Mechanical Verification of SAT Solvers

Nathan Wetzler

The University of Texas at Austin

Project Proposal
CS 389R - Recursion and Induction
April 1, 2015



Satisfiability (SAT) solvers are used in amazing ways...
- Hardware verification: Centaur x86 verification

- Combinatorial problems:

> van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004]

>~ Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]

- Unsatisfiability is often more important

Mechanical Verification of SAT Solvers Nathan Wetzler



Satisfiability (SAT) solvers are used in amazing ways...
- Hardware verification: Centaur x86 verification

- Combinatorial problems:

> van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004]

>~ Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]

- Unsatisfiability is often more important

..., but satisfiability solvers have errors.
- Documented bugs in SAT, SMT, and QBF solvers

[Brummayer and Biere, 2009; Brummayer et al., 2010]

- Competition winners have contradictory results
(HWMCC winners from 2011 and 2012)

- Implementation errors often imply conceptual errors

Mechanical Verification of SAT Solvers Nathan Wetzler



* Develop a model of a basic SAT solver
* Prove soundness of solver (SAT result)
* Prove completeness of solver (UNSAT result)

Mechanical Verification of SAT Solvers Nathan Wetzler



Satisfiability

Is there an assignment of

values to variables such that
a given Boolean formula (=X1 vV =Xz V X3) A
evaluates to TRUE? (X2 V X3 V =Xa) A

(=X2 V =X3 V X4) A

(X1 V X2 V =X3) A

Formulas are in conjunctive-

normal form (CNF). (X1 Vv X3V Xa) A

(=X1 V =X3 V =X4) A
(X1 V =X2 V =X4) A

(=X1 V X2 V X4)

Mechanical Verification of SAT Solvers Nathan Wetzler



Satisfiability

Is there an assignment of CNF
values to variables such that 1 2-30
a given Boolean formula -1-2 30
evaluates to TRUE? 2 3 -40
-2 -3 40
Formulas are in conjunctive- s 4
normal form (CNF).
-1 -3 -4 0
1 -2 -40
-1 3 40

Mechanical Verification of SAT Solvers Nathan Wetzler



Basic SAT Solver

Solve (f, a, h) =
1f eval(f, a) = true
return (SAT, a)
1t emptyCh)
return (UNSAT, {})
(s, m) = Solve(f, a U {topCh)}, popCh))

1t (s == SAT)
return (SAT, m)
else

return Solve(f, a U {-topCh)}, popCh))

Mechanical Verification of SAT Solvers Nathan Wetzler



Theorems

e Soundness

Solve(f, a, h) = SAT
— 3 s : eval(f, s) = TRUE

 Completeness

3 s: evalf(f, s) = TRUE Solve(f, a, h) = UNSAT
— Solve(f, a, h) = SAT — =3 S: eval(f, s) = TRUE

Mechanical Verification of SAT Solvers Nathan Wetzler



Timeline

« Week 1 - Model SAT problem and executable solver

- Literals, Negation, Clauses, Formulas
- Assignments, Evaluation, Heuristics

- Basic solver algorithm

- Satisfiability, Solutions

 Week 2 - Write main theorems, begin work on
soundness
- Theory of heuristics: subset, union, disjointedness

 Week 3 - Complete soundness proof
- Proof by quantification

 Week 4 - Complete completeness proof
- Proof by enumeration

Mechanical Verification of SAT Solvers Nathan Wetzler



Additional Work

* Model DP solver

 Model DPLL solver (unit propagation, pure literal
elimination

 Prove DPLL solver sound and complete

 Model CDCL solver (learned clauses, conflict analysis,
backtracking)

Mechanical Verification of SAT Solvers Nathan Wetzler



