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SAT Modulo Theories (SMT)

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists of deciding the satisfiability of a (ground) FO
formula with respect to a background theory

Example ( Equality with Uninterpreted Functions – EUF ):

g(a)=c ∧ ( f (g(a)) 6= f (c) ∨ g(a)=d ) ∧ c 6=d

Wide range of applications:

Predicate abstraction

Model checking

Equivalence checking

Static analysis

Scheduling

...
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The Theory of Extensional Arrays

This is a very common structure
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The Theory of Extensional Arrays

This is a very common structure

Axiomatization of the Theory:

Read/Write Axioms
i = j ⇒ read(write(a, i,x), j) = x
i 6= j ⇒ read(write(a, i,x), j) = read(a, j)

Extensionality

∀i.read(a, i) = read(b, i) ⇒ a = b
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Uninterpreted Functions, Linear Integer Arithmetic or
Bit-vectors
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The Theory of Extensional Arrays

This is a very common structure

Axiomatization of the Theory:

Read/Write Axioms
i = j ⇒ read(write(a, i,x), j) = x
i 6= j ⇒ read(write(a, i,x), j) = read(a, j)

Extensionality

a 6= b ⇒∃i.read(a, i) 6= read(b, i)

Combined with
Uninterpreted Functions, Linear Integer Arithmetic or
Bit-vectors

THIS TALK: Quantifier-free formulas over Exten-
sional Arrays
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Solving SMT with DPLL(T )

Methodology:

read(a, j) 6= read(b, i)
︸ ︷︷ ︸

1

∧ ( a = b
︸ ︷︷ ︸

2

∨ a = write(b, i,x)
︸ ︷︷ ︸

3

) ∧ read(a, i) 6= x
︸ ︷︷ ︸

4

∧ j = i
︸︷︷︸

5

SAT solver returns model [1, 2, 4, 5]
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SAT solver detects {1, 2∨3, 4, 5, 1∨2∨4∨5, 1∨3∨4∨5}
UNSAT

Two components: Boolean engine DPLL(X) + T -Solver
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Solving SMT with DPLL(T ) (2)

Several optimizations for enhancing efficiency:

Check T -consistency only of full prop. models (at a leaf)
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Several optimizations for enhancing efficiency:

Check T -consistency only of full prop. models (at a leaf)

Check T -consistency of partial assignment while being built

Given a T -inconsistent assignmentM, add ¬M as a clause

Given a T -inconsistent assignmentM, identify a T -inconsistent
subsetM0 ⊆ M and add ¬M0 as a clause

Upon a T -inconsistency, add clause and restart

Upon a T -inconsistency, bactrack to some point where the
assignment was still T -consistent

THIS TALK: obtain an Arr-solver that is incremental, backtrackable
and produce inconsistency explanations
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Solving SMT with DPLL(T ) (3)

Need of case analysis inside the T -Solver:

{ write(a, i,x) = write(b, j,y)
︸ ︷︷ ︸

1

, write(c, i,x) 6= write(c, j,y)
︸ ︷︷ ︸

2

, read(a, j) 6= y
︸ ︷︷ ︸

3

}

It’s inconsistent, but we need a case analysis on i = j
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2
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3
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It’s inconsistent, but we need a case analysis on i = j

Assume i = j:
From 1we infer x = y
From 2we infer x 6= y Inconsistency

Assume i 6= j:
From 1we infer that a at position j has y
which contradicts 3 Inconsistency

We use split-on-demand: case analysis done by the boolean engine
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Handling Arrays in SMT

There are basically two possibilities:

Using theory instantiation

Having an Arr-solver for DPLL(Arr)
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Theory instantiation for Arrays

There is no explicit T -Solver for Arrays

Instead, have a Module that generate Lemmas
Lemmas are instances of the axioms of the theory

Add the Lemmas to the set of clauses used by the SAT engine.
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Theory instantiation for Arrays

There is no explicit T -Solver for Arrays

Instead, have a Module that generate Lemmas
Lemmas are instances of the axioms of the theory

Add the Lemmas to the set of clauses used by the SAT engine.

Used in SMT solvers like Yices or Z3

[Goel,Krstic&Fuch2008] studied completeness

Positive: simple and easier to implement

Negative: cannot use dedicated algorithms for the Theory
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Theory instantiation for Arrays(2)

To see pros and cons

Consider a simpler theory: uninterpreted funtions
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Theory instantiation for Arrays(2)

To see pros and cons

Consider a simpler theory: uninterpreted funtions

Using Theory Instantiation:
Generate Lemmas like

a = b ⇒ f a = f b

if f is a function symbol and a and b are constants.

Having a T -Solver:
Apply congruence closure on the set of equality literals.

It’s not obvious what’s the best

We believe that the same happens with the Theory of Arrays
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A new solver for the Theory of Arrays
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A new solver for the Theory of Arrays

Existing Solver [Stump,Barrett,Dill&Levitt2001]:

Based on the “read” operator

We call it Read-based:

write operators are translated into read operators.
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A new solver for the Theory of Arrays

Existing Solver [Stump,Barrett,Dill&Levitt2001]:

Based on the “read” operator

We call it Read-based:

write operators are translated into read operators.

New approach:

We call it Write-based:

read operators are translated into write operators.
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A new solver for the Theory of Arrays(2)

Read-based:

a = write(b, i,x)
⇓ is translated into

read(a, i) = x
+

a ≃ b ???
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A new solver for the Theory of Arrays(2)

Read-based:

a = write(b, i,x)
⇓ is translated into

read(a, i) = x
+

a =i b equal except in i

Basically, ends up with uniterpreted funtions
plus this new theory of I-equality of arrays

(which can be handled using theory instantiation)
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A new solver for the Theory of Arrays(2)

Read-based:

a = write(b, i,x)
⇓ is translated into

read(a, i) = x
+

a =i b equal except in i

Write-based:

read(a, i) = x
⇓

a = write(b, i,x) for some fresh b
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A new solver for the Theory of Arrays(2)

Read-based:

a = write(b, i,x)
⇓ is translated into

read(a, i) = x
+

a =i b equal except in i

Write-based:

read(a, i) = x
⇓

a = write(b, i,x) for some fresh b

We follow theWrite-based approach
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A new solver for the Theory of Arrays(3)

Set of literals:

a = write(b, j,x)
b = write(c, i,y)
d = write(e, i,y)
a = d
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A new solver for the Theory of Arrays(3)

Set of literals:

a = write(b, j,x)
b = write(c, i,y)
d = write(e, i,y)
a = d

Representation:

a

c

x

y

d i y=
j

i eb
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A new solver for the Theory of Arrays(3)

Set of literals:

a = write(b, j,x)
b = write(c, i,y)
d = write(e, i,y)
a = d

Representation:

a

c

x

y

d i y=
j

i eb

Which “writes” are relevant?
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A new solver for the Theory of Arrays(3)

Set of literals:

a = write(b, j,x)
b = write(c, i,y)
d = write(e, i,y)
a = d

Representation:

a

c

x

y

d i y=
j

i eb

Which “writes” are relevant?

if i = j then we need x = y
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Set of literals:

a = write(b, j,x)
b = write(c, i,y)
d = write(e, i,y)
a = d

Representation:

a

c

x

y

d i y=
j

i eb

Which “writes” are relevant?

if i = j then we need x = y

if i 6= j we need e = write(e1, j,x)
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A new solver for the Theory of Arrays(3)

Set of literals:

a = write(b, j,x)
b = write(c, i,y)
d = write(e, i,y)
a = d

Representation:

a

c

x

y

d i y=
j

i eb j x

e1

Which “writes” are relevant?

if i = j then we need x = y

if i 6= j we need e = write(e1, j,x)
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A new solver for the Theory of Arrays(3)

Set of literals:

a = write(b, j,x)
b = write(c, i,y)
d = write(e, i,y)
a = d

Representation:

a

c

x

y

d i y=
j

i eb j x

e1

Which “writes” are relevant?

if i = j then we need x = y

if i 6= j we need e = write(e1, j,x)

Recall: we may need splitting on i = j
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Overview of the talk

SAT Modulo Theories (SMT)

The Theory of Extensional Arrays

Solving SMT with DPLL(T )

Handling Arrays in SMT

Theory instantiation for Arrays

A new solver for the theory of Arrays

Key points

Experimental evaluation

Conclusions
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Key points

There are three key points in our approach:
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Key points

There are three key points in our approach:

Notion of solved form:
Early detection of satisfiable sets of literals

Delay negative witnesses introduction:
Recall the extensionality axiom:

a 6= b ⇒∃i.read(a, i) 6= read(b, i)
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Key points

There are three key points in our approach:

Notion of solved form:
Early detection of satisfiable sets of literals

Delay negative witnesses introduction:

a 6= b
⇓

a = write(a1,ni,ne1) and b = write(b2,ni,ne2)

where ni is a new index and ne1 and ne2 are fresh constants
with ne1 6= ne2
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Key points

There are three key points in our approach:

Notion of solved form:
Early detection of satisfiable sets of literals

Delay negative witnesses introduction:

a 6= b
⇓

a = write(a1,ni,ne1) and b = write(b2,ni,ne2)

where ni is a new index and ne1 and ne2 are fresh constants
with ne1 6= ne2

This name is a tribute to Monty Python’s “Ni knights”
(check Google with “Knights who say Ni” for further details)

The relationship between them is that
both Ni’s (the indexes and the Knights) introduce a lot of noise

A Write-Based Solver for SAT Modulo the Theory of Arrays – p. 18



UPC

Departament de Llenguatges i Sistemes Informatics

UNIVERSITAT POLITECNICA DE CATALUNYA‘

‘

Key points

There are three key points in our approach:

Notion of solved form:
Early detection of satisfiable sets of literals

Delay negative witnesses introduction:
Delay the introduction of “Ni’s” avoiding unnecessary case
analisys
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Key points

There are three key points in our approach:

Notion of solved form:
Early detection of satisfiable sets of literals

Delay negative witnesses introduction:
Delay the introduction of “Ni’s” avoiding unnecessary case
analisys

Produce better(shorter) explanations:
Using specialized mechanisms that take into account
the knowledge about the theory of Arrays

A Write-Based Solver for SAT Modulo the Theory of Arrays – p. 18



UPC

Departament de Llenguatges i Sistemes Informatics

UNIVERSITAT POLITECNICA DE CATALUNYA‘

‘

Key points: Solved forms

There are several solved situations

Three particular examples (see paper for general definition):
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Key points: Solved forms

There are several solved situations

Three particular examples (see paper for general definition):

write(a, i,x) = write(b, j,y)
if i = j, x = y and a and b are different free constants.
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Key points: Solved forms

There are several solved situations

Three particular examples (see paper for general definition):

write(a, i,x) = write(b, j,y)
if i = j, x = y and a and b are different free constants.

write(a, i,x) 6= write(b, j,y)
if we don’t have i = j and b is a free constant.
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Key points: Solved forms

There are several solved situations

Three particular examples (see paper for general definition):

write(a, i,x) = write(b, j,y)
if i = j, x = y and a and b are different free constants.

write(a, i,x) 6= write(b, j,y)
if we don’t have i = j and b is a free constant.

write(a, i,x) 6= write(b, i,y)
if we have neither x = y nor x 6= y.
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Key points: Solved forms(2)

We can complete our partial model as follows:
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Key points: Solved forms(2)

We can complete our partial model as follows:

Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.
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We can complete our partial model as follows:

Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.

Arrays: assume there is a value d different from all others.
∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d
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Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.

Arrays: assume there is a value d different from all others.
∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d

write(a, i,x) = write(b, j,y)
if i = j, x = y and a and b are different free constants.
Since a and b are free constants
they have the same interpretation in the model.
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Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.

Arrays: assume there is a value d different from all others.
∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d

write(a, i,x) = write(b, j,y)
if i = j, x = y and a and b are different free constants.
Since a and b are free constants
they have the same interpretation in the model.
which satisfies the literal
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Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.

Arrays: assume there is a value d different from all others.
∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d

write(a, i,x) 6= write(b, j,y)
if we don’t have i = j and b is a free constant.
Since we don’t have i = j
we take i 6= j in the model and
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Key points: Solved forms(2)

We can complete our partial model as follows:

Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.

Arrays: assume there is a value d different from all others.
∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d

write(a, i,x) 6= write(b, j,y)
if we don’t have i = j and b is a free constant.
Since we don’t have i = j
we take i 6= j in the model and
since b is free constant
we take b[i]= d 6= x in the model
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Key points: Solved forms(2)

We can complete our partial model as follows:

Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.

Arrays: assume there is a value d different from all others.
∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d

write(a, i,x) 6= write(b, j,y)
if we don’t have i = j and b is a free constant.
Since we don’t have i = j
we take i 6= j in the model and
since b is free constant
we take b[i]= d 6= x in the model
which satisfies the literal
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∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d
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since we have neither x = y nor x 6= y
we take x 6=y in the model
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Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.

Arrays: assume there is a value d different from all others.
∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d

write(a, i,x) 6= write(b, i,y)
if we have neither x = y nor x 6= y.
since we have neither x = y nor x 6= y
we take x 6=y in the model
which satisfies the literal
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Key points: Solved forms(2)

We can complete our partial model as follows:

Indexes and values:
∀v1 and v2, if neither v1 = v2 nor v2 6= v1 in the partial model
we take v2 6=v1.

Arrays: assume there is a value d different from all others.
∀ array A, if A[i] is not defined for some i in the partial model
we take A[i]= d

We have several inference rules that transform literals NOT in
solved form until they are (see paper for details).
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Key points: Delay Ni’s introduction

Consider the following negative literal:

=
i1 x1

x2 i1 x1

a3

a2

a1

b3

b2

b1

i2

i2 y2

With: i1 6= i2 ∧ x2 6= y2
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‘

Key points: Delay Ni’s introduction

Consider the following negative literal:

=
i1 x1

x2 i1 x1

a3

a2

a1

b3

b2

b1

i2

i2 y2

With: i1 6= i2 ∧ x2 6= y2

There is no need to add any new index ni
Avoiding case analysis between ni and the other indexes.
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Key points: Delay Ni’s introduction(2)

Consider the following negative literal:

=
i1 x1

i1 x1

a3

a2

a1

b3

b2

b1 i2

i2 x2

x2

With: i1 6= i2
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Key points: Delay Ni’s introduction(2)

Consider the following negative literal:

=
i1 x1

i1 x1

a3

a2

a1

b3

b2

b1 i2

i2 x2

x2

With: i1 6= i2
We have to add a new index ni, but we add it at the end.

a3 = write(a4,ni,ed1) ∧ b3 = write(b4,ni,ed2)
with ed1 6= ed2, ni 6= i1 and ni 6= i2
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Key points: Delay Ni’s introduction(2)

Consider the following negative literal:

=
i1 x1

i1 x1

a3

a2

a1

b3

b2

b1 i2

i2 x2

x2

With: i1 6= i2
We have to add a new index ni, but we add it at the end.

a3 = write(a4,ni,ed1) ∧ b3 = write(b4,ni,ed2)
with ed1 6= ed2, ni 6= i1 and ni 6= i2

=
i1 x1

i1 x1

a3

a2

a1

b3

b2

b1 i2

i2 x2

x2

ni nied1 ed2

a4 b4
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Key points: Shorter explanations

Consider the following incosistent literal
with i1 6= i3 ∧ i2 6= i3 ∧ i1 6= i2:

=
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i3
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x2

x3

i1 x1

x3

a3

a2

a1

b3

cc

i2 x2

i3

b2

b1

Inconsistency explanation: a1 6= b1 ∧ i1 6= i3 ∧ i2 6= i3 ∧ i1 6= i2
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Experimental evaluation

Setting used: SMT-LIB benchmarks 2007, 300 sec.

Y ICES 1.0.10 Y ICES 1.0 Z3 0.1 CVC3 1.2 BARCELOGIC

Tot Max Tot Max Tot Max Total Max Tot Max

array_ben 52 42 69 52 21 8 496 (16) 294 282 162

cvc 5 4 4 3 1 1 114 57 59 38

qlock2 49 5 50 6 114 37 199 (30) 117 652 55

storecomm 35 0.1 41 0.1 37 0.1 993 20 48 0.1

storeinv 1 0.1 1 0.1 8 0.3 691 (162) 76 22 2

swap 970 130 581 60 1431 128 13726 (1263) 275 275 9

SMT competition 2008 results.

QF_AX: Barcelogic winner. Z3.2 second. NO Timeouts.

QF_AUFLIA: Z3.2 winner. Barcelogic second. NO Timeouts.
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Conclusions

Our solver is intuitive and still competitive.

Completely different from previous approaches.

Observation: there is no unique best approach.

The more approaches we have the better

Need of new hard benchmarks to compare and improve.
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Thank you!
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