CS 350c, Spring 2017, Laboratory 1
Memory Chase

Assigned: Tuesday, February 7, 2017
Due: Tuesday, February 28, 2017, by 10 am

1 Introduction

In this lab, you will learn about the memory latency of an x86-compatible microprocessor. By investigat-
ing use-after-read delays of a particular program, we can expose the latency of the memory system. We
have provided a program that will help you understand the performance reduction when it is necessary to
repeatedly refer to main memory instead of finding a desired value in a cache.

The memory-latency program you will use is provided as a part of this laboratory assignment. Below, we
describe how to compile and use the resulting binary to observe the effects of repeatedly reading various
amounts of memory. When you have completed the lab, you will hopefully have a better appreciation for the
latency involved when many memory accesses can only be satisfied by accessing the main memory. As was
mentioned in Laboratory 0, memory performance is the dominant factor in the performance of programs. It
is important that you internalize how modern microprocessor memory systems effect the execution of your
programs.

The more you understand about how a contemporary x86 microprocessor memory system functions, the
better you will be able to take advantage of the mechanisms provided by the memory system. The challenge
in this laboratory is to initialize the data to make the included “pointer-chasing” program execute as fast as
possible and as slow as possible!

2 Logistics

You are expected to work on this lab alone. However, you may communicate with others concerning your
understanding of C code and the various tools, e.g., the compiler, assembler, linker, loader, and other systems
issues. The results that you submit in response to laboratory must be created and provided by you alone.

Any clarifications and revisions to the laboratory will be posted on the top-level course webpage.

There are many sources of information about x86 processors and their associated systems. We will make
use of material that can be downloaded from the Web. We have provided a local copy of Agner Fog’s



information about the x86 family of processors. In addition, we have provided a local copy of Intel’s x86
documentation (circa, Q4 2015). This x86-focused information is referenced on the top-level class webpage.

3 Handout Instructions

You will find the file mem-chase. tar referenced on the homework page of the class website. You will
need to download this file so you can use its contents. There may be changes or updates, so please be sure
to download the latest version — check the top-level class webpage for any updates or corrections.

You are only allowed to alter the file “mem-chase.h”. This file contains two functions where you will
provide C-language subprograms to initialize an array so that the program is defined in “mem-chase.c”.
For a variety of memory sizes, your initialization must make the program in “mem-chase.c” run both as
fast a possible and as slow as possible. Included in “mem-chase.h” is a simple program that provides a
straightforward initialization — just so as to provide an example of how an initialization function can be
written — and although this initialization function works fairly well approximating the fastest way to arrange
indices in the array, it certainly does not provide an initialization that provides the longest-running example.
There is more discussion about this below.

4 Evaluation

You are expected to write a report that explains timing results of running the “mem-chase” code on a variety
of dataset sizes. Running the program is straightforward; the hard part is creating initialization functions
that makes the processor execute the included program as slowly as possible.

The maximum score for this laboratory is 100 points. The value of the individual components is as follows.

e Timing results from the various runs of the mem-chase program on different dataset sizes (20 points).

e A 3-D presentation of the timing results of each run (10 points). The various runs are described below.

An explanation of the varying timing results data (20 points).

An explanation of the code that you wrote that documents your approach and rationale for initializing
the array (30 points).

Answers to the two challenge questions that are listed below (10 points for each answer).

S Running the Mem-Chase Code

Your task is to compile and run the mem-chase code. For the code provided, we recommend that you
use a UTCS Department Linux system running on a computer with an X86 architecture; any of the UTCS
Department machines are suitable. An x86-based laptop can also be used, but you will want a gcc or LLVM
based C-language compiler. The mem-chase source files are contained in the mem—-chase. tar file.



The program is contained in the files clock . c, fcyc. ¢, and mem-chase. c, along with three associated
header files clock.h, fcyc.h, and mem-chase.h.

Below is a command sufficient to compile this program so you may run it; you only need to type:
gcc -Wall -02 -o mem-chase x.cC
The resulting compiled program can be run by just typing:
./mem-chase <log_of_memory_size> <any_non-zero_natural_number>

This program will not produce any result — you need to measure the length of time it takes to run. Below are
several examples of calls to the mem—chase program. The presence of a second argument — no matter what
non-zero, natural-number characters are entered — indicates that our program should use the initialization
that makes the program run slowly.

. /mem—-chase 9
./mem—chase 10

. /mem—-chase 27

. /mem—chase 9 1
./mem-chase 10 1

./mem—-chase 27 1

To complete your laboratory, you need to graph your results. In addition, you need to write down the model
and speed of the microprocessor system that you use to get the requested results. You can find some of the
information by typing the commands:

cat /proc/cpuinfo
cat /proc/meminfo

With that information, you can then lookup on Intel’s website the configuration of the internal caches. You
may find it somewhat difficult to exactly identify the processor in the system you are using, but on this point,
don’t be afraid to ask anyone for help.

You will spend much of your time for this laboratory studying the x86 memory system. The #rick to making
this program run slowly is to understand how the cache system works and make sure that each time the next
memory location is chased, the value found is not in any cache. Note, there are many caches, not just the
L1, L2, and L3 caches, but also there are also caches for other tasks. For instance, the TLB and its backing
cache are used to rapidly translate addresses; you will want to make this cache also miss. And, there are
other, smaller caches to deal with repeated translations, and so on. The more caches that your access pattern
causes to miss, the slower your program will run.

Below are two questions about this laboratory. It is important that you give thoughtful answers to these
questions (jointly worth 20%). Your answers need not be more than a few paragraphs, but your answers
need to reveal clearly that you understand how the x86 memory hierarchy operates.



1. Compile the file mem—chase. c so as to produce x86 assembler. Is the code produced efficient?
Approximately, what is the loop overhead as compared to the instructions that perform the chasing?
Would it be valuable to increase the number of statements in the primary loop (at the bottom of the
file)?

2. In the file mem-chase. c, in the mem-chase loop, there are four C-language statements identified
by lines that contain “//W”. Uncomment these instructions and attempt to improve (meaning, make
the code run even more slowly) the initialization code for the init_data_s1low so that the resulting
program executes even more slowly. Think carefully about what changes you might make for various
dataset sizes. What are the results of your investigation?

Hints

For the larger dataset sizes, it is relatively straightforward to initialize the memory so that the performance
for the slow case is 2% to 3% of the fast case. Conversely, for the smaller dataset sizes, it’s tricky to make
any initialization that runs much slower than the fast case. Those talented (maybe devious) students should
be able to reduce the performance to below 1% of the fast case.

Exploring different initialization configurations may be valuable; a configuration that makes one particular
size run slowly might not provide the slowest result at a substantially different memory size. So, the code you
write for the init_data_slow may need to be parameterized by the input size provided to the initialization
routines. This may also be true for the init_data_fast, but the differences will be much less dramatic.

If the initialization for the slow case(s) runs at less than 1% of your fast case(s), then you are surely un-
derstanding the memory system. When presenting your insights, please describe why your code runs so
slowly.

Hand In Instructions
Please follow the instructions below for turning in your work.

e Make sure you have included your identifying information in your submission. In this case, you will
update the file “mem-chase.h” and submit that file along with your report.

e To handin your mem-chase laboratory, prepare a report that you can submit as a PDF file. Name the
file with your report <YourUTID>.pdf. The Canvas system identifies you in this manner.

Submit your laboratory report by using CANVAS.



