
Appliations of the DE2 LanguageWarren A. Hunt, Jr. and Erik ReeberMarh 22, 2006AbstratWe have developed a formal veri�ation approah that permits themehanial veri�ation of iruit generators and hardware optimiza-tion proedures, as well as existing hardware designs. Our approahis based on deeply embedding the DE2 HDL into the ACL2 logi [3℄;we use the ACL2 theorem-proving system to verify the iruit gen-erators. During iruit generation, a iruit generator may generateiruits based on variety of non-funtional riteria. For example, airuit generator may produe di�erent strutural iruit desriptionsdepending on wire lengths, iruit primitives, target tehnology, andiruit topology.In this paper, we show how we have applied the DE2 system to asimple iruit generator|the n-bit ripple-arry adder. We then showhow we have applied theDE2 system to the veri�ation of omponentsof the TRIPS miroproessor design.1 IntrodutionWe have developed a hardware desription language, DE2, whih has a num-ber of features that make it suitable for the veri�ation of modern hardwaredesigns. DE2 has a simple semantis and inludes apabilities for speify-ing and verifying non-funtional properties, iruit generators, and hardwareoptimization programs.Our veri�ation system is based on the deep embedding of DE2 withinthe ACL2 logi and theorem prover. Furthermore, we have built a fullyautomati SAT-based proof engine that an verify invariants of mahines1



designed in DE2. This SAT-based proof engine involves an extension to theACL2 theorem-proving system so that it an use external SAT solvers.In this paper, we disuss related work in Setion 2. We provide somebakground on the ACL2 theorem prover, the DE2 language, and our veri-�ation system, in Setion 3. Next, in Setion 4, we show how to apply oursystem to the veri�ation of a ripple-arry adder. In Setion 5, we show howwe apply our system to the veri�ation of a ommuniation protool used inthe TRIPS proessor.2 Related WorkThis work builds on our previous work with the DE2 language [3℄, as wellas our previous work with the veri�ation of the FM9001 miroproessor[8℄. In our earlier work, we only employed theorem-proving tehniques, butour urrent e�ort also permits the use of SAT and BDD based tehniques.In addition, our urrent approah to verifying iruit generators permits airuit generator to make hoies based on non-funtional riteria. For exam-ple, a iruit generator may produe di�erent strutural iruit desriptionsdepending on wire lengths, iruit primitives, target tehnology, and iruittopology.This work is similar in spirit to work by the funtional language ommu-nity to generate regular iruits using funtional programs. For instane, theWIRED language has been used to improve performane of multipliers byinorporating layout information into the design of iruit generators [1℄.Many model-hekers, and other automated veri�ation tools, verify FSMproperties automatially. UCLID, for example, uses SAT solvers to verifyhigh-level FSMs with uninterpreted funtion symbols [5℄. Another exampleis the FORTE tool, whih has been used at Intel to verify omponents ofproessor designs [2℄.3 Bakground3.1 The ACL2 Theorem ProverACL2 stands for A Computation Logi for Appliative Common Lisp. TheACL2 language is a funtional subset of Common Lisp. For a thoroughdesription of ACL2 see Kaufmann, Manolios, and Moore's book [4℄.



(defun onatn (n a b)(if (zp n)b(ons (ar a)(onatn (- n 1) (dr a) b))))(defun uandn (n a)(if (zp n)t(if (ar a)(uandn (- n 1) (dr a))nil)))(defun bequiv (a b)(if a b (not b)))(defthm example-thm(implies (and (not (zp x))(not (zp y)))(bequiv (uandn (+ x y) (onatn x a b))(and (uandn x a) (uandn y b)))))Figure 1: ACL2 De�nitions and a Bit-Vetor Conatenation Theorem



Figure 1 illustrates several ACL2 de�nitions. Here, funtion onatnonatenates two bit vetors, uandn returns the onjuntion of the bits in abit vetor. The ACL2 funtion bequiv determines whether two ACL2 valuesrepresent the same Boolean value. We also make use of the built-in ACL2funtion (zp n), whih returns nil if n is a positive integer and t otherwise.The funtions uandn and onatn are de�ned reursively. In order forsuh de�nitional axioms to be added to the ACL2 theory, one must �rst provethat the de�nition terminates for all inputs. In this ase, the proof followsfrom the fat that the funtion argument n dereases on every reursive all.Figure 1 also illustrates an ACL2 theorem. This theorem states thatthe unary-and of the onatenation of two bit vetors is equivalent to theonjuntion of the unary-and of eah individual bit vetor.3.2 The DE2 EvaluatorThe semanti evaluation of a DE2 design proeeds by binding atual (eval-uated) parameters (both the inputs and the urrent state) to the formalparameters of the module to be evaluated; this in turn auses the evaluationof eah submodule. This evaluation proess is reursively repeated until aprimitive module is enountered. This reursive-desent/asent part of theevaluation an be thought of as performing all of the \wiring"; values are\routed" to appropriate modules and results are olleted and passed alongto other modules or beome primary outputs. Finally, to evaluate a primi-tive, a spei� primitive evaluator is then alled after binding the neessaryarguments. This set of de�nitions is omposed of four (two groups of) fun-tions (given below), and these funtions ontain an argument that permitsdi�erent primitive evaluators to be used.The following four funtions ompletely de�ne the evaluation of a netlistof modules, no matter whih type of primitive evaluation is spei�ed. Thefuntions presented in this setion onstitute the entire de�nition of the sim-ulator for the DE2 language. This de�nition is small enough to allow us toreason with it mehanially, yet it is rih enough to permit the de�nition ofa variety of evaluators. The se funtion evaluates a module and returns itsoutputs as a funtion of its inputs and its internal state. The de funtionevaluates a module and returns its next state; this state will be struturallyidential to the module's urrent state, but with updated values. Both seand de have sibling funtions, se-o and de-o respetively, that iteratethrough eah sub-module referened in the body of a module de�nition. We



present the se and de evaluator funtions to make lear the importane weplae on making the de�nition ompat.The se and de funtions both have a flg argument that permits theseletion of a spei� primitive evaluator. The fn argument identi�es thename of a module to evaluate; its de�nition should be found in the netlist.The ins and st arguments provide the primary inputs and the urrent stateof the fn module. The params argument allows for parametrized modules;that is, it is possible to de�ne modules with wire and state sizes that aredetermined by this parameter. The env argument permits on�guration ortest information to be passed deep into the evaluation proess.The se-o funtion evaluates eah ourrene and returns an environ-ment that inludes values for all internal signals. The se funtion returnsa list of outputs by �ltering the desired outputs from this environment. Toompute the outputs as funtions of the inputs, only a single pass is required.(defun se (flg fn params ins st env netlist)(if (onsp fn);; Primitive Evaluation.(dr (flg-eval-lambda-expr flg fn params ins env));; Evaluate submodules.(let ((module (asso-eq fn netlist)))(if (atom module)nil(let-names(m-params m-ins m-outs m-sts m-os)(m-body module)(let*((new-env (add-pairlist m-params params nil))(new-env (add-pairlist (strip-ars m-ins)(flg-eval-list flg ins env)new-env))(new-env (add-pairlist m-sts(flg-eval-expr flg st env)new-env))(new-netlist (delete-asso-eq-netlist fn netlist)))(asso-eq-list-vals(strip-ars m-outs)(se-o flg m-os new-env new-netlist))))))))(defun se-o (flg os env netlist)



(if (atom os) ;; Any more ourrenes?env;; Evaluate speifi ourrene.(let-names(o-name o-outs o-all o-ins)(ar os)(se-o flg (dr os)(add-pairlist(o-outs-names o-outs)(flg-eval-listflg (parse-output-listo-outs(se flg (o-all-fn o-all)(flg-eval-list flg(o-all-params o-all)env)o-ins o-name env netlist))env)env)netlist))))Similarly, the funtions de and de-o perform the next-state ompu-tation for a module's evaluation; given values for the primary inputs and astrutured state argument, these two funtions ompute the next state ofa spei�ed module. This result state is strutured isomorphially to its in-put (internal) state. Note that the de�nition of de ontains a referene tothe funtion se-o; this referene omputes the value of all internal signalsfor the module whose next state is being omputed. This all to se-orepresents the �rst of two passes through a module desription when DE isomputing the next state.(defun de (flg fn params ins st env netlist)(if (onsp fn)(ar (flg-eval-lambda-expr flg fn params ins env))(let ((module (asso-eq fn netlist)))(if (atom module)nil(let-names(m-params m-ins m-sts m-os) (m-body module)(let*((new-env (add-pairlist m-params params nil))



(new-env (add-pairlist (strip-ars m-ins)(flg-eval-list flg ins env)new-env))(new-env (add-pairlist m-sts(flg-eval-expr flg st env)new-env))(new-netlist (delete-asso-eq-netlist fn netlist))(new-env (se-o flg m-os new-env new-netlist)))(asso-eq-list-valsm-sts(de-o flg m-os new-env new-netlist))))))))(defun de-o (flg os env netlist)(if (atom os)env(let-names(o-name o-all o-ins) (ar os)(de-o flg (dr os)(ons(onso-name(de flg (o-all-fn o-all)(flg-eval-list flg (o-all-params o-all) env)o-ins o-name env netlist))env)netlist))))This ompletes the entire de�nition of the DE2 evaluation semantis.This lique of funtions is used for all di�erent evaluators; the spei� kindof evaluation is determined by the flg input. We have proved a number oflemmas that help to automate the analysis of DE2 modules. These lemmasallow us to hierarhially verify FSMs represented as DE2 modules. We havealso de�ned simple funtions that use de and se to simulate a DE2 designthrough any number of yles.An important aspet of this semantis is its brevity. Furthermore, sinewe speify our semantis in the formal language of the ACL2 theorem prover,we an mehanially and hierarhially verify properties about any systemde�ned using the DE2 language.



ACL2 Model Simplified
Invariants

Verified
Translation

Optimizations

& Reductions
(verified)

Verilog
Design

Design
DE

Testing &
Inspection

ACL2 Spec

Guided
ProofSAT−Based

Decision
Procedure

and Test Suite

Manual
Translation

English Spec, C Model

Automatic
Translation

Figure 2: An overview of the DE2 veri�ation system3.3 The Veri�ation SystemHaving an evaluator for DE2 written in ACL2 enables many forms of ver-i�ation. In Figure 2, we illustrate our veri�ation system, whih is builtaround the DE2 language.We typially use the DE2 veri�ation system to verify Verilog designs.These designs are denoted in the upper left of Figure 2. Currently, our subsetof Verilog inludes arrays of wires (bit vetors), instantiations of modules,assignment statements, and some basi primitives (e.g. &, ?: and |). Wealso allow the instantiation of memory (array) modules and vendor-de�nedprimitives.We have built a translator that translates a Verilog desription into anequivalent DE2 desription. Our translator parses the Verilog soure textinto a Lisp expression, and then an ACL2 program onverts this Lisp expres-sion into a DE2 desription.We have also built a translator that onverts a DE2 netlist into a yle-aurate ACL2 model. This translator also provides an ACL2 proof thatthe DE2 desription is equivalent to the mehanial produed ACL2 model.The proess of translating a DE2 desription into its orresponding ACL2model inludes a partial one-of-inuene redution; an ACL2 funtion isreated for eah module's output and parts of the initial design whih areirrelevant to that output are removed. The DE2 to ACL2 translator allows



us to enjoy both the advantages of a shallow embedding (e.g. straightforwardveri�ation) and the advantages of a deep embedding (e.g. syntax resemblingVerilog).We start with an informal spei�ation of the design in the form of Englishdouments, harts, graphs, C-models, and test ode whih is represented inthe upper right of Figure 2. This information is onverted manually into aformal ACL2 spei�ation. Using the ACL2 theorem prover, these spei�a-tions are simpli�ed into a number of invariants and equivalene properties.If these properties are simple enough to be proven by our SAT-based dei-sion proedure, we prove them automatially; otherwise, we simplify suhonjetures using the ACL2 theorem prover until we an suessfully appealto some automated deision proedure.We also use our system to verify sets of DE2 desriptions. This is a-omplished by writing ACL2 funtions that generate DE2 desriptions, andthen proving that these funtions always produe iruits that satisfy theirACL2 spei�ations.SineDE2 desriptions are represented as ACL2 onstants, funtions thattransform DE2 desriptions an be veri�ed using the ACL2 theorem prover.By onverting from Verilog to DE2 and from DE2 to bak into Verilog, wean use DE2 as an intermediate language to perform veri�ed optimizations.Another use of this feature involves performing redutions or optimizationson DE2 spei�ations prior to veri�ation. For example, one an use adeision proedure to determine that two DE2 iruits are equivalent andthen use this fat to avoid verifying properties of a less leanly strutureddesription.We an also build stati analysis tools, suh as extended type hekers, inDE2 by using annotations. In DE2, annotations are �rst-lass objets (i.e.annotations are not embedded in omments). Suh type hekers, sine theyare written in ACL2, an be analyzed and an also assist in the veri�ation ofDE2 desriptions. Furthermore, annotations an be used to embed informa-tion into a DE2 desription to assist with synthesis or other post-proessingtools.4 Ripple-Carry Adder Generator Veri�ationIn this setion we present a de�nition of a simple parametrized ripple-arryadder to show how the DE2 veri�ation system is applied to verify iruit



generators. The following two ACL2 funtions generate the DE2 de�nitionof the top-level module of the ripple-arry adder:(defun generate-ripple-os (n)(if (zp n)nil(append (generate-ripple-os (1- n))`((,(de-make-n-name 'arry n)((q ,(1- n) ,(1- n)) (arry ,n ,n))(full-adder)((g x ,(1- n) ,(1- n)) (g y ,(1- n) ,(1- n))(g arry ,(1- n) ,(1- n))))))));; Make an n-bit ripple-arry adder(defun generate-ripple-arry (n)`(,(de-make-n-name 'ripple-arry n)(type module)(params )(outs (q ,n) (_out 1))(ins (x ,n) (y ,n) (_in 1))(sts )(wires (arry ,(1+ n)))(os(arry_0 ((arry 0 0)) (bufn 1) ((g _in 0 0))). ,(append (generate-ripple-os n)`((arry_out ((_out 0 0))(bufn 1)((g arry ,n ,n))))))))The funtion generate-ripple-os reates the ourrene list by reur-sively laying down one full-adder for eah output bit. The funtiongenerate-ripple-arry then uses this ourrene list to reate the top-level ripple-arry adder de�nition. For example, the following is the four bitripple-arry adder produed by (generate-ripple-arry 4):(RIPPLE-CARRY_4(TYPE MODULE)(PARAMS)(OUTS (Q 4) (C_OUT 1))(INS (X 4) (Y 4) (C_IN 1))



(STS)(WIRES (CARRY 5))(OCCS (CARRY_0 ((CARRY 0 0))(BUFN 1)((G C_IN 0 0)))(CARRY_1 ((Q 0 0) (CARRY 1 1))(FULL-ADDER)((G X 0 0) (G Y 0 0) (G CARRY 0 0)))(CARRY_2 ((Q 1 1) (CARRY 2 2))(FULL-ADDER)((G X 1 1) (G Y 1 1) (G CARRY 1 1)))(CARRY_3 ((Q 2 2) (CARRY 3 3))(FULL-ADDER)((G X 2 2) (G Y 2 2) (G CARRY 2 2)))(CARRY_4 ((Q 3 3) (CARRY 4 4))(FULL-ADDER)((G X 3 3) (G Y 3 3) (G CARRY 3 3)))(CARRY_OUT ((C_OUT 0 0))(BUFN 1)((G CARRY 4 4)))))We next de�ne a ripple-arry adder in ACL2 whih follows the samestruture as the one de�ned in DE2. The following is the top-level de�nitionof the ACL2 ripple-arry adder and the main theorem we prove about it:(defun al2-ripple-adder (n x y _in)(if (zp n)(list nil (get-sublist _in 0 0))(let* ((adder_1b(al2-full-adder (get-sublist x 0 0)(get-sublist y 0 0)(get-sublist _in 0 0)))(sub_adder (al2-ripple-adder (1- n)(nth-dr 1 x)(nth-dr 1 y)(adr adder_1b))))(list (append-n 1 (ar adder_1b) (ar sub_adder))(append-n 1 _in (adr sub_adder))))))



(defthm al2-ripple-adder-adds(implies(and (equal n (len a))(equal (len b) (len a)))(equal (v-to-nat(ar (al2-ripple-adder n a b(list (bool-fix _in)))))(mod-2-n (+ (if _in 1 0)(v-to-nat a)(v-to-nat b))n))))The above theorem states that the ACL2 funtional de�nition of the ripple-arry adder implements modular addition, as de�ned by ACL2's additionaxioms. We prove this theorem by making use of ACL2's indution andsimpli�ation proof engines, as well as the library of lemmas that has beenreated to assist ACL2 users in the veri�ation of arithmeti properties.Next we verify the theorem below:(defthm generate-ripple-se-rewrite(implies(and (not (zp n))(generate-ripple-arry-& n netlist))(equal(se 'bvev(de-make-n-name 'ripple-arry n)params ins st env netlist)(let ((x (get-value 'bvev ins env))(y (get-value 'bvev (dr ins) env))(_in (get-sublist (get-value 'bvev(ddr ins)env)00)))(list (ar (al2-ripple-adder n x y _in))(get-sublist (adr (al2-ripple-adder nxy_in))nn))))))



This theorem states that, given ertain onditions, the DE2 ripple-arryadder produes the same result as the ACL2 ripple-arry adder. The hy-potheses of the theorem are that the number of bits is a positive inte-ger and that the ripple-arry adder modules ours in the given netlist,along with its submodules. This theorem is proven using ACL2's indu-tion proof engine, whih we use to show that eah ourrene produed by areursive step of generate-ripple-os orresponds to a reursive step inal2-ripple-adder.One we have veri�ed generate-ripple-se-rewrite, we an prove the�nal theorem below:(defthm generate-ripple-se-adds(implies(and (not (zp n))(generate-ripple-arry-& n netlist)(equal (len (get-value 'bvev ins env)) n)(equal (len (get-value 'bvev (dr ins) env)) n))(equal(v-to-nat (ar (se 'bvev(de-make-n-name 'ripple-arry n)params ins st env netlist)))(let ((x (get-value 'bvev ins env))(y (get-value 'bvev (dr ins) env))(_in (get-sublist (get-value 'bvev (ddr ins) env)00)))(mod-2-n (+ (if (ar _in) 1 0)(v-to-nat x)(v-to-nat y))n)))))This theorem states that if the n-bit, ripple-arry adder module is in thenetlist, along with its submodules, and the �rst two inputs are n bit, bitvetors, then the natural number representation of the output of the ripple-arry adder is equal to the modular addition of its inputs.Note we proved this theorem entirely using the standard ACL2 theoremproving tehniques, without the use of SAT solvers or BDDs. That is beausewe ompleted this proof before our SAT-based proof engine was fully inplae. In the next setion we will show how we are verifying next-generationhardware using a mixture of SAT-solving and theorem proving.



5 Verifying TRIPS Proessor ComponentsWe are using our veri�ation system to verify omponents of the TRIPSproessor. The TRIPS proessor is a prototype of a next-generation proessorthat has been designed at the University of Texas [7℄ and being built by IBM.One novel aspet of the TRIPS proessor is that its memory is divided intofour piees; eah piee has its own memory ontrol tile, with its own aheand Load Store Queue (LSQ). We plan to verify the LSQ design, based onthe design desribed in Sethumadhavan et. al., [6℄, using our veri�ationsystem. In this setion, we present our veri�ation of a part of the LSQ thatmanages ommuniation with other LSQs.We �rst use our veri�ation system, mentioned in Setion 3.3, to \om-pile" the Verilog design that implements the LSQ ommuniation protoolinto a DE2 module. We then used our automati translation engine to om-pile the DE2 desription into an ACL2 model and prove their equivalenerelative to the DE2 semantis.5.1 Veri�ation of the Exeption ProtoolOne reason that the LSQ units must ommuniate is to onglomerate ex-eptions generated in various tiles into a single mask. Figure 3 presents anoverview of the protool that onglomerates exeptions. Eah tile reeives afour-bit input denoting the exeption generated this yle|a three-bit ad-dress plus a one-bit enable signal. The exeptions are deoded into an eight-bit mask, that eah tile passes to the tile above it. Exeptions are removedwhen the instrution that generated the exeption is ushed. The shematiof the design that implements this protool is shown in Figure 4.To verify the multi-tile design in Figure 3, we prove that it is equivalentto the single-tile design in Figure 5. This equivalene is broken into thefollowing two properties:(defthm exeption-safety(implies(and (integerp tao)(<= 0 tao)(Tth-inputs-goodp tao input-list))(submaskp8(out-udt_miss_ordering_exeptions



Flush_mask

Multi−Tile Design

T1_Except

T2_Except

T3_Except

Flush_mask

Local_Except

UDT_EX_Mask

DDT_EX_Mask

Tile 0

T0_Except

Flush_mask

Local_Except

DDT_EX_Mask

Tile 1 UDT_EX_Mask

Tile 3

Flush_mask

Local_Except

UDT_EX_Mask

DDT_EX_Mask

Tile 2

Flush_mask

Local_Except

UDT_EX_Mask

DDT_EX_Mask

REG

REG

REG

Exception_mask

Figure 3: An overview of the four tile exeption protool design.



R
E
G

EN−DECODE

4

Flush_mask

Local_Except

R
E
G

A
N
D

N

O

R

8

R
O

DDT_EX_mask

8

8

UDT_EX_mask

8

Single Tile Design

Figure 4: A look into the internals of a tile within the exeption protool.
EN−DECODE

EN−DECODE

EN−DECODE

4

4

4

4

EN−DECODE

D

A
N

T3_Except *

NOT

R
O

8

8

8

8

8

This input has been modified: an exception is disabled if it occurs in an*

insturction that has already been flushed.

Spec_EX_mask

R
E
G

8

T0_Except

T1_Except

T2_Except

*

*

Flush_mask

Specification Machine

Figure 5: A simpli�ed mahine that produes the exeption mask.



*t0*(Tth-internal-state tao input-list)(nth tao input-list))(spe-miss_ordering(Tth-spe-state tao input-list)(nth tao input-list)))))(defthm exeption-liveness(implies(and (integerp tao)(<= 3 tao)(Tth-inputs-goodp tao input-list))(submaskp8(bv-or8(reent-flushes 3 tao *t0* input-list)(spe-miss_ordering(Tth-spe-state (- tao 3) input-list)(nth (- tao 3) input-list)))(out-udt_miss_ordering_exeptions*t0*(Tth-internal-state tao input-list)(nth tao input-list)))))The �rst property proves that, for any yle number tao, assuming goodinputs, the exeption mask generated by tile zero is a subset of the exeptionmask generated by the single-tile mahine. The seond property proves thatthe exeption mask generated by the single tile mahine is a subset of theombination of the exeption mask generated by tile zero and the last threeush masks. In e�et, these properties prove that our multi-tile exeptiondesign only produes exeptions produed by the spei�ation and eventuallyprodues all exeptions produed by the spei�ation.We prove these properties by reduing them to the proof of an invariant;we prove these invariants through a mixture of theorem proving and SATsolving. The following example illustrates the type of lemma that we provewith SAT. This lemma is proven by telling ACL2 to automatially all theSAT-based proof engine one its simpli�ation rules reah a �x point.(defthm sub-of-spe-mask-t0



(implies(and(equiv-bvp8(in-ddt_miss_ordering_exeptions *t0* ins)(internal-st-udt_miss_ordering *t1* internal-state))(equiv-bvp8(in-flush_mask *t0* ins)(internal-st-flush_mask *t1* internal-state))(sub-of-spe-mask-tile *t0* spe-st internal-state)(sub-of-spe-mask-tile *t1* spe-st internal-state))(sub-of-spe-mask-tile*t0*(update-spe-st spe-st internal-state ins)(update-internal-state internal-state ins))))5.2 Veri�ation of an Arrived-Store ProtoolThe LSQ units also ommuniate to reate a mask of arrived stores; theseare used to generate exeptions, wake deferred loads, and detet omple-tion. Figure6 presents an overview of the arrived-store-mask protool. Thisprotool is more omplex than the exeption protool, beause tiles send in-formation to both the tile above and the tile below them. Also, sine thearrived store mask is 256 bits, the whole mask is never sent. Instead up tothree, nine-bit store signals are sent to eah neighboring tile, informing eahneighbor of all the new stores it has reeived in the last yle.We used the same methodology to verify the arrived-store-mask protoolas we used to verify the exeption-mask protool. We �rst de�ne a single-tiledesign that produes the store mask. This design is shown in Figure 7. Next,we prove the equivalene of the single-tile and multi-tile designs using thefollowing two theorems. Note that these theorems prove an equivalene overall tiles, whereas the exeption mask equivalene only dealt with tile zero.(defthm arrived-safety(implies(and (integerp tao)(<= 0 tao)(Tth-inputs-goodp tao input-list))



REG

REG

REG

Flush_mask
Commit_mask

Local_store

U
D

T
2_in

U
D

T
1_in

U
D

T
0_in

U
D

T
0_out

U
D

T
2_out

U
D

T
1_out

D
D

T
2_in

D
D

T
1_in

D
D

T
0_in

D
D

T
0_out

D
D

T
2_out

D
D

T
1_out

Store_mask

T0_Store_mask

Flush_mask
Commit_mask

Local_store

U
D

T
2_in

U
D

T
1_in

U
D

T
0_in

U
D

T
0_out

U
D

T
2_out

U
D

T
1_out

D
D

T
2_in

D
D

T
1_in

D
D

T
0_in

D
D

T
0_out

D
D

T
2_out

D
D

T
1_out

Flush_mask
Commit_mask

Local_store

U
D

T
2_in

U
D

T
1_in

U
D

T
0_in

U
D

T
0_out

U
D

T
2_out

U
D

T
1_out

D
D

T
2_in

D
D

T
1_in

D
D

T
0_in

D
D

T
0_out

D
D

T
2_out

D
D

T
1_out

Store_mask

Flush_mask
Commit_mask

Local_store

U
D

T
2_in

U
D

T
1_in

U
D

T
0_in

U
D

T
0_out

U
D

T
2_out

U
D

T
1_out

D
D

T
2_in

D
D

T
1_in

D
D

T
0_in

D
D

T
0_out

D
D

T
2_out

D
D

T
1_out

Store_mask

Tile 2

T0_Store

T1_Store

T2_Store

T3_Store

T1_Store_mask

T2_Store_mask

T3_Store_mask

Tile 0

Store_mask

Tile 1

Tile 2

Store Mask Design

Figure 6: An overview of the protool for generating the mask of arrivedstores. Note that the tile inputs that are unonneted are either groundedor known to always be low.



EN−DECODE

EN−DECODE

EN−DECODE

9

9

9

9

EN−DECODE

D

A
N

R
O

Store_mask

R
E
G

256

256

256

256

This input has been modified: a store is removed if it occurs in an*

insturction that has already been flushed.

NOR Expand Mask

8

256

*

*

Flush_mask

Store Mask Specification Machine

Commit_mask

T1_Store

T2_Store

*
T3_Store

T0_Store

256

Figure 7: A simpli�ed mahine that produes the mask of arrived stores.(submaskp8(out-arrived_masktile(Tth-internal-state tao input-list)(nth (- tao 3) input-list))(spe-arrived_mask(Tth-spe-state tao input-list)(nth tao input-list)))))(defthm arrived-liveness(implies(and (integerp tao)(<= 3 tao)(Tth-inputs-goodp tao input-list))(submaskp8(bv-or



8(expand-mask 8 256 (reent-flushes 3 tao tile input-list))(bv-or8(expand-mask 8 256 (reent-ommits 3 tao tile input-list))(spe-arrived_mask(Tth-spe-state (- tao 3) input-list)(nth (- tao 3) input-list))))(out-arrived_masktile(Tth-internal-state tao input-list)(nth tao input-list)))))6 ConlusionThe veri�ation of an automatially generated iruit desription usuallyinvolves verifying the netlist post-synthesis. Through our ripple-arry adderexample, we have shown how we an verify the orretness of the iruitgenerators diretly, thus obviating the need to verify the resultant iruitdesriptions.To aid our veri�ation e�ort, we have ombined the omplementary teh-niques of theorem proving and SAT solving. We show the usefulness of thisombination through the veri�ation of a Verilog implementation of a om-muniation protool used in the TRIPS proessor.An extension of our approah is to show how iruit generators an beused within the veri�ation of the TRIPS proessor. Rather than partitionmemory into four piees, one ould design a TRIPS proessor with memorypartitioned into a parametrized number of piees. This type of veri�ation �tswell into the modular nature of the TRIPS proessor design and showasesthe advantages of the DE2 language. Furthermore, this veri�ation e�ortwill allow us to explore the appliations and limitations of fully automatedveri�ation tehniques, like SAT, when used to verify large iruit generationdesigns.Moving beyond iruit generators, there are many other potential appli-ations for the DE2 veri�ation system. For example, we an use the DE2language to verify hardware optimization programs and non-funtional prop-erties. The exibility of the DE2 language and the ACL2 theorem provingsystem provides the opportunity to verify many types of appliations, many



of whih are rarely, if ever, been formally veri�ed.Referenes[1℄ Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-AwareCiruit Design. In Corret Hardware Design and Veri�ation Methods(CHARME 2005), volume 3725 of Leture Notes in Computer Siene,pages 5{19. Springer, 2005.[2℄ Robert B. Jones, John W. O'Leary, Carl-Johan H. Seger, Mark Aagaard,and Thomas F. Melham. Pratial Formal Veri�ation in MiroproessorDesign. IEEE Design & Test of Computers, 18(4):16{25, 2001.[3℄ Warren A. Hunt Jr. and Erik Reeber. Formalization of the DE2 Lan-guage. In Corret Hardware Design and Veri�ation Methods (CHARME2005), volume 3725 of Leture Notes in Computer Siene, pages 20{34.Springer, 2005.[4℄ Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. ComputerAided Reasoning: An Approah. Kluwer Aademi, 2000.[5℄ Shuvendu K. Lahiri and Randal E. Bryant. Dedutive veri�ation ofadvaned out-of-order miroproessors. In Computer Aided Veri�ation,15th International Conferene (CAV 2003), volume 2725 of Leture Notesin Computer Siene, pages 341{353. Springer, 2003.[6℄ Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger, Charles R.Moore, and Stephen W. Kekler. Salable hardware memory disambigua-tion for high ilp proessors. In Proeedings of the 36th Annual Inter-national Symposium on Miroarhiteture (MICRO 36), pages 399{410.ACM/IEEE, 2003.[7℄ Tera-op Reliable Intelligently adaptive Proessing System,www.s.utexas.edu/users/art/trips.[8℄ Warren A. Hunt, Jr. and Bishop C. Brok. A Formal HDL and its Use inthe FM9001 Veri�ation. InMehanized Reasoning and Hardware Design,pages 35{47, Upper Saddle River, NJ, USA, 1992. Prentie-Hall, In.


