### A Write-Based Solver for SAT Modulo the Theory of Arrays

Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell and Albert Rubio

8th International Conference, FMCAD 2008 Portland, OR, USA November 19th, 2008



#### **Overview of the talk**

- SAT Modulo Theories (SMT)
  - The Theory of Extensional Arrays
  - Solving SMT with DPLL(T)
- Handling Arrays in SMT
  - Theory instantiation for Arrays
  - A new solver for the theory of Arrays
- Sey points
- Experimental evaluation
- Conclusions



# SAT Modulo Theories (SMT)

- The Theory of Extensional Arrays
- Solving SMT with DPLL(T)
- Handling Arrays in SMT
  - Theory instantiation for Arrays
  - A new solver for the theory of Arrays
- Mey points
- Experimental evaluation

#### Conclusions



### **SAT Modulo Theories (SMT)**

- Some problems are more naturally expressed in other logics than propositional logic, e.g:
  - Software verification needs reasoning about equality, arithmetic, data structures, ...
- SMT consists of deciding the satisfiability of a (ground) FO formula with respect to a background theory
- Example (Equality with Uninterpreted Functions EUF):  $g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$
- Wide range of applications:
  - Predicate abstraction
  - Model checking

Departament de Llenguatges i Sistemes Informatics

UNIVERSITAT POLITECNICA DE CATALUNYA

 Equivalence checking

- Static analysis
- Scheduling

**.**.

This is a very common structure



Departament de Llenguatges i Sistemes Informatics

- This is a very common structure
- Axiomatization of the Theory:
  - Read/Write Axioms  $i = j \Rightarrow read(write(a, i, x), j) = x$  $i \neq j \Rightarrow read(write(a, i, x), j) = read(a, j)$
  - Extensionality  $\forall i.read(a,i) = read(b,i) \Rightarrow a = b$



- This is a very common structure
- Axiomatization of the Theory:
  - Read/Write Axioms  $i = j \Rightarrow read(write(a, i, x), j) = x$  $i \neq j \Rightarrow read(write(a, i, x), j) = read(a, j)$
  - Extensionality

 $a \neq b \Rightarrow \exists i.read(a,i) \neq read(b,i)$ 



- This is a very common structure
- Axiomatization of the Theory:
  - Read/Write Axioms  $i = j \Rightarrow read(write(a, i, x), j) = x$  $i \neq j \Rightarrow read(write(a, i, x), j) = read(a, j)$
  - Extensionality

 $a \neq b \Rightarrow \exists i.read(a,i) \neq read(b,i)$ 

Combined with Uninterpreted Functions, Linear Integer Arithmetic or Bit-vectors



- This is a very common structure
- Axiomatization of the Theory:
  - Read/Write Axioms  $i = j \Rightarrow read(write(a, i, x), j) = x$  $i \neq j \Rightarrow read(write(a, i, x), j) = read(a, j)$
  - Extensionality

 $a \neq b \Rightarrow \exists i.read(a,i) \neq read(b,i)$ 

Combined with

Uninterpreted Functions, Linear Integer Arithmetic or Bit-vectors

THIS TALK: Quantifier-free formulas over Extensional Arrays



Departament de Llenguatges i Sistemes Informatics

Methodology:

$$\underbrace{\underbrace{read(a,j) \neq read(b,i)}_{1} \land (\underbrace{a=b}_{2} \lor \underbrace{a=write(b,i,x)}_{3}) \land \underbrace{read(a,i) \neq x}_{4} \land \underbrace{j=i}_{5}$$

SAT solver returns model [1, 2, 4, 5]



Departament de Llenguatges i Sistemes Informatics

Methodology:

$$\underbrace{\underbrace{read}(a,j) \neq read(b,i)}_{1} \land (\underbrace{a=b}_{2} \lor \underbrace{a=write(b,i,x)}_{3}) \land \underbrace{read}_{4} \land \underbrace{j=i}_{5}$$

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says *T*-inconsistent



Departament de Llenguatges i Sistemes Informatics

Methodology:

$$\underbrace{\underbrace{read}(a,j) \neq read(b,i)}_{1} \land (\underbrace{a=b}_{2} \lor \underbrace{a=write(b,i,x)}_{3}) \land \underbrace{read}_{4} \land \underbrace{j=i}_{5}$$

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says *T*-inconsistent
- Send {1,  $2 \lor 3$ , 4, 5,  $\overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}$ } to SAT solver



Methodology:

$$\underbrace{\underbrace{read}(a,j) \neq read(b,i)}_{1} \land (\underbrace{a=b}_{2} \lor \underbrace{a=write(b,i,x)}_{3}) \land \underbrace{read}_{4} \land \underbrace{j=i}_{5}$$

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says *T*-inconsistent
- Send {1,  $2 \lor 3$ , 4, 5,  $\overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}$ } to SAT solver
- SAT solver returns model  $[1, \overline{2}, 3, 4, 5]$



Methodology:

$$\underbrace{\underbrace{read}(a,j) \neq read(b,i)}_{1} \land (\underbrace{a=b}_{2} \lor \underbrace{a=write(b,i,x)}_{3}) \land \underbrace{read}_{4} \land \underbrace{j=i}_{5}$$

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says *T*-inconsistent
- Send {1,  $2 \lor 3$ , 4, 5,  $\overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}$ } to SAT solver
- SAT solver returns model  $[1, \overline{2}, 3, 4, 5]$
- Theory solver says *T*-inconsistent



Methodology:

$$\underbrace{\underbrace{read}(a,j) \neq read(b,i)}_{1} \land (\underbrace{a=b}_{2} \lor \underbrace{a=write(b,i,x)}_{3}) \land \underbrace{read}_{4} \land \underbrace{j=i}_{5}$$

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says *T*-inconsistent
- Send {1,  $2 \lor 3$ , 4, 5,  $\overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}$ } to SAT solver
- SAT solver returns model  $[1, \overline{2}, 3, 4, 5]$
- Theory solver says *T*-inconsistent
- SAT solver detects {1,  $2 \lor 3$ , 4, 5,  $\overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}$ ,  $\overline{1} \lor \overline{3} \lor \overline{4} \lor \overline{5}$ } UNSAT



Methodology:

$$\underbrace{\underbrace{read}(a,j) \neq read(b,i)}_{1} \land (\underbrace{a=b}_{2} \lor \underbrace{a=write(b,i,x)}_{3}) \land \underbrace{read}_{4} \land \underbrace{j=i}_{5}$$

- SAT solver returns model [1, 2, 4, 5]
- Theory solver says *T*-inconsistent
- Send {1,  $2 \lor 3$ , 4, 5,  $\overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}$ } to SAT solver
- SAT solver returns model  $[1, \overline{2}, 3, 4, 5]$
- Theory solver says *T*-inconsistent
- SAT solver detects {1,  $2 \lor 3$ , 4, 5,  $\overline{1} \lor \overline{2} \lor \overline{4} \lor \overline{5}$ ,  $\overline{1} \lor \overline{3} \lor \overline{4} \lor \overline{5}$ } UNSAT

Two components: Boolean engine DPLL(X) + T-Solver



Several optimizations for enhancing efficiency:

Check *T*-consistency only of full prop. models (at a leaf)



Departament de Llenguatges i Sistemes Informatics

Several optimizations for enhancing efficiency:

- Check T-consistency only of full prop. models (at a leaf)
- Check *T*-consistency of partial assignment while being built



Departament de Llenguatges i Sistemes Informatics

- Check T-consistency only of full prop. models (at a leaf)
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add  $\neg M$  as a clause



- Check T-consistency only of full prop. models (at a leaf)
- Check *T*-consistency of partial assignment while being built
- - Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause -
- Given a *T*-inconsistent assignment *M*, identify a *T*-inconsistent subset  $M_0 \subseteq M$  and add  $\neg M_0$  as a clause



- Check T-consistency only of full prop. models (at a leaf)
- Check *T*-consistency of partial assignment while being built
- - Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause -
- Given a *T*-inconsistent assignment *M*, identify a *T*-inconsistent subset  $M_0 \subseteq M$  and add  $\neg M_0$  as a clause
- Upon a *T*-inconsistency, add clause and restart



- Check *T*-consistency only of full prop. models (at a leaf)
- Check *T*-consistency of partial assignment while being built
- -Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause-
- Given a *T*-inconsistent assignment *M*, identify a *T*-inconsistent subset  $M_0 \subseteq M$  and add  $\neg M_0$  as a clause
- Upon a *T*-inconsistency, add clause and restart
- Upon a *T*-inconsistency, bactrack to some point where the assignment was still *T*-consistent



Several optimizations for enhancing efficiency:

- Check T-consistency only of full prop. models (at a leaf)
- Check *T*-consistency of partial assignment while being built
- Given a *T*-inconsistent assignment *M*, add ¬*M* as a clause
- Given a *T*-inconsistent assignment *M*, identify a *T*-inconsistent subset  $M_0 \subseteq M$  and add  $\neg M_0$  as a clause
- Upon a *T*-inconsistency, add clause and restart
- Upon a *T*-inconsistency, bactrack to some point where the assignment was still *T*-consistent

THIS TALK: obtain an *Arr*-solver that is incremental, backtrackable and produce inconsistency explanations



Need of case analysis inside the *T*-Solver:



It's inconsistent, but we need a case analysis on i = j



Departament de Llenguatges i Sistemes Informatics

Need of case analysis inside the *T*-Solver:



It's inconsistent, but we need a case analysis on i = j

• Assume i = j: From 1 we infer x = yFrom 2 we infer  $x \neq y$ 

Inconsistency



Need of case analysis inside the *T*-Solver:



It's inconsistent, but we need a case analysis on i = j

- Assume i = j: From 1 we infer x = yFrom 2 we infer  $x \neq y$ Inconsistency
- Assume  $i \neq j$ : From 1 we infer that *a* at position *j* has *y* which contradicts 3

Inconsistency



Need of case analysis inside the *T*-Solver:



It's inconsistent, but we need a case analysis on i = j

- Assume i = j: From 1 we infer x = yFrom 2 we infer  $x \neq y$ Inconsistency
- Assume  $i \neq j$ : From 1 we infer that *a* at position *j* has *y* which contradicts 3

Inconsistency

We use split-on-demand: case analysis done by the boolean engine



### **Overview of the talk**

- SAT Modulo Theories (SMT)
  - The Theory of Extensional Arrays
  - Solving SMT with DPLL(T)

# Handling Arrays in SMT

- Theory instantiation for Arrays
- A new solver for the theory of Arrays
- Mey points
- Experimental evaluation

#### Conclusions

### **Handling Arrays in SMT**

There are basically two possibilities:

- Using theory instantiation
- Having an Arr-solver for DPLL(Arr)



Departament de Llenguatges i Sistemes Informatics

- There is no explicit *T*-Solver for Arrays
- Instead, have a Module that generate Lemmas Lemmas are instances of the axioms of the theory

Add the Lemmas to the set of clauses used by the SAT engine.



- There is no explicit *T*-Solver for Arrays
- Instead, have a Module that generate Lemmas Lemmas are instances of the axioms of the theory

Add the Lemmas to the set of clauses used by the SAT engine.

- Used in SMT solvers like Yices or Z3
- [Goel,Krstic&Fuch2008] studied completeness



Departament de Llenguatges i Sistemes Informatics

- There is no explicit *T*-Solver for Arrays
- Instead, have a Module that generate Lemmas Lemmas are instances of the axioms of the theory

Add the Lemmas to the set of clauses used by the SAT engine.

- Used in SMT solvers like Yices or Z3
- [Goel,Krstic&Fuch2008] studied completeness
- Positive: simple and easier to implement
- Negative: cannot use dedicated algorithms for the Theory



To see pros and cons

Consider a simpler theory: uninterpreted funtions



Departament de Llenguatges i Sistemes Informatics

To see pros and cons

Consider a simpler theory: uninterpreted functions

Using Theory Instantiation:
 Generate Lemmas like

 $a = b \Rightarrow fa = fb$ 

if *f* is a function symbol and *a* and *b* are constants.



To see pros and cons

Consider a simpler theory: uninterpreted functions

Using Theory Instantiation:
 Generate Lemmas like

 $a = b \Rightarrow fa = fb$ 

if *f* is a function symbol and *a* and *b* are constants.

Having a *T*-Solver: Apply congruence closure on the set of equality literals.



To see pros and cons

Consider a simpler theory: uninterpreted functions

Using Theory Instantiation:
 Generate Lemmas like

 $a = b \Rightarrow fa = fb$ 

if *f* is a function symbol and *a* and *b* are constants.

Having a *T*-Solver: Apply congruence closure on the set of equality literals.

It's not obvious what's the best



# **Theory instantiation for Arrays(2)**

To see pros and cons

Consider a simpler theory: uninterpreted funtions

Using Theory Instantiation:
 Generate Lemmas like

 $a = b \Rightarrow fa = fb$ 

if *f* is a function symbol and *a* and *b* are constants.

Having a *T*-Solver:
 Apply congruence closure on the set of equality literals.

It's not obvious what's the best We believe that the same happens with the Theory of Arrays





Departament de Llenguatges i Sistemes Informatics

 Existing Solver [Stump,Barrett,Dill&Levitt2001]: Based on the "read" operator
 We call it Read-based: write operators are translated into read operators.



Departament de Llenguatges i Sistemes Informatics

 Existing Solver [Stump,Barrett,Dill&Levitt2001]: Based on the "read" operator
 We call it Read-based: write operators are translated into read operators.

New approach:

We call it Write-based:

read operators are translated into write operators.



Read-based:

$$a = write(b, i, x)$$



Departament de Llenguatges i Sistemes Informatics

Read-based:

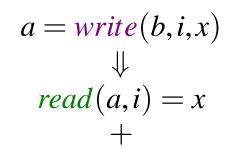
a = write(b, i, x) $\downarrow$ 

is translated into



Departament de Llenguatges i Sistemes Informatics

Read-based:

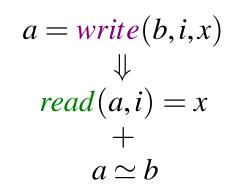


#### is translated into



Departament de Llenguatges i Sistemes Informatics

Read-based:



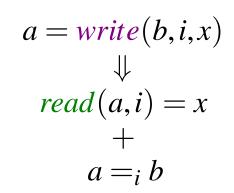
#### is translated into

???



Departament de Llenguatges i Sistemes Informatics

Read-based:



is translated into

#### equal except in *i*



Departament de Llenguatges i Sistemes Informatics

Read-based:

is translated into

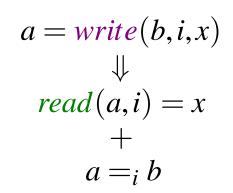
equal except in *i* 

Basically, ends up with uniterpreted functions plus this new theory of *I*-equality of arrays (which can be handled using theory instantiation)



Departament de Llenguatges i Sistemes Informatics

Read-based:



is translated into

#### equal except in *i*

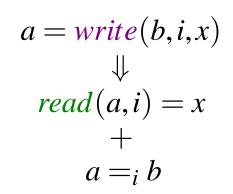


read(a,i) = x



Departament de Llenguatges i Sistemes Informatics

Read-based:



is translated into

#### equal except in *i*

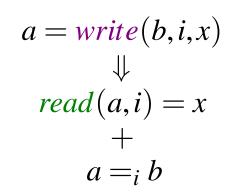


read(a,i) = x  $\Downarrow$ 



Departament de Llenguatges i Sistemes Informatics

Read-based:



is translated into

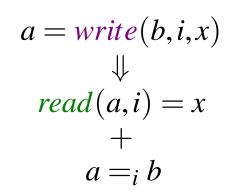
#### equal except in *i*

Write-based:



Departament de Llenguatges i Sistemes Informatics

Read-based:



is translated into

#### equal except in *i*

Write-based:

We follow the Write-based approach



Departament de Llenguatges i Sistemes Informatics

Set of literals:

$$a = write(b, j, x)$$
  

$$b = write(c, i, y)$$
  

$$d = write(e, i, y)$$
  

$$a = d$$

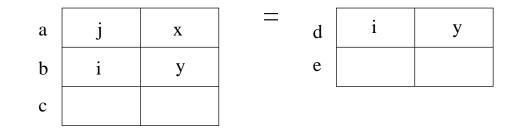


Departament de Llenguatges i Sistemes Informatics

Set of literals:

a = write(b, j, x) b = write(c, i, y) d = write(e, i, y)a = d

#### Representation:



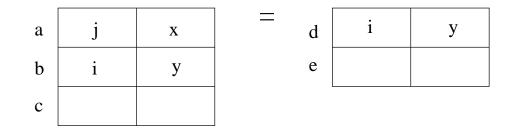


Departament de Llenguatges i Sistemes Informatics

#### Set of literals:

#### a = write(b, j, x) b = write(c, i, y) d = write(e, i, y)a = d

#### Representation:

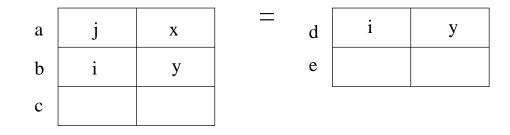




#### Set of literals:

#### a = write(b, j, x) b = write(c, i, y) d = write(e, i, y)a = d

#### Representation:



#### Which "writes" are relevant?

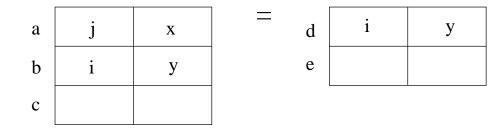
• if i = j then we need x = y



#### Set of literals:

#### a = write(b, j, x)b = write(c, i, y)d = write(e, i, y)a = d





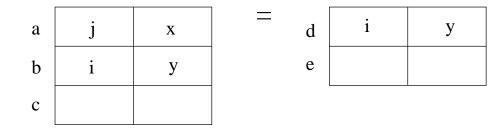
- if i = j then we need x = y
- If  $i \neq j$  we need  $e = write(e_1, j, x)$



#### Set of literals:

#### a = write(b, j, x)b = write(c, i, y)d = write(e, i, y)a = d





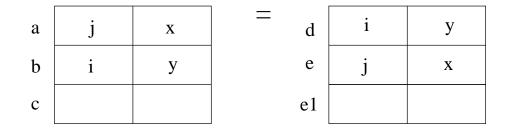
- if i = j then we need x = y
- If  $i \neq j$  we need  $e = write(e_1, j, x)$



Set of literals:

#### Representation:

a = write(b, j, x) b = write(c, i, y) d = write(e, i, y)a = d



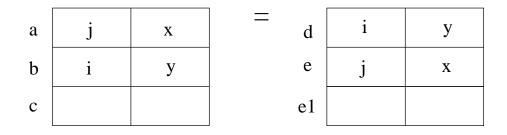
- if i = j then we need x = y
- if  $i \neq j$  we need  $e = write(e_1, j, x)$



Set of literals:

#### Representation:

a = write(b, j, x) b = write(c, i, y) d = write(e, i, y)a = d



Which "writes" are relevant?

- if i = j then we need x = y
- if  $i \neq j$  we need  $e = write(e_1, j, x)$

Recall: we may need splitting on i = j



### **Overview of the talk**

- SAT Modulo Theories (SMT)
  - The Theory of Extensional Arrays
  - Solving SMT with DPLL(T)
- Handling Arrays in SMT
  - Theory instantiation for Arrays
  - A new solver for the theory of Arrays

# Key points

Experimental evaluation

#### Conclusions





There are three key points in our approach:



Departament de Llenguatges i Sistemes Informatics

There are three key points in our approach:

Notion of solved form:
 Early detection of satisfiable sets of literals



Departament de Llenguatges i Sistemes Informatics

There are three key points in our approach:

- Notion of solved form: Early detection of satisfiable sets of literals
- Delay negative witnesses introduction:



There are three key points in our approach:

- Notion of solved form: Early detection of satisfiable sets of literals
- Delay negative witnesses introduction: Recall the extensionality axiom:

 $a \neq b \Rightarrow \exists i.read(a,i) \neq read(b,i)$ 



There are three key points in our approach:

- Notion of solved form: Early detection of satisfiable sets of literals
- Delay negative witnesses introduction:

$$a \neq b$$
  
 $\Downarrow$   
 $a = write(a_1, ni, ne_1) \text{ and } b = write(b_2, ni, ne_2)$ 

where *ni* is a new index and *ne*<sub>1</sub> and *ne*<sub>2</sub> are fresh constants with  $ne_1 \neq ne_2$ 



There are three key points in our approach:

- Notion of solved form: Early detection of satisfiable sets of literals
- Delay negative witnesses introduction:

$$a \neq b$$
  
 $\Downarrow$   
 $a = write(a_1, ni, ne_1) \text{ and } b = write(b_2, ni, ne_2)$ 

where *ni* is a new index and *ne*<sub>1</sub> and *ne*<sub>2</sub> are fresh constants with  $ne_1 \neq ne_2$ 

This name is a tribute to Monty Python's "Ni knights" (check Google with "Knights who say Ni" for further details)

The relationship between them is that both Ni's (the indexes and the Knights) introduce a lot of noise



There are three key points in our approach:

- Notion of solved form: Early detection of satisfiable sets of literals
- Delay negative witnesses introduction:
   Delay the introduction of "Ni's" avoiding unnecessary case analisys



There are three key points in our approach:

- Notion of solved form: Early detection of satisfiable sets of literals
- Delay negative witnesses introduction:
   Delay the introduction of "Ni's" avoiding unnecessary case analisys
- Produce better(shorter) explanations:
   Using specialized mechanisms that take into account the knowledge about the theory of Arrays



Departament de Llenguatges i Sistemes Informatics

There are several solved situations

Three particular examples (see paper for general definition):



Departament de Llenguatges i Sistemes Informatics

There are several solved situations

Three particular examples (see paper for general definition):

*write*(a, i, x) = *write*(b, j, y)
if i = j, x = y and a and b are different free constants.



There are several solved situations

Three particular examples (see paper for general definition):

- *write*(a, i, x) = *write*(b, j, y)
  if i = j, x = y and a and b are different free constants.
- write(a, i, x)  $\neq$  write(b, j, y) if we don't have i = j and b is a free constant.



There are several solved situations

Three particular examples (see paper for general definition):

- *write*(a, i, x) = *write*(b, j, y)
  if i = j, x = y and a and b are different free constants.
- write(a, i, x)  $\neq$  write(b, j, y) if we don't have i = j and b is a free constant.
- write(a, i, x)  $\neq$  write(b, i, y) if we have neither x = y nor  $x \neq y$ .



We can complete our partial model as follows:



Departament de Llenguatges i Sistemes Informatics

We can complete our partial model as follows:

Indexes and values:
∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.



- Indexes and values:
  ∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.
- ▲ Arrays: assume there is a value *d* different from all others.
  ∀ array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take *A*[*i*] = *d*



- Indexes and values:
  ∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.
- ▲ Arrays: assume there is a value *d* different from all others.
  ∀ array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take *A*[*i*] = *d* 
  - write (a, i, x) = write(b, j, y)if i = j, x = y and a and b are different free constants.



- Indexes and values:  $\forall v_1 \text{ and } v_2$ , if neither  $v_1 = v_2 \text{ nor } v_2 \neq v_1$  in the partial model we take  $v_2 \neq v_1$ .
- Arrays: assume there is a value *d* different from all others.  $\forall$  array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take A[i] = d
  - write(a, i, x) = write(b, j, y)

if i = j, x = y and a and b are different free constants. Since *a* and *b* are free constants they have the same interpretation in the model.



- Indexes and values:  $\forall v_1 \text{ and } v_2$ , if neither  $v_1 = v_2 \text{ nor } v_2 \neq v_1$  in the partial model we take  $v_2 \neq v_1$ .
- Arrays: assume there is a value *d* different from all others.  $\forall$  array A, if A[i] is not defined for some i in the partial model we take A[i] = d
  - write(a, i, x) = write(b, j, y)if i = j, x = y and a and b are different free constants. Since *a* and *b* are free constants they have the same interpretation in the model. which satisfies the literal



We can complete our partial model as follows:

- Indexes and values:
  ∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.
- ▲ Arrays: assume there is a value *d* different from all others.
  ∀ array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take *A*[*i*] = *d* 
  - $write(a, i, x) \neq write(b, j, y)$ if we don't have i = j and b is a free constant.



- Indexes and values:
  ∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.
- ▲ Arrays: assume there is a value *d* different from all others.
  ∀ array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take *A*[*i*] = *d* 
  - write  $(a, i, x) \neq$  write (b, j, y)if we don't have i = j and b is a free constant. Since we don't have i = jwe take  $i \neq j$  in the model and



- Indexes and values:
  ∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.
- ▲ Arrays: assume there is a value *d* different from all others.
  ∀ array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take *A*[*i*] = *d* 
  - write  $(a, i, x) \neq$  write (b, j, y)if we don't have i = j and b is a free constant. Since we don't have i = jwe take  $i \neq j$  in the model and since b is free constant we take  $b[i] = d \neq x$  in the model

- Indexes and values:  $\forall v_1 \text{ and } v_2$ , if neither  $v_1 = v_2 \text{ nor } v_2 \neq v_1$  in the partial model we take  $v_2 \neq v_1$ .
- Arrays: assume there is a value *d* different from all others.  $\forall$  array A, if A[i] is not defined for some i in the partial model we take A[i] = d
  - write $(a, i, x) \neq$  write(b, j, y)if we don't have i = j and b is a free constant. Since we don't have i = jwe take  $i \neq j$  in the model and since *b* is free constant we take  $b[i] = d \neq x$  in the model which satisfies the literal



- Indexes and values:
  ∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.
- ▲ Arrays: assume there is a value *d* different from all others.
  ∀ array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take *A*[*i*] = *d* 
  - $write(a, i, x) \neq write(b, i, y)$ if we have neither x = y nor  $x \neq y$ .



- Indexes and values:
  ∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.
- ▲ Arrays: assume there is a value *d* different from all others.
  ∀ array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take *A*[*i*] = *d* 
  - write(a, i, x)  $\neq$  write(b, i, y) if we have neither x = y nor  $x \neq y$ . since we have neither x = y nor  $x \neq y$ we take  $x \neq y$  in the model



- Indexes and values:  $\forall v_1 \text{ and } v_2$ , if neither  $v_1 = v_2 \text{ nor } v_2 \neq v_1$  in the partial model we take  $v_2 \neq v_1$ .
- Arrays: assume there is a value *d* different from all others.  $\forall$  array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take A[i] = d
  - write $(a, i, x) \neq write(b, i, y)$ if we have neither x = y nor  $x \neq y$ . since we have neither x = y nor  $x \neq y$ we take  $x \neq y$  in the model which satisfies the literal



We can complete our partial model as follows:

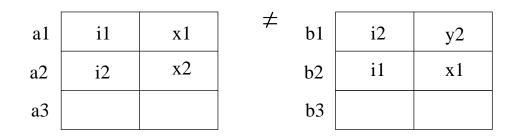
- Indexes and values:
  ∀v<sub>1</sub> and v<sub>2</sub>, if neither v<sub>1</sub> = v<sub>2</sub> nor v<sub>2</sub> ≠ v<sub>1</sub> in the partial model we take v<sub>2</sub>≠v<sub>1</sub>.
- ▲ Arrays: assume there is a value *d* different from all others.
  ∀ array *A*, if *A*[*i*] is not defined for some *i* in the partial model we take *A*[*i*] = *d*

We have several inference rules that transform literals **NOT** in solved form until they are (see paper for details).



# **Key points: Delay Ni's introduction**

Consider the following negative literal:



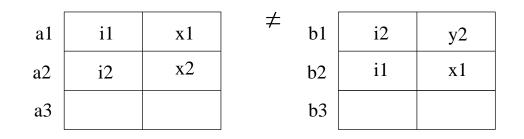
With:  $i_1 \neq i_2 \land x_2 \neq y_2$ 



Departament de Llenguatges i Sistemes Informatics

# **Key points: Delay Ni's introduction**

Consider the following negative literal:



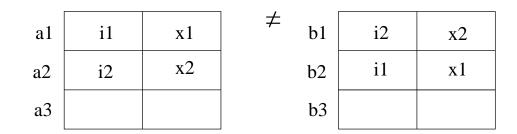
With:  $i_1 \neq i_2 \land x_2 \neq y_2$ 

There is no need to add any new index *ni* Avoiding case analysis between *ni* and the other indexes.



# Key points: Delay Ni's introduction(2)

#### Consider the following negative literal:



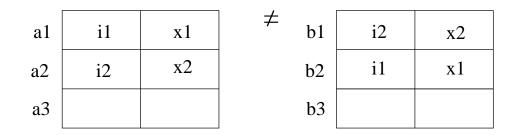
With:  $i_1 \neq i_2$ 



Departament de Llenguatges i Sistemes Informatics

# Key points: Delay Ni's introduction(2)

Consider the following negative literal:



With:  $i_1 \neq i_2$ 

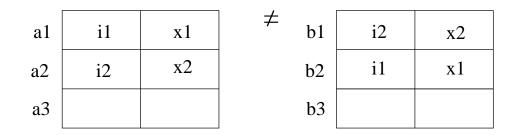
We have to add a new index *ni*, but we add it at the end.  $a_3 = write(a_4, ni, ed_1) \land b_3 = write(b_4, ni, ed_2)$ with  $ed_1 \neq ed_2$ ,  $ni \neq i_1$  and  $ni \neq i_2$ 



Departament de Llenguatges i Sistemes Informatics

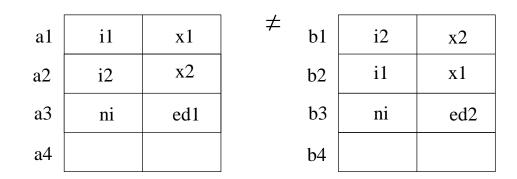
# **Key points: Delay Ni's introduction(2)**

Consider the following negative literal:



With:  $i_1 \neq i_2$ 

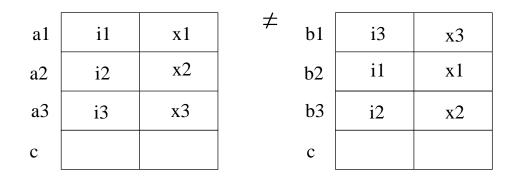
We have to add a new index *ni*, but we add it at the end.  $a_3 = write(a_4, ni, ed_1) \land b_3 = write(b_4, ni, ed_2)$ with  $ed_1 \neq ed_2$ ,  $ni \neq i_1$  and  $ni \neq i_2$ 





#### **Key points: Shorter explanations**

Consider the following incosistent literal with  $i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2$ :

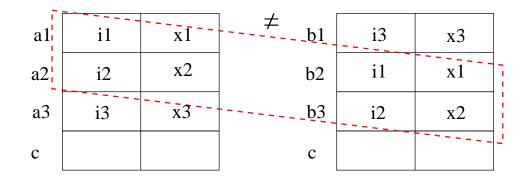


Inconsistency explanation:  $a_1 \neq b_1 \land i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2$ 



#### **Key points: Shorter explanations**

Consider the following incosistent literal with  $i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2$ :



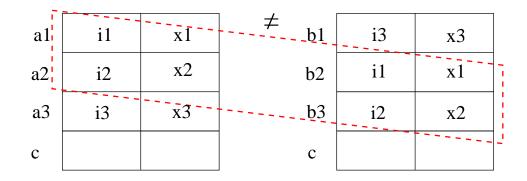
Inconsistency explanation:  $a_1 \neq b_1 \land i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2$ 



Departament de Llenguatges i Sistemes Informatics

#### **Key points: Shorter explanations**

Consider the following incosistent literal with  $i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2$ :



Inconsistency explanation:  $a_1 \neq b_1 \land i_1 \neq i_3 \land i_2 \neq i_3 \land i_1 \neq i_2$ 



#### **Overview of the talk**

- SAT Modulo Theories (SMT)
  - The Theory of Extensional Arrays
  - Solving SMT with DPLL(T)
- Handling Arrays in SMT
  - Theory instantiation for Arrays
  - A new solver for the theory of Arrays
- Key points
- Experimental evaluation

#### Conclusions



#### **Experimental evaluation**

#### Setting used: SMT-LIB benchmarks 2007, 300 sec.

|           | YICES 1.0.10 |     | YICES 1.0 |     | Z3 0.1 |     | CVC3 1.2     |     | BARCELOGIC |     |
|-----------|--------------|-----|-----------|-----|--------|-----|--------------|-----|------------|-----|
|           | Tot          | Max | Tot       | Max | Tot    | Max | Total        | Max | Tot        | Max |
| array_ben | 52           | 42  | 69        | 52  | 21     | 8   | 496 (16)     | 294 | 282        | 162 |
| cvc       | 5            | 4   | 4         | 3   | 1      | 1   | 114          | 57  | 59         | 38  |
| qlock2    | 49           | 5   | 50        | 6   | 114    | 37  | 199 (30)     | 117 | 652        | 55  |
| storecomm | 35           | 0.1 | 41        | 0.1 | 37     | 0.1 | 993          | 20  | 48         | 0.1 |
| storeinv  | 1            | 0.1 | 1         | 0.1 | 8      | 0.3 | 691 (162)    | 76  | 22         | 2   |
| swap      | 970          | 130 | 581       | 60  | 1431   | 128 | 13726 (1263) | 275 | 275        | 9   |

#### SMT competition 2008 results.

| QF_AX:     | Barcelogic winner. | Z3.2 second.       | NO Timeouts. |
|------------|--------------------|--------------------|--------------|
| QF_AUFLIA: | Z3.2 winner.       | Barcelogic second. | NO Timeouts. |



#### **Conclusions**

- Our solver is intuitive and still competitive.
- Completely different from previous approaches.
- Observation: there is no unique best approach.

The more approaches we have the better

Need of new hard benchmarks to compare and improve.



# Thank you!



Departament de Llenguatges i Sistemes Informatice

UNIVERSITAT POLITECNICA DE CATALUNYA

A Write-Based Solver for SAT Modulo the Theory of Arrays - p. 27