
Mechanical Verification of SAT Solvers

Nathan Wetzler!
!

The University of Texas at Austin!
!

Project Proposal!
CS 389R - Recursion and Induction!

April 1, 2015

Nathan WetzlerMechanical Verification of SAT Solvers / 0701

Motivation

Satisfiability (SAT) solvers are used in amazing ways...!
- Hardware verification: Centaur x86 verification!
- Combinatorial problems: !
‣ van der Waerden numbers  

[Dransfield, Marek, and Truszczynski, 2004]!
‣ Gardens of Eden in Conway’s Game of Life  

[Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]!

- Unsatisfiability is often more important

Nathan WetzlerMechanical Verification of SAT Solvers / 0701

Motivation

Satisfiability (SAT) solvers are used in amazing ways...!
- Hardware verification: Centaur x86 verification!
- Combinatorial problems: !
‣ van der Waerden numbers  

[Dransfield, Marek, and Truszczynski, 2004]!
‣ Gardens of Eden in Conway’s Game of Life  

[Hartman, Heule, Kwekkeboom, and Noels, 2013; Kouril and Paul, 2008]!

- Unsatisfiability is often more important

..., but satisfiability solvers have errors.!
- Documented bugs in SAT, SMT, and QBF solvers  

[Brummayer and Biere, 2009; Brummayer et al., 2010]!
- Competition winners have contradictory results 

(HWMCC winners from 2011 and 2012)!
- Implementation errors often imply conceptual errors

Nathan WetzlerMechanical Verification of SAT Solvers / 0702

• Develop a model of a basic SAT solver!
• Prove soundness of solver (SAT result)!
• Prove completeness of solver (UNSAT result)

Proposal

Nathan WetzlerMechanical Verification of SAT Solvers / 0703

Satisfiability

Is there an assignment of
values to variables such that
a given Boolean formula
evaluates to TRUE?

(x1 ⋁ x2 ⋁ ¬x3) ⋀

(¬x1 ⋁ ¬x2 ⋁ x3) ⋀

(x2 ⋁ x3 ⋁ ¬x4) ⋀

(¬x2 ⋁ ¬x3 ⋁ x4) ⋀

(x1 ⋁ x3 ⋁ x4) ⋀

(¬x1 ⋁ ¬x3 ⋁ ¬x4) ⋀

(x1 ⋁ ¬x2 ⋁ ¬x4) ⋀

(¬x1 ⋁ x2 ⋁ x4)

Formulas are in conjunctive-
normal form (CNF).

Nathan WetzlerMechanical Verification of SAT Solvers / 0703

Satisfiability

Is there an assignment of
values to variables such that
a given Boolean formula
evaluates to TRUE?

 1 2 -3 0

-1 -2 3 0

 2 3 -4 0

-2 -3 4 0

 1 3 4 0

-1 -3 -4 0

 1 -2 -4 0

-1 3 4 0

Formulas are in conjunctive-
normal form (CNF).

CNF

Nathan WetzlerMechanical Verification of SAT Solvers / 0704

Solve (f, a, h) =	
 if eval(f, a) = true	
 return (SAT, a)	
 if empty(h)	
 return (UNSAT, {})	
 (s, m) = Solve(f, a U {top(h)}, pop(h))	
 if (s == SAT)	
 return (SAT, m)	
 else	
 return Solve(f, a U {¬top(h)}, pop(h))

Basic SAT Solver

Nathan WetzlerMechanical Verification of SAT Solvers / 0705

• Soundness!
!

Solve(f, a, h) = SAT!
→ ∃ s : eval(f, s) = TRUE!

!

• Completeness!
!

∃ s : eval(f, s) = TRUE!
→ Solve(f, a, h) = SAT!

Theorems

Solve(f, a, h) = UNSAT!
→ ¬ ∃ s : eval(f, s) = TRUE

Nathan WetzlerMechanical Verification of SAT Solvers / 0706

• Week 1 - Model SAT problem and executable solver!
- Literals, Negation, Clauses, Formulas!
- Assignments, Evaluation, Heuristics!
- Basic solver algorithm!
- Satisfiability, Solutions!

• Week 2 - Write main theorems, begin work on
soundness!
- Theory of heuristics: subset, union, disjointedness!

• Week 3 - Complete soundness proof!
- Proof by quantification!

• Week 4 - Complete completeness proof!
- Proof by enumeration

Timeline

Nathan WetzlerMechanical Verification of SAT Solvers / 0707

• Model DP solver!
• Model DPLL solver (unit propagation, pure literal

elimination!
• Prove DPLL solver sound and complete!
• Model CDCL solver (learned clauses, conflict analysis,

backtracking)

Additional Work

