEBUGGING METHOD

This section introduces our debugging approach, as outlined
in Fig. 1, in more detail. A discussion of practical aspects and
some alternatives will be given in Section IV. The input of
our debugging method is a program P and a specification S.
The program may contain calls to a special function input,
returning an unknown input value v ∈ D. As a specification,
assertions in the code are supported natively. This also allows
using reference implementations: the reference implementation
is executed with the same inputs and results are compared
with assertions. The user can define the desired notion of
equivalence with suitable assertions. The program is assumed
to violate the specification for some input.

A. Pre-Processing

Our method needs to report components of the program P
as possibly faulty, and to suggest replacements. This requires
a notion of a component and a corresponding fault model.

The ideal fault model can explain all errors, is fine-grained,
and enables efficient algorithms. Clearly, these properties
cannot all be maximized at the same time. As a trade-off,
we assume that only the right-hand side (RHS) of assignments
may be erroneous. Alternatives will be discussed in Section IV.
The reasons for our decision are as follows. Assignments
are the fundamental operation in any imperative program.
The fault model allows for efficient program analysis, since
an unknown RHS can be handled symbolically, just like an
input. (See Section III-B.) Moreover, it is fine-grained and can
easily be extended to incorrect expressions by assigning every
expression to a temporary variable. Consequently, we consider
the RHS of every assignment as a replaceable component of
the program. The rest of the program is deemed unmodifiable.

Example 2. Consider the following program (in C syntax).

1 int max (int x , int y ) {
2 int r = x ;
3 if (y > x )
4 r = x ;
5 assert (r >= x && r >= y ) ;
6 return r ;
7 }

It will serve as a running example. It should compute the
maximum of two numbers but contains an error in Line 4,
which should read “r = y”. With CMP = {c1, c2} we
identify two components, c1 being the x in Line 2 and c2 being
the x in Line 4. By re-writing Line 3 to “int tmp = y >
x; if(tmp)”, the condition y > x can be handled as a
third component c3. However, for simplicity of explanations,
c3 is not considered as a component in the running example.

Next, we express that components may be faulty. We create
a modified program P̃ , which is identical to P except that
each assignment LHS = RHS; is textually replaced by

LHS = cmp(c, RHS, v1, v2, ..., vn);



Here, cmp is a special function indicating components, c is (a
unique identifier of) the component c ∈ CMP, and v1, . . . ,vn
are the variables which are in scope when component c is
executed. We can think of cmp as a shorthand for
assumeCorrect(c) ? RHS : rep_c(v1,...,vn).

If component c is assumed to be correct, there is no need to
modify it. Otherwise it can be replaced by a new expression,
which is embodied by the (yet unknown) function rep_c.
The error localization step will find out which components
are assumed to be incorrect. The error correction step will
compute implementations of the functions rep_c for all
incorrect components.

We define a function Vars : CMP→ S∗ mapping each com-
ponent c ∈ CMP to a vector of variable names v1, . . . ,vn.
These are the variables in scope when c is executed. The
mapping can be computed easily during pre-processing and
will be required for applying and outputting repairs.

Example 3. The program P from Example 2 gives P̃ =

1 int max (int x , int y ) {
2 int r = cmp ( 1 ,x ,x ,y ) ;
3 if (y > x )
4 r = cmp ( 2 ,x ,x ,y ,r ) ;
5 assert (r >= x && r >= y ) ;
6 return r ;
7 }

where the calls to cmp intuitively mean
assumeCorrect(c1) ? x : rep_c1(x,y) and
assumeCorrect(c2) ? x : rep_c2(x,y,r).

B. Program Analysis

We execute P̃ symbolically or concolically to get diagnostic
information. Unlike standard symbolic execution, we maintain
two sets of symbols: input symbols and repair symbols.

Input symbols represent unknown input values. Whenever
the function input is called, a fresh input symbol is created.
We denote the vector of created input symbols (in arbitrary
order) as i = (i1, . . . , iA) ∈ SA. Similarly, repair symbols
represent the unknown values returned by the function cmp.
These symbols will be denoted as r = (r1, . . . , rB) ∈ SB .

With the following functions, every repair symbol rb is asso-
ciated with additional information. CmpOf : {r1, . . . , rB} →
CMP maps rb to the component which produced it. Org :
{r1, . . . , rB} → Dex maps rb to the value that would be
produced by the unmodified component CmpOf(rb). Vals :
{r1, . . . , rB} → D∗ex maps rb to the values of all variables in
scope when CmpOf(rb) produced rb. These functions are built
up from the symbolic values of the first parameter, the second
parameter, and the subsequent parameters of cmp, respectively.

We say that an execution path is a sequence of statements
which starts with the initial statement and ends with the
termination of the program. For every execution path p in P̃ , a
path condition PCp[i||r] ∈ Dco is created during the symbolic
execution. The paths are divided into the two sets PASS and
FAIL. A path p is in FAIL if it violates the specification, i.e.,
ends in an abnormal program termination after an assertion

violation. It is in PASS otherwise. We define a condition
π[i||r] ∈ Dco as

π[i||r] =
∨

p∈PASS

PCp[i||r]. (1)

Lemma 1. Let vi ∈ DA and vr ∈ DB be two vectors of
concrete values. Assuming that all paths of P̃ have been
analyzed, the condition π[vi||vr] is true iff P̃ fulfills the
specification S, given that vi is used as input vector and vr
is the vector of values returned in calls to the function cmp.

Proof: Let pe be the path activated by vi and vr in P̃ .
Clearly, PCp[vi||vr] is true iff p=pe. Lemma 1 holds since
PCpe [vi||vr] is a disjunct of π[vi||vr] iff pe satisfies S.

Proposition 1. Let P be an incorrect program and let vi ∈ DA

be an input vector. Assuming that all paths of P̃ have been
analyzed, the condition

∃r . π[vi||r] ∧
∧

rb in r

rb = Org(rb)[vi||r]

is true iff P fulfills the specification S when executed with
input vi.

Proof: Let vr ∈ DB be the concrete values returned by
calls to cmp in P̃ . According to Lemma 1, π[vi||vr] evaluates
to true iff P̃ fulfills S for input vi. The additional conjuncts in
the formula require that all components in P̃ return the same
value as the respective components in P . Hence, the formula
valuates to true iff P fulfills S for input vi.

Lemma 1 states how the condition π[i||r] can be used to
make statements about the correctness of the instrumented
program P̃ , depending on the inputs and the components.
Proposition 1 establishes the link to the correctness of the
original program P , using the information in Org.

Definition 1. The tuple Γ = (CMP,Vars, i, r,CmpOf,Org,
Vals, π[i||r]) is called diagnostic data.

Example 4. For P from Example 2 we have CMP={c1, c2},
Vars(c1)=(x,y), Vars(c2)=(x,y,r), i=(X,Y ), r=(R1, R2),
CmpOf(R1)=c1, CmpOf(R2)=c2, Org(R1)=X , Org(R2)=
X , Vals(R1)=(X,Y ), Vals(R2)=(X,Y,R1), and π[i||r] =
(Y > X∧R2 ≥ X∧R2 ≥ Y )∨(Y ≤ X∧R1 ≥ X∧R1 ≥ Y ).

The diagnostic data Γ is the output of the program analysis
step and will serve as input for error localization and error
correction (recall again Fig. 1).

C. Error Localization

Our method for error localization rests upon MBD as
introduced in Section II-B. This section explains how MBD
can be applied in our setting. The next section will then discuss
how diagnoses can actually be computed.

Standard MBD takes as input a model of a system together
with a contradicting observation. The contradiction manifests
itself in conflicts, which need to be explained. In our setting, a
program conflicts with its specification, so we need a different



notion of a conflict. Deriving diagnoses from conflicts works
in the standard way.

We define a function repairable : 2CMP → {true, false}.
Intuitively, repairable(Q) maps a set Q ⊆ CMP to true iff
program P̃ can be repaired for all inputs, assuming that all
components c ∈ Q are correct and need not be modified.
Formally, we define

repairable(Q)⇔ ∀i .∃r . π[i||r] ∧
∧
r∈R

r = Org(r)[i||r], (2)

where R stands for {r | CmpOf(r) ∈ Q} and ∀i is a shorthand
for ∀i1 . . . ∀iA. Likewise for ∃r. The definition says that a
program is repairable iff for all inputs, there exist values that
can be returned by the components (the function cmp in P̃ )
such that the specification is fulfilled. Components which are
assumed to be correct can only return the value that would be
returned by the original version of that component.

Lemma 2. The function repairable is monotonic in that, for
all Q′ ⊆ Q ⊆ CMP, repairable(Q) implies repairable(Q′).

Monotonicity is obvious since removing elements from Q
only removes conjuncts in the definition of repairable.

Definition 2. A set ∆ ⊆ CMP is a diagnosis for program P
iff repairable(CMP \∆) = true. A set C ⊆ CMP is a conflict
iff repairable(C) = false.

A diagnosis is a set of components that can be modified
such that P becomes correct. The reason is that, for every
input, it is possible to find some value that can be returned by
the components c ∈ ∆ such that the specification is fulfilled.
Hence, diagnoses represent fault candidates. A conflict is a set
of components from which at least one component has to be
modified in order to obtain a correct program.

Example 5. For the program P in Example 2 we have:

Case Set Q repairable(Q) Diagnosis Conflict
1 ∅ true {c1, c2}
2 {c1} true {c2}
3 {c2} false {c2}
4 {c1, c2} false {c1, c2}

We have that repairable({c1})=true because c2 can be mod-
ified to render P correct. For every input X,Y , there is a
value (namely Y ) to return by c2 such that the assertion holds.
Hence, c2 may be responsible for the incorrectness of P —
it is a diagnosis. On the other hand, repairable({c2})=false
because for X=0, Y =1 the specification is violated no matter
what is returned by c1, simply because the value is overwritten
by c2. Hence, c1 cannot be responsible for the incorrectness,
i.e., {c1} is not a diagnosis. The other two cases are trivial.

D. Computation of Diagnoses

The following theorem, which is a slight adaptation of
Theorem 4.4 from [27], states that minimal diagnoses can be
computed as minimal hitting sets for the collection of conflicts.

Theorem 1. A set ∆ ⊆ CMP of components is a minimal
diagnosis for program P iff it is a minimal hitting set for the
collection K of conflicts for P .

Proof: Using Lemma 2, the proof in [27] applies.

We use the hitting set tree algorithm of Reiter [27] (with the
fix of [16]) to compute diagnoses. It requires a procedure to
compute a conflict not containing a certain set N of elements,
if such a conflict exists. Such a procedure can be implemented
by returning CMP \N if repairable(CMP \N) = false and
None otherwise. Deciding repairability according to Eq. 2 is
computationally hard or, depending on D, Dex and Dco, even
undecidable. The reason is the quantifier alternation. There-
fore, we check repairability only for a given set J ⊆ 2(D

A) of
input vectors. That is, instead of repairable(Q) we compute

repairable′(Q)⇔
∧
vi∈J
∃r . π[vi||r] ∧

∧
r∈R

r = Org(r)[vi||r]

with R = {r | CmpOf(r) ∈ Q}. We use only inputs that
make P violate S because for all other inputs P is trivially
repairable. When applying concolic execution for program
analysis, such concrete input values are computed anyway.
Using symbolic execution, path conditions can be solved to
obtain values for J .

The quantifier-free part of repairable′ is in Dco. Therefore,
a query repairable′(Q) can be solved using one satisfiability
check per input vector. An alternative is to swap the conjunc-
tion over the inputs with the quantification, rename all repair
symbols to fresh ones for every conjunct, and use only one
satisfiability check. In more detail, this works as follows. Let
ri be the vector of fresh symbols corresponding to r for input
vi, and let ri be the fresh symbol corresponding to symbol r
in r. We now have that repairable′(Q) is true iff∧

vi∈J
π[vi||ri] ∧

∧
r∈R

ri = Org(r)[vi||ri] (3)

is satisfiable.
The performance of Reiter’s algorithm increases if the com-

puted conflicts are minimal. A minimal conflict not containing
a certain set N of elements can be computed in different ways.
One way is to use a failure-preserving minimization algorithm
like Delta Debugging [33] or QuickExplain [22] to repeatedly
invoke repairable′ with different subsets of CMP \N until
a minimal subset for which repairable′ evaluates to false is
found. Another option is based on the observation that every
minimal conflict corresponds to an unsatisfiable core in Eq. 3.
By rearranging the conjuncts, Eq. 3 can be rewritten to( ∧

vi∈J
π[vi||ri]

)
∧
∧
c∈Q

∧
{r|CmpOf(r)=c}

∧
vi∈J

ri= Org(r)[vi||ri].

This illustrates that every component c ∈ Q corresponds to
a certain conjunct in the definition of repairable′. A minimal
conflict not containing a certain set N of components can
therefore be computed as a minimal unsatisfiable core of a



constraint system with
∧

vi∈J
π[vi||ri] as a fixed part and

⋃
c∈(CMP \N)

 ∧
{r|CmpOf(r)=c}

∧
vi∈J

ri = Org(r)[vi||ri]


as a set of retractable constraints. Hence, if the solver is able
to compute unsatisfiable cores, this feature can be exploited
to compute minimal conflicts more efficiently.

Theorem 2. Every diagnosis ∆ with respect to the definition
of repairable is also a diagnosis with respect to repairable′.

Proof: Clearly, we have that repairable(Q) implies
repairable′(Q) for all Q ⊆ CMP.

Theorem 2 states that using repairable′ instead of repairable
can only lead to false positives but not to missing diagnoses.

E. Error Correction

Our method for error correction takes as input an incor-
rect program P , the diagnostic data Γ = (CMP,Vars, i, r,
CmpOf,Org,Vals, π[i||r]), and a diagnosis ∆ ⊆ CMP. If
successful, it produces a repaired program P ′ which differs
from P only in the components ∆. Assuming that program
analysis was perfectly accurate, P ′ cannot violate its specifica-
tion for any input. The focus of our algorithm is on efficiency
and readability of repairs rather than completeness.

New expressions have to be synthesized for all components
c ∈ ∆. We reduce the search for expressions to the search
for constants by creating templates for unknown expressions.
Templates consists of program variables and template param-
eters. Concrete parameter values define a concrete expression.

Example 6. The template k0+k1·v1+k2·v2, where k0, k1, k2
are parameters and v1, v2 are program variables, can express
any linear expression over the variables. The values k0=−2,
k1=1, and k2=0 represent expression v1-2.

Templates also provide control over the expressions sub-
jected to search. To get simple repairs, it makes sense to start
with simple templates and switch to more expressive templates
if no repair is found with the simple ones.

Formally, for every component c ∈ ∆, we create a template
Tc[kc||pvc] ∈ Dex as an expression over two vectors of fresh
symbols kc ∈ S∗ and pvc ∈ S|Vars(c)|. The symbols pvc

represent the values of the program variables in scope when
component c is executed. Symbols in kc represent unknown
parameter values. We write k for the concatenation of all kc
with c ∈ ∆. Moreover, we define Kc = |kc| and K = |k|.

For all components c ∈ ∆, let vk,c ∈ DKc be concrete
values for the template parameters kc, and let vk be the con-
catenation of all vk,c. We write P ′ = apply(vk, P ) to denote
that program P is transformed to program P ′ by replacing all
components c ∈ ∆ with expression Tc[vk,c||Vars(c)]. That is,
in all templates, parameters are replaced by the values defined
in vk, program variable symbols are replaced by the respective
variable names, and components c ∈ ∆ of P are replaced by
the so instantiated templates.

In order to check if a certain template instantiation yields
a correctly repaired program, we define a function correct :
DA × DK → {true, false} such that correct(i, k) is true iff

∃r . π[i||r] ∧
∧
r 6∈R

r = Org(r)[i||r]∧∧
r∈R
∃pvc . r = Tc[kc||pvc] ∧ pvc = Vals(r), (4)

where c is short for CmpOf(r) and R = {r | CmpOf(r) ∈
∆}. The intuition behind Eq. 4 is as follows. π[i||r] expresses
when P̃ behaves correctly, depending on the unknown inputs i
and the unknown values r returned by the components. Every
symbol r that has been produced by an incorrect component
c ∈ ∆ is bound to the value that would be produced by
the corresponding template Tc. This value is obtained by
binding the symbols pvc to the values Vals(r) the program
variables had when c was executed to produce r (the equality
is meant element-wise). Every symbol r produced by a correct
component c 6∈ ∆ is bound to the value Org(r) that would
have been produced by the unmodified component c.

Lemma 3. Let P be an incorrect program, vi ∈ DA be an in-
put vector, and vk ∈ DK be template parameter values. Then,
correct(vi, vk) maps to true iff the program P ′ = apply(vk, P )
fulfills the specification S when executed with input vi.

Proof: Let vr ∈ DB be the concrete values returned by
calls to cmp in P̃ . According to Lemma 1, π[vi||vr] evaluates
to true iff P̃ fulfills S for input vi. The additional conjuncts
in Eq. 4 make correct map to true iff a special version P̃ ′ of
P̃ satisfies S for input vi. In P̃ ′, all components c 6∈ ∆ return
the same value as the original implementation of c in P . All
components c ∈ ∆ return the values that would have been
returned by template Tc, instantiated with parameters defined
in vk. This program P̃ ′ is exactly P ′ = apply(vk, P ).

Theorem 3. Let vk be a vector of concrete templates values
such that correct(vi, vk) holds for all input vectors vi. Then,
P ′ = apply(vk, P ) is a correct program.

Proof: Lemma 3 implies that P ′ cannot violate its spec-
ification S for any input. Hence, P ′ is correct.

F. Computation of Repairs

This section explains how repairs can be computed fol-
lowing Theorem 3. Observe that all quantified variables are
bound to a value in Eq. 4. Therefore, an equivalent condition
correct′[i||k] ∈ Dco can be defined by replacing all quantified
variables by their value. What remains is the implicit quan-
tifier alternation

(
∃k . ∀i . correct′[i||k]

)
in Theorem 3, which

renders the problem intractable or even undecidable. For error
localization, we handled this issue by requiring correctness for
some inputs only. Here, we avoid false positives. We follow
the idea of [30] and [3] to compute repairs through iterative
refinements that are guided by counterexamples.

The process is illustrated in Fig. 3. There is a database I
of input vectors vi ∈ DA, which is initially empty. In every
iteration, a repair candidate is computed in form of template



Fig. 3. Counterexample-guided repair refinement.

parameter values vk ∈ DK such that P ′ = apply(vk, P ) is
correct for all inputs vi in I . This is done by computing a
satisfying assignment vk for the symbols k in condition∧

vi∈I
correct′[vi||k]. (5)

If Eq. 5 is unsatisfiable, the program cannot be repaired with
the given templates and the procedure aborts. Otherwise, it is
checked if vk repairs the program for all inputs, i.e., if

¬ correct′[i||vk] (6)

is unsatisfiable. If so, then P ′ = apply(vk, P ) is a correct
program and we are done. Otherwise, a satisfying assignment
vi for i in Eq. 6 is extracted. This vi is a counterexample for
the correctness of P ′. It is added to I and another iteration is
started, which produces a better candidate. This is repeated.
We limit the number of iterations to ensure termination. If
further repairs should be computed, we add conjuncts to Eq. 5
requiring that k is different to all previously computed repairs.

Example 7. Let ∆ = {c2} be the diagnosis for the program P
from Example 2, and let k0+k1·x+k2·y+k3·r be the template
for c2. We have that correct((X,Y ), (k0, k1, k2, k3)) =

∃R1, R2 .((Y > X ∧R2 ≥ X ∧R2 ≥ Y ) ∨ (Y ≤ X∧
R1 ≥ X ∧R1 ≥ Y )) ∧R1 = X∧
R2 = k0 + k1 ·X + k2 · Y + k3 ·X,

which can be simplified to correct′[(X,Y, k0, k1, k2, k3)] =

(Y ≤ X) ∨ (k0 + k1 ·X + k2 · Y + k3 ·X ≥ Y ).

The computation of a repair could proceed as following. First,
a satisfying assignment for k = (k0, k1, k2, k3) in Eq. 5 is
computed with I = ∅. A possible solution is k = (0, 0, 0, 0),
which corresponds to the expression “0”. Next, it is checked if
replacing c2 by 0 renders P correct. This is done by checking
Eq. 6 for satisfiability, i.e., by searching for a counterexample.
Eq. 6 is equal to ¬(Y ≤ X ∨ 0 ≥ Y ), a satisfying assignment
is X = 2, Y = 4. Hence, replacing c2 by 0 does not repair
P for all inputs. The database of inputs is extended to I =
{(2, 4)}, and an improved candidate expression is computed
by solving Eq. 5, which is now equal to (4 ≤ 2) ∨ (k0 +
k1 · 2 + k2 · 4 + k3 · 2 ≥ 2). A solution is k = (1, 0, 1, 0),
which corresponds to the expression “y+1”. Again, we verify
if replacing c2 by y+1 renders P correct. Now, Eq. 6 is equal
to ¬(Y ≤ X ∨ 1 + Y ≥ Y ) and hence unsatisfiable. This
means that no more counterexample exists. Replacing c2 by
y+1 is a valid repair, the algorithm terminates.

G. Heuristics to Speed Up Convergence

Repair refinement can be seen as a game with two players.
Player 1 comes up with candidates, Player 2 attempts to dis-
prove them. In our experiments, we discovered two problems
of this procedure. First, even if simple repairs exist, the play
may end up computing and excluding more and more complex
candidates. E.g., for one program, the sequence of candidates

Iteration Candidate for a certain component
1 0

2 -v0

3 250*v1 + 248*v2 - 2*v3 - v4

4 and so on, becoming more and more complex

was observed, although the constant 500 was a repair for that
component. Second, if both players do the least to fulfill their
duty, progress may be insufficient. E.g., for the program in
Example 2 with ∆ = {c2}, the following may happen:

Repair candidate for c2 Counterexample
0 x=0, y=1
1 x=1, y=2
2 and so on

We solve these two issues heuristically by improving the two
players. Intuitively, we want “simple” candidates and “nasty”
counterexamples. We say that a candidate is “simple” if many
template parameters ki are small or, even better, equal to some
special value si, which makes terms in the template disappear
(e.g., zero in case of a template for linear expressions). To
implement this, we define a set ρ1 ⊆ 2Dco of constraints as

ρ1 =
⋃
ki∈k

(
ki = si

)
∪
⋃
ki∈k

(
ki ≤M ∧ ki ≥ −M

)
,

where M is a constant defining what “small” means. We com-
pute template parameters by solving a Maximum Satisfiability
(MAX-SAT) problem with Eq. 5 as fixed part and ρ1 as the
set of retractable constraints from which as many as possible
should be fulfilled. Likewise, we say that a counterexample
is “nasty” if it contains large, uncorrelated values. Again, we
formulate a MAX-SAT problem with Eq. 6 as fixed part and

ρ2 =
⋃
ia∈i

(
ia ≥ N ∨ ia ≤ −N

)
as the set of retractable constraints, where N is a constant
which is much larger than M . In order to break correlations
between values in the counterexample we additionally ran-
domize it: values are changed to large random values as long
as the modified input vector is still a counterexample.

IV. DISCUSSION AND ALTERNATIVES

Our debugging method offers a lot of configuration param-
eters. This includes the number of execution paths to analyze,
the number |J | of inputs for diagnosis, the maximum number
of repair refinements, and the templates to use. Moreover,
the domains Dex and Dco (i.e., the SMT-theories) determine
which language constructs can be handled exactly, and which
ones have to be approximated. As an advantage, our method



can by tailored to a broad range of programs. On the other
hand, it may take some attempts to find a good configuration.

Our debugging method acts conservatively in that it targets
a known good program termination for every input. The reason
is the way π[i||r] is defined in Eq. 1. An alternative is to use

π[i||r] = ¬
∨

p∈FAIL

PCp[i||r], (7)

to avoid known specification violations. Using Eq. 1, diagnoses
and repairs may be missed. Using Eq. 7, we may find false
positives and allow endless loops. Both have their merits.

The more calls to cmp are introduced during pre-processing,
the more execution paths become feasible. This observation
can be exploited to refine the diagnostic data for error correc-
tion: A separate symbolic execution pass can be triggered for
every diagnosis ∆ before doing correction. In this pass, only
the components in ∆ are instrumented with calls to cmp. This
gives higher path coverage for repair at the costs of having an
additional program analysis step per diagnosis.

In principle, the fault model can be extended to include
also faults in the LHS of assignments and even to missing or
additional statements. A naive way is to apply case-splitting,
but this is computationally expensive. More clever methods
are subject to future work.

In first experiments, we observed that the quality of the
produced repairs heavily depends on the quality of the given
specification. This is neither surprising, nor is this problem
specific to our method. It can happen that the computed
correction simply prevents executions from ever reaching
specific assertions. We plan to address this issue in the future
by incorporating additional requirements such as the avoidance
of unreachable code.

V. EXPERIMENTAL RESULTS

In this section, we present first experimental results to
demonstrate the feasibility of our approach. We implemented
our debugging method for C programs. For program analysis
we extended CREST [2], a concolic testing tool. Yices
version 1.0.28 [10] is utilized with linear integer arithmetic as
SMT-solver. Supporting other solvers and theories, especially
bit-vectors and arrays, is planned. Thus, arrays and pointers
are only handled approximatively at the moment. Currently,
we use only templates for linear expressions. For expressions
which occur as a condition in the program, we use templates
of the form k0+k1 ·v1+k2 ·v2+. . . OP 0, where v1,v2, . . .
are program variables, k0, k1, . . . are template parameters, and
OP ∈ {=, <,>,≤,≥}. The unknown comparison operator is
encoded symbolically so that it can be handled like any other
template parameter. Our implementation is part of a larger
tool named FoREnSiC, which is under development and will
feature also other formal, semi-formal, and dynamic debugging
methods.

In our experiments, we set |J | = 2 for error localization,
we limited the number of repair refinements to 10, the number
of repairs to compute per diagnosis to 5, and set a time-out
to all SMT-solver calls to 60 seconds. The experiments were

TABLE I
PERFORMANCE RESULTS.

Column 1 2 3 4 5 6 7 8 9
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tcas2 70 2 271 2 355 1 1 29 297
tcas7 123 2 42 5 444 0 4 20 1459
tcas8 122 2 37 5 465 0 1 6.3 42
tcas16 123 2 43 5 1027 0 2 22 764
tcas17 125 2 41 5 234 0 2 11 666
tcas18 124 2 38 5 35 0 2 9.3 744
tcas19 123 2 40 5 691 0 1 6.3 42
tcas36 3.0 0 - - - - 4 7.0 796

total 813 14 512 32 3250 1 111 4810

performed on an Intel P7350 processor with 2× 2.0 GHz and
3 GB RAM, running a 32-bit Linux. The implementation and
scripts to reproduce the results are available for download1.

Performance results

Table I summarizes performance results for some mutants of
the TCAS program from the Siemens suite [9]. The program
implements a traffic collision avoidance system for aircrafts in
about 180 lines of code. We use the reference implementation
as specification, which effectively doubles the size. For the
TCAS examples, we do not consider conditions as components
because they appear to challenge the solver, resulting in time-
outs for many cases. We will try to overcome this issue by
improving the encoding of the symbolic search for comparison
operators, and by switching to a more recent solver. Conse-
quently, Table I contains only mutants where the error is on
the RHS of an assignment. We limited the number of paths to
analyze with concolic execution to 400.

In every mutant of Table I, 44 components were identi-
fied. Program analysis took about 5 seconds. The time for
diagnosis is listed in Column 1. Column 2 gives the number
of diagnoses found. The Columns 3 and 4 show the error
correction time and the number of found repairs with the
heuristic of Section III-G enabled. The Columns 5 and 6
contain the same information for the heuristic being disabled.
The Columns 7 to 9 summarize a comparison of our repair
method with the program sketching tool Sketch [30]2. We
re-implemented the TCAS mutants in the input language of
Sketch. Then, we manually replaced the faulty components
with repair templates, using holes for the unknown template
parameters. In this setting, Sketch ran out of memory for all
cases. In order to have Sketch find a repair, we had to reduce
the bit-width of an integer to 8 (for which we had to lower

1See http://www.iaik.tugraz.at/content/research/design verification/others/.
An official release of FoREnSiC will follow.

2We used Sketch version 1.3.0 with the solver ABC. When using MiniSat
as a solver, the tool run out of memory.

 http://www.iaik.tugraz.at/content/research/design_verification/others/


constants in the program). Moreover, we had to reduce the
number of program variables in the templates. Column 7 gives
the maximum number of template variables so that Sketch
can still find a repair. The last two columns list the time and
memory requirements of Sketch, respectively.

In our experiments, we observed that a low number of
inputs J (we use only two) is sufficient for our method to
yield precise diagnoses. (See Column 2). Only for tcas36,
no diagnosis could be found. The reason is that (by far) not
all execution paths through the pre-processed program were
analyzed. However, with other parameter configurations (e.g.,
using Eq. 7 instead of Eq. 1 and an extra program analysis pass
per diagnosis; cf. Section IV) our method finds 5 repairs also
for this mutant. The time for error localization is rather high
compared to error correction (Column 1 vs. Column 3). This
may be due to an inefficient implementation: we do not yet
utilize unsatisfiable core functionality of the solver to compute
minimal conflicts, as described in Section III-D. The program
has many global variables, so each repair may depend on
many variables. Nevertheless, error correction is surprisingly
fast in our experiments. Furthermore, our heuristic to improve
convergence in repair computation works well. It leads to more
repairs being found in less time. Our tool is able to check
a repaired program for correctness using the model checker
CBMC [4]. This was successful in all cases.

At least for the analyzed TCAS examples, our repair method
seems to perform better than Sketch. The repair templates
used by our tool contain all variables which are in scope
at the respective location in the program. This means at
least 10 program variables and 11 template parameters for
each template. For Sketch, we had to drastically reduce the
number of program variables in repair templates in order
to obtain a repair. (See Column 7.) Moreover, the memory
requirements of our implementation are insignificant (below
80 MB in all cases). A plausible explanation is that Sketch
breaks the synthesis problem down to Boolean satisfiability
problems, while we use an SMT-solver. Furthermore, our tool
did not analyze all execution paths of the TCAS mutants. Note,
however, that the comparison with Sketch is not totally fair
due to different input languages, solvers, and tool objectives.

Analysis of some Repairs

In this section, we take a closer look on the repair pro-
cess for some programs. We start with our running example
(cf. Example 2). For CMP={c1, c2}, our tool identifies {c2}
as the only diagnosis. The expressions y, y+1, y+2, etc., are
computed as possible replacements of c2. If the condition is
considered as a third component c3 (cf. Example 2) our tool
finds the diagnoses {c2} and {c1, c3}. The former is repaired
as before. For the latter, our tool computes the replacements

c1 c3
y x - y >= 0,

y+1 2*x - 2*y > 0,
y+2 3*x - 3*y > 0,
y+3 -x + y < 0, and
y+4 4*x - 4*y >= 0.

In the mutant tcas2 from Table I, the function

1 InhibitBiasedClimb ( ) {
2 return (ClimbInhibit ? UpSep +

NOZCROSS : UpSep ) ;
3 }

has been modified: The constant NOZCROSS = 100 has been
replaced by the constant MINSEP = 300. The front-end of
CREST simplifies the body of this function to:

1 if (ClimbInhibit ) {
2 tmp = UpSep + 300 ;
3 } else {
4 tmp = UpSep ;
5 }
6 return (tmp ) ;

Our tool identifies the RHS of Line 2 as a diagnosis. For this
diagnosis, the following repair candidates are computed.

Iteration Candidate expression Correct
1 0 no
2 UpSep no
3 UpSep + 100 yes
4 2*UpSep + 101 no
5 UpSep + 99 no
6 OtherTrAlt + UpSep + 99 no
7 -DwnSep + 2*UpSep + 199 yes

Finally, the repair process aborts due to a time-out. The
repair of Iteration 3 corresponds to the original program
and is thus correct. The one found in Iteration 7 is correct
because InhibitBiasedClimb() is only used in compar-
isons of the form InhibitBiasedClimb() > DwnSep.
Since UpSep and DwnSep are integer variables, -DwnSep
+ 2*UpSep + 199 > DwnSep is true iff UpSep + 100
> DwnSep is true.
In the mutant tcas18 from Table I, the statement

1 PosRAAltThresh [ 2 ] = 640 ;

has been modified by replacing the constant 640 with
640+50. The RHS of this assignment is among the computed
diagnoses. Our tool computes the following sequence of repair
candidates for this diagnosis.

Iteration Candidate Correct
0 0 no
1 400 no
2 500 no
3 640 yes
4 -OwnTrackedAltRate + 639 no
5 UpSep - 1 no
6 UpSep - 1000 no
7 -OwnTrackedAlt - 1 no
8 AltLayerValue + 638 yes
9 -AltLayerValue + 642 yes

10 2*AltLayerValue + 636 yes
11 -2*AltLayerValue + 644 yes

The repair computed in Iteration 3 corresponds to the original
program. The repairs found in the iterations 8 to 11 render the



program correct because the array PosRAAltThresh is only
read at index AltLayerValue. Hence, the modification in
tcas18 affects the behavior only for AltLayerValue = 2.
For this case, the expressions computed in the iterations 8 to
11 are equal to 640. Thus they render the program correct.

These examples demonstrate that our method is able to find
nontrivial corrections also for nontrivial programs.

VI. CONCLUSION

In this paper, we presented a novel method for automatic
error localization and correction in imperative programs. It
offers a wide range of different trade-offs between accuracy
and resource requirements. Our method is based on symbolic
execution, abstracting the debugging problem into the domain
of logic. We showed how model-based diagnosis can be
applied to locate errors using this abstraction. Our correction
method is based on templates, a technique borrowed from the
field of synthesizing loop invariants. This ensures that repairs
are readable. We compute repairs with iterative refinements
and presented a heuristic to speed this process up. This
heuristic additionally prefers simple repairs. We implemented
our debugging method for C programs. Although the imple-
mentation is still in a proof-of-concept state, experimental
results demonstrate that the method works and can be used
not just for toy examples.

In the future, we plan to investigate extensions of the
fault model, develop methods to obtain more useful repairs
for sketchy specifications, combine our method with other
debugging approaches, and extend our tool to support more
theories and solvers.
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