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Satisfiability (SAT) solvers are used in amazing ways...
- Hardware verification: Centaur x86 verification

- Combinatorial problems:

> van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004]

>~ Gardens of Eden in Conway’s Game of Life
[Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]

- Unsatisfiability is often more important
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Satisfiability (SAT) solvers are used in amazing ways...
- Hardware verification: Centaur x86 verification

- Combinatorial problems:

> van der Waerden numbers
[Dransfield, Marek, and Truszczynski, 2004]

>~ Gardens of Eden in Conway’s Game of Life
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- Unsatisfiability is often more important

..., but satisfiability solvers have errors.
- Documented bugs in SAT, SMT, and QBF solvers

[Brummayer and Biere, 2009; Brummayer et al., 2010]

- Competition winners have contradictory results
(HWMCC winners from 2011 and 2012)

- Implementation errors often imply conceptual errors
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* Develop a model of a basic SAT solver
* Prove soundness of solver (SAT result)
* Prove completeness of solver (UNSAT result)
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Satisfiability

Is there an assignment of

values to variables such that
a given Boolean formula (=X1 vV =Xz V X3) A
evaluates to TRUE? (X2 V X3 V =Xa) A

(=X2 V =X3 V X4) A

(X1 V X2 V =X3) A

Formulas are in conjunctive-

normal form (CNF). (X1 Vv X3V Xa) A

(=X1 V =X3 V =X4) A
(X1 V =X2 V =X4) A

(=X1 V X2 V X4)
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Satisfiability

Is there an assignment of CNF
values to variables such that 1 2-30
a given Boolean formula -1-2 30
evaluates to TRUE? 2 3 -40
-2 -3 40
Formulas are in conjunctive- s 4
normal form (CNF).
-1 -3 -4 0
1 -2 -40
-1 3 40
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Basic SAT Solver

Solve (f, a, h) =
1f eval(f, a) = true
return (SAT, a)
1t emptyCh)
return (UNSAT, {})
(s, m) = Solve(f, a U {topCh)}, popCh))

1t (s == SAT)
return (SAT, m)
else

return Solve(f, a U {-topCh)}, popCh))

Mechanical Verification of SAT Solvers Nathan Wetzler



Theorems

e Soundness

Solve(f, a, h) = SAT
— 3 s : eval(f, s) = TRUE

 Completeness

3 s: evalf(f, s) = TRUE Solve(f, a, h) = UNSAT
— Solve(f, a, h) = SAT — =3 S: eval(f, s) = TRUE
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Timeline

« Week 1 - Model SAT problem and executable solver

- Literals, Negation, Clauses, Formulas
- Assignments, Evaluation, Heuristics

- Basic solver algorithm

- Satisfiability, Solutions

 Week 2 - Write main theorems, begin work on
soundness
- Theory of heuristics: subset, union, disjointedness

 Week 3 - Complete soundness proof
- Proof by quantification

 Week 4 - Complete completeness proof
- Proof by enumeration
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Additional Work

* Model DP solver

 Model DPLL solver (unit propagation, pure literal
elimination

 Prove DPLL solver sound and complete

 Model CDCL solver (learned clauses, conflict analysis,
backtracking)
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