Mechanical Verification of SAT Solvers

Nathan Wetzler

The University of Texas at Austin

Project Proposal
CS 389R - Recursion and Induction
April 1, 2015

Motivation

Satisfiability (SAT) solvers are used in amazing ways...

- Hardware verification: Centaur x86 verification
- Combinatorial problems:
 - van der Waerden numbers
 [Dransfield, Marek, and Truszczynski, 2004]
 - Gardens of Eden in Conway's Game of Life
 [Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]
- Unsatisfiability is often more important

Motivation

Satisfiability (SAT) solvers are used in amazing ways...

- Hardware verification: Centaur x86 verification
- Combinatorial problems:
 - van der Waerden numbers
 [Dransfield, Marek, and Truszczynski, 2004]
 - Gardens of Eden in Conway's Game of Life
 [Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]
- Unsatisfiability is often more important
- ..., but satisfiability solvers have errors.
 - Documented bugs in SAT, SMT, and QBF solvers [Brummayer and Biere, 2009; Brummayer et al., 2010]
 - Competition winners have contradictory results (HWMCC winners from 2011 and 2012)
 - Implementation errors often imply conceptual errors

Proposal

- Develop a model of a basic SAT solver
- Prove soundness of solver (SAT result)
- Prove completeness of solver (UNSAT result)

Satisfiability

Is there an assignment of values to variables such that a given Boolean formula evaluates to TRUE?

Formulas are in conjunctivenormal form (CNF).

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (x_1 \lor x_3 \lor x_4) \land (x_1 \lor \neg x_3 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_4) \land (x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor x_4)$$

Satisfiability

Is there an assignment of values to variables such that a given Boolean formula evaluates to TRUE?

Formulas are in conjunctivenormal form (CNF).

CNF

Basic SAT Solver

```
Solve (f, a, h) =
  if eval(f, a) = true
    return (SAT, a)
  if empty(h)
    return (UNSAT, {})
  (s, m) = Solve(f, a U \{top(h)\}, pop(h))
  if (s == SAT)
    return (SAT, m)
  else
    return Solve(f, a U {¬top(h)}, pop(h))
```

Theorems

Soundness

Solve(
$$f$$
, a , h) = SAT
 $\rightarrow \exists s : eval(f, s) = TRUE$

Completeness

$$\exists s : eval(f, s) = TRUE$$

 $\rightarrow Solve(f, a, h) = SAT$

Solve(
$$f$$
, a , h) = UNSAT
 $\rightarrow \neg \exists s : eval(f, s) = TRUE$

Timeline

- Week 1 Model SAT problem and executable solver
 - Literals, Negation, Clauses, Formulas
 - Assignments, Evaluation, Heuristics
 - Basic solver algorithm
 - Satisfiability, Solutions
- Week 2 Write main theorems, begin work on soundness
 - Theory of heuristics: subset, union, disjointedness
- Week 3 Complete soundness proof
 - Proof by quantification
- Week 4 Complete completeness proof
 - Proof by enumeration

Additional Work

- Model DP solver
- Model DPLL solver (unit propagation, pure literal elimination
- Prove DPLL solver sound and complete
- Model CDCL solver (learned clauses, conflict analysis, backtracking)