A Write-Based Solver for SAT Modulo the Theory of Arrays

Miquel Bofill, Robert Nieuwenhuis,Albert Oliveras, Enric Rodríguez-Carbonell and Albert Rubio

8th International Conference, FMCAD 2008
Portland, OR, USA
November 19th, 2008

Departament de Lenguatges iSistemes Informaticś

Overview of the talk

- SAT Modulo Theories (SMT)
- The Theory of Extensional Arrays
- Solving SMT with DPLL(T)
- Handling Arrays in SMT
- Theory instantiation for Arrays
- A new solver for the theory of Arrays
- Key points
- Experimental evaluation
- Conclusions

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITEENICA DE CATALUNYA

Overview of the talk

- SAT Modulo Theories (SMT)

- The Theory of Extensional Arrays
- Solving SMT with DPLL(T)
- Handling Arrays in SMT
- Theory instantiation for Arrays
- A new solver for the theory of Arrays
- Key points
- Experimental evaluation
- Conclusions

Departament de Lenguatges i Sistemes Informatics

SAT Modulo Theories (SMT)

- Some problems are more naturally expressed in other logics than propositional logic, e.g:
- Software verification needs reasoning about equality, arithmetic, data structures, ...
- SMT consists of deciding the satisfiability of a (ground) FO formula with respect to a background theory
- Example (Equality with Uninterpreted Functions - EUF):

$$
g(a)=c \wedge(f(g(a)) \neq f(c) \vee g(a)=d) \wedge c \neq d
$$

- Wide range of applications:
- Predicate abstraction
- Model checking
- Equivalence checking
- Static analysis
- Scheduling
- ...

The Theory of Extensional Arrays

- This is a very common structure

The Theory of Extensional Arrays

- This is a very common structure
- Axiomatization of the Theory:
- Read/Write Axioms

$$
\begin{aligned}
& i=j \Rightarrow \operatorname{read}(w r i t e(a, i, x), j)=x \\
& i \neq j \Rightarrow \operatorname{read}(w r i t e(a, i, x), j)=\operatorname{read}(a, j)
\end{aligned}
$$

- Extensionality
$\forall i . \operatorname{read}(a, i)=\operatorname{read}(b, i) \Rightarrow a=b$

Departament de Lenguatges i Sistemes Informatics's

The Theory of Extensional Arrays

- This is a very common structure
- Axiomatization of the Theory:
- Read/Write Axioms

$$
\begin{aligned}
& i=j \Rightarrow \operatorname{read}(w r i t e(a, i, x), j)=x \\
& i \neq j \Rightarrow \operatorname{read}(w r i t e(a, i, x), j)=\operatorname{read}(a, j)
\end{aligned}
$$

- Extensionality

$$
a \neq b \Rightarrow \exists i \cdot \operatorname{read}(a, i) \neq \operatorname{read}(b, i)
$$

The Theory of Extensional Arrays

- This is a very common structure
- Axiomatization of the Theory:
- Read/Write Axioms

$$
\begin{aligned}
& i=j \Rightarrow \operatorname{read}(w r i t e(a, i, x), j)=x \\
& i \neq j \Rightarrow \operatorname{read}(w r i t e(a, i, x), j)=\operatorname{read}(a, j)
\end{aligned}
$$

- Extensionality

$$
a \neq b \Rightarrow \exists i \cdot \operatorname{read}(a, i) \neq \operatorname{read}(b, i)
$$

Combined with
Uninterpreted Functions, Linear Integer Arithmetic or Bit-vectors

The Theory of Extensional Arrays

- This is a very common structure
- Axiomatization of the Theory:
- Read/Write Axioms

$$
\begin{aligned}
& i=j \Rightarrow \operatorname{read}(w r i t e(a, i, x), j)=x \\
& i \neq j \Rightarrow \operatorname{read}(\operatorname{write}(a, i, x), j)=\operatorname{read}(a, j)
\end{aligned}
$$

- Extensionality

$$
a \neq b \Rightarrow \exists i \cdot \operatorname{read}(a, i) \neq \operatorname{read}(b, i)
$$

Combined with
Uninterpreted Functions, Linear Integer Arithmetic or Bit-vectors

THIS TALK: Quantifier-free formulas over Extensional Arrays

Solving SMT with DPLL(T)

Methodology:

- SAT solver returns model $[1,2,4,5]$

Departament de Lenguatges i Sistemes Informatics
$\overline{\text { UNIVERSITAT POLITECNICA DE CATALUNYA }}$

Solving SMT with DPLL(T)

Methodology:

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says T-inconsistent

UNIVERSITAT POLITECNICA DE CATALUNYA

Solving SMT with DPLL(T)

Methodology:

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says T-inconsistent
- Send $\{1,2 \vee 3,4,5, \overline{1} \vee \overline{2} \vee \overline{4} \vee \overline{5}\}$ to SAT solver

Departament de Llenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Solving SMT with DPLL(T)

Methodology:

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says T-inconsistent
- Send $\{1,2 \vee 3,4,5, \overline{1} \vee \overline{2} \vee \overline{4} \vee \overline{5}\}$ to SAT solver
- SAT solver returns model $[1, \overline{2}, 3,4,5]$

Departament de Llenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Solving SMT with DPLL(T)

Methodology:

- SAT solver returns model $[1,2,4,5]$
- Theory solver says T-inconsistent
- Send $\{1,2 \vee 3,4,5, \overline{1} \vee \overline{2} \vee \overline{4} \vee \overline{5}\}$ to SAT solver
- SAT solver returns model $[1, \overline{2}, 3,4,5]$
- Theory solver says T-inconsistent

Solving SMT with DPLL(T)

Methodology:

- SAT solver returns model $[1,2,4,5]$
- Theory solver says T-inconsistent
- Send $\{1,2 \vee 3,4,5, \overline{1} \vee \overline{2} \vee \overline{4} \vee \overline{5}\}$ to SAT solver
- SAT solver returns model $[1, \overline{2}, 3,4,5]$
- Theory solver says T-inconsistent
- SAT solver detects $\{1,2 \vee 3,4,5, \overline{1} \vee \overline{2} \vee \overline{4} \vee \overline{5}, \overline{1} \vee \overline{3} \vee \overline{4} \vee \overline{5}\}$ UNSAT

Solving SMT with DPLL(T)

Methodology:

- SAT solver returns model $[1,2,4,5]$
- Theory solver says T-inconsistent
- Send $\{1,2 \vee 3,4,5, \overline{1} \vee \overline{2} \vee \overline{4} \vee \overline{5}\}$ to SAT solver
- SAT solver returns model $[1, \overline{2}, 3,4,5]$
- Theory solver says T-inconsistent
- SAT solver detects $\{1,2 \vee 3,4,5, \overline{1} \vee \overline{2} \vee \overline{4} \vee \overline{5}, \overline{1} \vee \overline{3} \vee \overline{4} \vee \overline{5}\}$ UNSAT

Two components: Boolean engine $\operatorname{DPLL}(X)+T$-Solver

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITEENICA DE CATALUNYA

Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T-consistency only of full prop. models (at a leaf)

Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T consistency only of full prop. models (at a leaf)
- Check T-consistency of partial assignment while being built

Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T consistency only of full prop. models (at a leaf)
- Check T-consistency of partial assignment while being built
- Given a T-inconsistent assignment M, add $\neg M$ as a clause

Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T consistency only of full prop. models (at a leaf)
- Check T-consistency of partial assignment while being built
- Given a T ineensistent assignment M, add $\rightarrow M$ as aclause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_{0} \subseteq M$ and add $\neg M_{0}$ as a clause

Departament de Lenguatges i Sistemes Informatićs
UNIVERSITAT POLITECNICA DE CATALUNYA

Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T consistency only of full prop. models (at a leaf)
- Check T-consistency of partial assignment while being built
- Given a T ineensistent assignment M, add \rightarrow Mas aclause
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_{0} \subseteq M$ and add $\neg M_{0}$ as a clause
- Upon a T-inconsistency, add clause and restart

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T consistency only of full prop. models (at a leaf)
- Check T-consistency of partial assignment while being built
- Given a T inconsistent assignment M, add $\rightarrow M$ as a clause-
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_{0} \subseteq M$ and add $\neg M_{0}$ as a clause
- Upen a T incensisteney, add clause and restart
- Upon a T-inconsistency, bactrack to some point where the assignment was still T-consistent

Departament de Lenguatges S Sistemes Informatićs
UNIVERSITAT POLITECNICA DE CATALUNYA

Solving SMT with DPLL(T) (2)

Several optimizations for enhancing efficiency:

- Check T consistency only of full prop. models (at a leaf)
- Check T-consistency of partial assignment while being built
- Given a T inconsistent assignment M, add $-M$ as a clause-
- Given a T-inconsistent assignment M, identify a T-inconsistent subset $M_{0} \subseteq M$ and add $\neg M_{0}$ as a clause
- Upon a T inconsistency, add clause and restart
- Upon a T-inconsistency, bactrack to some point where the assignment was still T-consistent

THIS TALK: obtain an Arr-solver that is incremental, backtrackable and produce inconsistency explanations

Solving SMT with $\operatorname{DPLL}(T)$ (3)

Need of case analysis inside the T-Solver:
$\{\underbrace{\operatorname{write}(a, i, x)=w r i t e}_{1}(b, j, y), \underbrace{\text { write }(c, i, x) \neq \text { write }(c, j, y)}_{2}, \underbrace{\operatorname{read}(a, j) \neq y}_{3}\}$
It's inconsistent, but we need a case analysis on $i=j$

Solving SMT with $\operatorname{DPLL}(T)$ (3)

Need of case analysis inside the T-Solver:
$\{\underbrace{\operatorname{write}(a, i, x)=\operatorname{write}(b, j, y)}_{1}, \underbrace{\text { write }(c, i, x) \neq \operatorname{write}(c, j, y)}_{2}, \underbrace{\operatorname{read}(a, j) \neq y}_{3}\}$
It's inconsistent, but we need a case analysis on $i=j$

- Assume $i=j$:

From 1 we infer $x=y$
From 2 we infer $x \neq y$
Inconsistency

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Solving SMT with $\operatorname{DPLL}(T)$ (3)

Need of case analysis inside the T-Solver:
$\{\underbrace{\operatorname{write}(a, i, x)=\operatorname{write}(b, j, y)}_{1}, \underbrace{\operatorname{write}(c, i, x) \neq \operatorname{write}(c, j, y)}_{2}, \underbrace{\operatorname{read}(a, j) \neq y}_{3}\}$
It's inconsistent, but we need a case analysis on $i=j$

- Assume $i=j$:

From 1 we infer $x=y$
From 2 we infer $x \neq y$
Inconsistency

- Assume $i \neq j$: From 1 we infer that a at position j has y which contradicts 3

Inconsistency

Departament de Lenguatges i Sistemes Informatićs
UNIVERSITAT POLITEENICA DE CATALUNYA

Solving SMT with $\operatorname{DPLL}(T)$ (3)

Need of case analysis inside the T-Solver:
$\{\underbrace{\operatorname{write}(a, i, x)=\operatorname{write}(b, j, y)}_{1}, \underbrace{\text { write }(c, i, x) \neq \operatorname{write}(c, j, y)}_{2}, \underbrace{\operatorname{read}(a, j) \neq y}_{3}\}$
It's inconsistent, but we need a case analysis on $i=j$

- Assume $i=j$:

From 1 we infer $x=y$
From 2 we infer $x \neq y$ Inconsistency

- Assume $i \neq j$: From 1 we infer that a at position j has y which contradicts 3

Inconsistency

We use split-on-demand: case analysis done by the boolean engine

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITEENICA DE CATALUNYA

Overview of the talk

- SAT Modulo Theories (SMT)
- The Theory of Extensional Arrays
- Solving SMT with $\operatorname{DPLL}(T)$
- Handling Arrays in SMT
- Theory instantiation for Arrays
- A new solver for the theory of Arrays
- Key points
- Experimental evaluation
- Conclusions

Handling Arrays in SMT

There are basically two possibilities:

- Using theory instantiation
- Having an Arr-solver for DPLL(Arr)

Theory instantiation for Arrays

- There is no explicit T-Solver for Arrays
- Instead, have a Module that generate Lemmas

Lemmas are instances of the axioms of the theory
Add the Lemmas to the set of clauses used by the SAT engine.

Theory instantiation for Arrays

- There is no explicit T-Solver for Arrays
- Instead, have a Module that generate Lemmas

Lemmas are instances of the axioms of the theory
Add the Lemmas to the set of clauses used by the SAT engine.

- Used in SMT solvers like Yices or Z3
- [Goel,Krstic\&Fuch2008] studied completeness

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Theory instantiation for Arrays

- There is no explicit T-Solver for Arrays
- Instead, have a Module that generate Lemmas

Lemmas are instances of the axioms of the theory
Add the Lemmas to the set of clauses used by the SAT engine.

- Used in SMT solvers like Yices or Z3
- [Goel,Krstic\&Fuch2008] studied completeness
- Positive: simple and easier to implement
- Negative: cannot use dedicated algorithms for the Theory

Departament de Llenguatges isistemes Informatics
UNIVERSITAT POLITEENICA DE CATALUNYA

Theory instantiation for Arrays(2)

To see pros and cons
Consider a simpler theory: uninterpreted funtions

Theory instantiation for Arrays(2)

To see pros and cons
Consider a simpler theory: uninterpreted funtions

- Using Theory Instantiation:

Generate Lemmas like

$$
a=b \Rightarrow f a=f b
$$

if f is a function symbol and a and b are constants.

Deparament de Leneruatases issemens hlomanits

Theory instantiation for Arrays(2)

To see pros and cons
Consider a simpler theory: uninterpreted funtions

- Using Theory Instantiation:

Generate Lemmas like

$$
a=b \Rightarrow f a=f b
$$

if f is a function symbol and a and b are constants.

- Having a T-Solver:

Apply congruence closure on the set of equality literals.

Theory instantiation for Arrays(2)

To see pros and cons
Consider a simpler theory: uninterpreted funtions

- Using Theory Instantiation:

Generate Lemmas like

$$
a=b \Rightarrow f a=f b
$$

if f is a function symbol and a and b are constants.

- Having a T-Solver:

Apply congruence closure on the set of equality literals.

It's not obvious what's the best

Theory instantiation for Arrays(2)

To see pros and cons
Consider a simpler theory: uninterpreted funtions

- Using Theory Instantiation:

Generate Lemmas like

$$
a=b \Rightarrow f a=f b
$$

if f is a function symbol and a and b are constants.

- Having a T-Solver:

Apply congruence closure on the set of equality literals.

It's not obvious what's the best

We believe that the same happens with the Theory of Arrays

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays

A new solver for the Theory of Arrays

- Existing Solver [Stump,Barrett,Dill\&Levitt2001]: Based on the "read" operator
We call it Read-based:
write operators are translated into read operators.

Oeparamenende lenguagases i Ssemens thomamaics

A new solver for the Theory of Arrays

- Existing Solver [Stump,Barrett,Dill\&Levitt2001]: Based on the "read" operator
We call it Read-based:
write operators are translated into read operators.
- New approach:

We call it Write-based:
read operators are translated into write operators.

Departament de Llenguatges i Sistemes Informatics

A new solver for the Theory of Arrays(2)

- Read-based:

$$
a=w r i t e(b, i, x)
$$

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{gathered}
a=w r i t e(b, i, x) \\
\Downarrow
\end{gathered}
$$

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{aligned}
& a=\text { write }(b, i, x) \\
& \Downarrow \\
& \operatorname{read}(a, i)=x \\
& +
\end{aligned} \quad \text { is translated into }
$$

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{array}{cl}
a=\text { write }(b, i, x) & \\
\Downarrow & \text { is translated into } \\
\operatorname{read}(a, i)=x & \\
+ & \\
a \simeq b & ? ? ?
\end{array}
$$

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{array}{cc}
a=\text { write }(b, i, x) & \\
\Downarrow & \text { is translated into } \\
\operatorname{read}(a, i)=x & \\
+ & \text { equal except in } i
\end{array}
$$

Deparatanent de Leronguagess SSsimens intomatics
UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{gathered}
a=\text { write }(b, i, x) \\
\Downarrow \\
\operatorname{read}(a, i)=x \\
+ \\
a={ }_{i} b
\end{gathered}
$$

\square
is translated into
equal except in i

Basically, ends up with uniterpreted funtions plus this new theory of I-equality of arrays (which can be handled using theory instantiation)

Departament de Lenguatges i Sistemes Informaticśs

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{array}{cc}
a=\text { write }(b, i, x) & \\
\Downarrow & \text { is translated into } \\
\operatorname{read}(a, i)=x & \\
+ & \text { equal except in } i
\end{array}
$$

- Write-based:

$$
\operatorname{read}(a, i)=x
$$

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{array}{cc}
a=\text { write }(b, i, x) & \\
\Downarrow & \text { is translated into } \\
\operatorname{read}(a, i)=x & \\
+ & \text { equal except in } i
\end{array}
$$

- Write-based:

$$
\begin{gathered}
\operatorname{read}(a, i)=x \\
\Downarrow
\end{gathered}
$$

UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{array}{cc}
a=\text { write }(b, i, x) & \\
\Downarrow & \text { is translated into } \\
\operatorname{read}(a, i)=x & \\
+ & \text { equal except in } i
\end{array}
$$

- Write-based:

$$
\begin{gathered}
\operatorname{read}(a, i)=x \\
\Downarrow \\
a=\text { write }(b, i, x) \quad \text { for some fresh } b
\end{gathered}
$$

$\xrightarrow{\text { Departament de Lenguatges i Sistemes Informatics }}$
UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays(2)

- Read-based:

$$
\begin{gathered}
a=\text { write }(b, i, x) \\
\Downarrow \\
\operatorname{read}(a, i)=x \\
+ \\
a={ }_{i} b
\end{gathered}
$$

is translated into

equal except in i

- Write-based:

$$
\begin{gathered}
\operatorname{read}(a, i)=x \\
\Downarrow \\
a=\text { write }(b, i, x) \quad \text { for some fresh } b
\end{gathered}
$$

We follow the Write-based approach

A new solver for the Theory of Arrays(3)

Set of literals:

$$
\begin{aligned}
a & =\text { write }(b, j, x) \\
b & =\text { write }(c, i, y) \\
d & =\text { write }(e, i, y) \\
a & =d
\end{aligned}
$$

A new solver for the Theory of Arrays(3)

Set of literals:
$a=w r i t e(b, j, x)$
$b=$ write (c, i, y)
$d=$ write (e, i, y)
$a=d$

Representation:

A new solver for the Theory of Arrays(3)

Set of literals:

$$
\begin{aligned}
a & =\text { write }(b, j, x) \\
b & =\text { write }(c, i, y) \\
d & =\text { write }(e, i, y) \\
a & =d
\end{aligned}
$$

Which "writes" are relevant?

Representation:

c

A new solver for the Theory of Arrays(3)

Set of literals:
Representation:

$$
\begin{aligned}
& a=w \operatorname{rite}(b, j, x) \\
& b=w r i t e(c, i, y) \\
& d=w r i t e(e, i, y) \\
& a=d
\end{aligned}
$$

Which "writes" are relevant?

- if $i=j$ then we need $x=y$

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITEENICA DE CATALUNYA

A new solver for the Theory of Arrays(3)

Set of literals:
Representation:

$d=$ write (e, i, y)
$a=d$

Which "writes" are relevant?

- if $i=j$ then we need $x=y$
- if $i \neq j$ we need $e=\operatorname{write}\left(e_{1}, j, x\right)$

Departament de Llenguatges i Sistemes Informatićs
UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays(3)

Set of literals:
Representation:

$d=$ write (e, i, y)
$a=d$

Which "writes" are relevant?

- if $i=j$ then we need $x=y$
- if $i \neq j$ we need $e=\operatorname{write}\left(e_{1}, j, x\right)$

Departament de Llenguatges i Sistemes Informatićs
UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays(3)

Set of literals:
Representation:

$$
\begin{aligned}
& a=w \operatorname{rite}(b, j, x) \\
& b=w r i t e(c, i, y) \\
& d=w r i t e(e, i, y) \\
& a=d
\end{aligned}
$$

Which "writes" are relevant?

- if $i=j$ then we need $x=y$
- if $i \neq j$ we need $e=\operatorname{write}\left(e_{1}, j, x\right)$

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

A new solver for the Theory of Arrays(3)

Set of literals:
Representation:
$a=w r i t e(b, j, x)$
$b=$ write (c, i, y)
$d=$ write (e, i, y)
$a=d$

Which "writes" are relevant?

- if $i=j$ then we need $x=y$
- if $i \neq j$ we need $e=\operatorname{write}\left(e_{1}, j, x\right)$

Recall: we may need splitting on $i=j$

Departament de Lenguatges i Sistemes Informaticśs
UNIVERSITAT POLITECNICA DE CATALUNYA

Overview of the talk

- SAT Modulo Theories (SMT)
- The Theory of Extensional Arrays
- Solving SMT with $\operatorname{DPLL}(T)$
- Handling Arrays in SMT
- Theory instantiation for Arrays
- A new solver for the theory of Arrays
- Key points
- Experimental evaluation
- Conclusions

Key points

There are three key points in our approach:

Key points

There are three key points in our approach:

- Notion of solved form:

Early detection of satisfiable sets of literals

Key points

There are three key points in our approach:

- Notion of solved form:

Early detection of satisfiable sets of literals

- Delay negative witnesses introduction:

Depatanentide Leronatages S Ssisenes inomaicics
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points

There are three key points in our approach:

- Notion of solved form:

Early detection of satisfiable sets of literals

- Delay negative witnesses introduction: Recall the extensionality axiom:

$$
a \neq b \Rightarrow \exists i \cdot \operatorname{read}(a, i) \neq \operatorname{read}(b, i)
$$

Departament de Lenguatges i Sistemes Informaticśs
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points

There are three key points in our approach:

- Notion of solved form:

Early detection of satisfiable sets of literals

- Delay negative witnesses introduction:

$$
\begin{gathered}
a \neq b \\
\Downarrow \\
a=\operatorname{write}\left(a_{1}, n i, n e_{1}\right) \text { and } b=\operatorname{write}\left(b_{2}, n i, n e_{2}\right)
\end{gathered}
$$

where $n i$ is a new index and $n e_{1}$ and $n e_{2}$ are fresh constants with $n e_{1} \neq n e_{2}$

Key points

There are three key points in our approach:

- Notion of solved form:

Early detection of satisfiable sets of literals

- Delay negative witnesses introduction:

$$
\begin{gathered}
a \neq b \\
\Downarrow \\
a=\operatorname{write}\left(a_{1}, n i, n e_{1}\right) \text { and } b=\operatorname{write}\left(b_{2}, n i, n e_{2}\right)
\end{gathered}
$$

where $n i$ is a new index and $n e_{1}$ and $n e_{2}$ are fresh constants with $n e_{1} \neq n e_{2}$
This name is a tribute to Monty Python's "Ni knights" (check Google with "Knights who say Ni" for further details)

The relationship between them is that
both Ni's (the indexes and the Knights) introduce a lot of noise

UNIVERSITAT POLITECNICA DE CATALUNYA

Key points

There are three key points in our approach:

- Notion of solved form:

Early detection of satisfiable sets of literals

- Delay negative witnesses introduction:

Delay the introduction of "Ni's" avoiding unnecessary case analisys

Key points

There are three key points in our approach:

- Notion of solved form:

Early detection of satisfiable sets of literals

- Delay negative witnesses introduction:

Delay the introduction of "Ni's" avoiding unnecessary case analisys

- Produce better(shorter) explanations:

Using specialized mechanisms that take into account the knowledge about the theory of Arrays

Key points: Solved forms

There are several solved situations
Three particular examples (see paper for general definition):

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Solved forms

There are several solved situations
Three particular examples (see paper for general definition):

- write $(a, i, x)=$ write (b, j, y) if $i=j, x=y$ and a and b are different free constants.

UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Solved forms

There are several solved situations
Three particular examples (see paper for general definition):

- write $(a, i, x)=$ write (b, j, y) if $i=j, x=y$ and a and b are different free constants.
- write $(a, i, x) \neq$ write (b, j, y) if we don't have $i=j$ and b is a free constant.

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Solved forms

There are several solved situations
Three particular examples (see paper for general definition):

- write $(a, i, x)=$ write (b, j, y) if $i=j, x=y$ and a and b are different free constants.
- write $(a, i, x) \neq$ write (b, j, y) if we don't have $i=j$ and b is a free constant.
- write $(a, i, x) \neq$ write (b, i, y) if we have neither $x=y$ nor $x \neq y$.

Deparamenende Lerongagases i Ssemens nlomamaics

Key points: Solved forms(2)

We can complete our partial model as follows:

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.

Oepatament de leonyulages S Ssemens intomaics

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x)=$ write (b, j, y)
if $i=j, x=y$ and a and b are different free constants.

Departament de Lenguatges i Sistemes Informatićs

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x)=\operatorname{write}(b, j, y)$
if $i=j, x=y$ and a and b are different free constants.
Since a and b are free constants
they have the same interpretation in the model.

Departament de Lenguatges i Sistemes Informatićs
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x)=\operatorname{write}(b, j, y)$
if $i=j, x=y$ and a and b are different free constants.
Since a and b are free constants they have the same interpretation in the model. which satisfies the literal

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x) \neq$ write (b, j, y)
if we don't have $i=j$ and b is a free constant.

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x) \neq$ write (b, j, y)
if we don't have $i=j$ and b is a free constant.
Since we don't have $i=j$
we take $i \neq j$ in the model and

Departament de Lenguatges i Sistemes Informaticśs
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x) \neq$ write (b, j, y)
if we don't have $i=j$ and b is a free constant.
Since we don't have $i=j$
we take $i \neq j$ in the model and since b is free constant we take $b[i]=d \neq x$ in the model

Departament de Lenguatges i Sistemes Informaticśs

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x) \neq$ write (b, j, y)
if we don't have $i=j$ and b is a free constant.
Since we don't have $i=j$
we take $i \neq j$ in the model and since b is free constant we take $b[i]=d \neq x$ in the model which satisfies the literal

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x) \neq$ write (b, i, y) if we have neither $x=y$ nor $x \neq y$.

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x) \neq$ write (b, i, y) if we have neither $x=y$ nor $x \neq y$. since we have neither $x=y$ nor $x \neq y$ we take $x \neq y$ in the model

Departament de Lenguatges i Sistemes Informatics

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$
- write $(a, i, x) \neq$ write (b, i, y) if we have neither $x=y$ nor $x \neq y$. since we have neither $x=y$ nor $x \neq y$ we take $x \neq y$ in the model which satisfies the literal

Departament de Lenguatges i Sistemes Informaticśs

Key points: Solved forms(2)

We can complete our partial model as follows:

- Indexes and values:
$\forall v_{1}$ and v_{2}, if neither $v_{1}=v_{2}$ nor $v_{2} \neq v_{1}$ in the partial model we take $v_{2} \neq v_{1}$.
- Arrays: assume there is a value d different from all others. \forall array A, if $A[i]$ is not defined for some i in the partial model we take $A[i]=d$

We have several inference rules that transform literals NOT in solved form until they are (see paper for details).

Departament de Llenguatges i Sistemes Informatićs
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Delay Ni's introduction

Consider the following negative literal:

	a1	i1
	x1	
	i2	x 2
	a3	

	b1	i2
	b2	i1
	b3	

With: $i_{1} \neq i_{2} \wedge x_{2} \neq y_{2}$

Key points: Delay Ni's introduction

Consider the following negative literal:

a1	i1	x1
a2	i2	$x 2$
a3		

\neq	b1	i2	y2
	b2	i1	x1
	b3		

With: $i_{1} \neq i_{2} \wedge x_{2} \neq y_{2}$
There is no need to add any new index ni
Avoiding case analysis between $n i$ and the other indexes.

Departament de Lenguatges i Sistemes Informaticś
UNIVERSITAT POLITEENICA DE CATALUNYA

Key points: Delay Ni's introduction(2)

Consider the following negative literal:

	a1	i1
	x1	x1
	i 2	x 2
a3		

	b1	i2
	b2	i1
	b3	

With: $i_{1} \neq i_{2}$

Departament de Lenguatges i Sistemes Informaticśs

Key points: Delay Ni's introduction(2)

Consider the following negative literal:

	a1	i1
	x1	
	i 2	x 2
a3		

	b1	i2
	b2	i1
	b3	

With: $i_{1} \neq i_{2}$
We have to add a new index $n i$, but we add it at the end.
$a_{3}=\operatorname{write}^{\left(a_{4}, n i, e d_{1}\right)}$) $b_{3}=$ write $\left(b_{4}, n i, e d_{2}\right)$
with $e d_{1} \neq e d_{2}, n i \neq i_{1}$ and $n i \neq i_{2}$

Key points: Delay Ni's introduction(2)

Consider the following negative literal:

	a1	i1
	x1	
	i 2	x 2
a3		

\neq

b1	i2	x2
b2	i1	x1
b3		

With: $i_{1} \neq i_{2}$
We have to add a new index $n i$, but we add it at the end.
$a_{3}=\operatorname{write}^{\left(a_{4}, n i, e d_{1}\right)}$) $b_{3}=\operatorname{write}\left(b_{4}, n i, e d_{2}\right)$
with $e d_{1} \neq e d_{2}, n i \neq i_{1}$ and $n i \neq i_{2}$

	a1	i1
a2	i2	x2
a3	ni	ed1
a4		

\neq	b1	i2	x2
	b2	i1	x1
	b3	ni	ed2
	b4		

Key points: Shorter explanations

Consider the following incosistent literal with $i_{1} \neq i_{3} \wedge i_{2} \neq i_{3} \wedge i_{1} \neq i_{2}$:

	a1	i1
	x1	
a2	i2	$x 2$
a3	i3	$x 3$
c		

	b1	i3	x3
	b2	i1	x1
	b3	i2	x2

Inconsistency explanation: $a_{1} \neq b_{1} \wedge i_{1} \neq i_{3} \wedge i_{2} \neq i_{3} \wedge i_{1} \neq i_{2}$

Departament de Lenguatges i Sistemes Informatics
UNIVERSITAT POLITECNICA DE CATALUNYA

Key points: Shorter explanations

Consider the following incosistent literal with $i_{1} \neq i_{3} \wedge i_{2} \neq i_{3} \wedge i_{1} \neq i_{2}$:

Inconsistency explanation: $a_{1} \neq b_{1} \wedge i_{1} \neq i_{3} \wedge i_{2} \neq i_{3} \wedge i_{1} \neq i_{2}$

Departament de Lenguatges i Sistemes Informaticśs
UNIVERSITAT POLITEENICA DE CATALUNYA

Key points: Shorter explanations

Consider the following incosistent literal with $i_{1} \neq i_{3} \wedge i_{2} \neq i_{3} \wedge i_{1} \neq i_{2}$:

Inconsistency explanation: $a_{1} \neq b_{1} \wedge i_{1} \neq i_{3} \wedge i_{2} \neq i_{3} \wedge$ il

Departament de Lenguatges i Sistemes Informaticśs
UNIVERSITAT POLITEENICA DE CATALUNYA

Overview of the talk

- SAT Modulo Theories (SMT)
- The Theory of Extensional Arrays
- Solving SMT with $\operatorname{DPLL}(T)$
- Handling Arrays in SMT
- Theory instantiation for Arrays
- A new solver for the theory of Arrays
- Key points
- Experimental evaluation
- Conclusions

Experimental evaluation

Setting used: SMT-LIB benchmarks 2007, 300 sec.

			YICES 1.0 .10	YICES 1.0		Z3 0.1		CVC3 1.2		BARCELOGIC	
	Tot	Max	Tot	Max	Tot	Max	Total	Max	Tot	Max	
array_ben	52	42	69	52	21	8	$496(16)$	294	282	162	
cvc	5	4	4	3	1	1	114	57	59	38	
qlock2	49	5	50	6	114	37	$199(30)$	117	652	55	
storecomm	35	0.1	41	0.1	37	0.1	993	20	48	0.1	
storeinv	1	0.1	1	0.1	8	0.3	$691(162)$	76	22	2	
swap	970	130	581	60	1431	128	$13726(1263)$	275	275	9	

SMT competition 2008 results.
QF_AX:
Barcelogic winner.
QF_AUFLIA: Z3.2 winner.

Z3.2 second.
NO Timeouts.
Barcelogic second. NO Timeouts.

Conclusions

- Our solver is intuitive and still competitive.
- Completely different from previous approaches.
- Observation: there is no unique best approach.

The more approaches we have the better

- Need of new hard benchmarks to compare and improve.

Departament de Lenguatges i Sistemes Informatićs
UNIVERSITAT POLITECNICA DE CATALUNYA

Thank you!

