
1

Scaling up the formal verification of
Lustre programs with SMT-based

techniques

George Hagen and Cesare Tinelli

The University of Iowa

2

Outline

� Background

� Research Contributions

� Experimental Results

� Conclusion

3

Deductive Verification vs. MC

Deductive Verification

� Pros
� Natural translation

� Unrestricted data types

� Arbitrary properties

� Favors proving validity

� Cons
� Time consuming

� Expertise required

� May be hard to produce
counterexamples

Model checking

� Pros
� Fast

� Automatable

� Generates concrete
counterexamples

� Cons
� More complex translation

� Finite data types only

� Propositional properties

� Harder to prove validity

4

Main Idea of This Work

� Middle-ground approach

� Use SMT-based model checking:

� Automatically translate transition relation T and
property P into a first-order logic (FOL)
specification language

� Decidable fragment of FOL supported by SMT solvers

� Uninterpreted functions

� Linear arithmetic

� Arrays, Tuples, Records

� Try to prove or disprove P automatically with an
inductive model checker/verifier

5

Satisfiability Modulo Theories (SMT) [64, 62]

� Lifting of Boolean techniques to include
decidable fragments of data type theories

� Use efficient reasoners to handle non-Boolean
terms

� SAT → SMT
� Boolean formulas → quantifier free first order
formulas

� More powerful than Boolean representation, but
retain decidability

� More compact formulas, better scalability

� More natural translations

6

k-induction to Verify Safety Properties

� SMT + induction to verify property P

� Strengthen by increasing timeframe examined:

� If step does not hold: increase k

� Note:
� Base formula & step formulas are SMT formulas

� Base case is just BMC

)

Ρ
(SSPSPSSTSST

SP)

Ρ
(SSSTSST)I(S

knknnknknnn

kkk

111

01100

|)()(),(),(

 :step

)(|),(),(

: base

+++++++

−

=∧∧∧∧∧

∧∧=∧∧∧

KK

KK

7

So…

� We can use SMT-based k-induction to
verify safety properties of transition
systems

� We are interested in reactive systems,
often described with synchronous
dataflow languages, such as Lustre

8

Lustre Example
node thermostat (a_temp, t_temp, marg: real) returns (cool, heat: bool) ;

let
cool = (a_temp - t_temp) > marg ;
heat = (a_temp - t_temp) < -marg ;

tel

node therm_control (actual: real; up, dn: bool) returns (heat, cool: bool) ;
var target, margin: real;

let
margin = 1.5 ;
target = 70.0 -> if dn then (pre target) - 1.0

else if up then (pre target) + 1.0
else pre target ;

(cool, heat) = thermostat (actual, target, margin) ;
tel

9

Lustre Language

� Structure

� Stream definitions - equations

� Nodes - programs as stream definition macros

� Basic types (of streams):

� Boolean, integer, real

� Complex types:

� Tuples, supplemental array, record data structures

� Operators

� (mostly) lifting of Boolean & arithmetic operators to streams

� Temporal operators: pre, ->, when, current

10

Lustre [17,42,43]

� Lustre is an equational synchronous dataflow
language

� System of equational constraints between input
and output streams

� We can model a stream s of values of type τ as a
function

s:Í → τ,

that maps instants to stream values

� Functional, in the sense of no side effects

11

Lustre

� Stream constraints can be reduced to Boolean &
arithmetic constraints over instantaneous
configurations:

� Crucial observation: SMT solvers can process
these sorts of constraints













−<−=
>−=

−−==
=

))(())()(()(

)())()(()(

)),0.1)1(),((,0.70,0()(

5.1)(

nmarginntargetnactualnheat

nmarginntargetnactualncool

ntargetndnitenitentarget

nmargin

K

12

Outline

� Background

� Research Contributions

� Experimental Results

� Conclusion

13

Research Contributions

� Translation of Lustre program +
properties into SMT representation
Idealized Lustre logic (IL)

� Use SMT-based K-induction to prove
invariant properties of Lustre programs

� Enhance with path compression,
abstraction, other optimizations.

14

Idealized Lustre Logic (IL)

� First order language with built-in

� Linear integer arithmetic

� Linear real arithmetic

� Tuples

15

Lustre program as IL constraints

� Lustre code
node alarm_timer (reset: bool; x,a: int) returns (signal: bool);
var time, alarm: int;
let

time = x -> if reset then x else pre(time)+1;
alarm = a -> if reset then a else pre(alarm);
signal = (time = alarm);

tel

� IL constraints

� Property:









==
−==
+−==

=∆
)()()(

)))1(00)(

))1)1(),(),((),0(,0()(

nalarmntimensignal

n), alarmet(n), a(n), ite(res, a(ite(nnalarm

ntimenxnresetitexnitentime

n

))()()((nalarmntimensignalPn <⇒¬=

16

From Programs to Idealized
Lustre Logic IL

� N be a single-node Lustre program

� N’s stream variables:

� d is memory depth of N

� Nodes can be seen as macros & inlined









−−=

−−=
=∆

)](,),1(),([)(

)](,),1(),([)(11

dnnntny

dnnntny

qq

n

vvv

vvv

K

M

K

>=< qm yyxx ,,,,, 11 KKv

17

SMT-based k-induction in IL

� To check P is invariant, find k such that:

� |=IL decided by an SMT solver for IL

11

00

|

:step

 |

: base

+++++ =∧∧∧∆∧∧∆

∧∧=∆∧∧∆

knknnknn

kk Ρ
PP

P
Ρ

IL

IL

KK

KK

18

k-induction may not be enough

Reasons:

i. P might be a non-inductive invariant
property

ii. Basic k-induction may be too
expensive

19

Enhancements to K-induction algorithm

1. Path compression (i)

2. Termination check (i)

3. Abstraction (ii)

20

1. Path Compression (i)[32]

� Invariant strengthening technique

� Enforces distinct configurations
� Reduced set of “memory”/state variables

� If state variables xi = xj for configurations i
and j, then we may compress configurations
i+1 through j

v(i) v(i+1) v(j+1)v(j)
π1

π2

v(p) v(q)

21

2. Termination check (i) [63]

� Same idea as path compression

� If all concrete paths of length k+1 have
cycles, then we have explored the
reachable space, and may terminate

� Can prove some non-inductive
properties

22

k-induction with Path Compression

1,00

1,1

00

 |

:check n terminatio

|

 :step

 |

: base

+

+++++

¬=∆∧∧∆

=∧∧∧∧∆∧∧∆

∧∧=∆∧∧∆

kk

knknknnknn

kk

C

Ρ
CPP

P

Ρ
IL

IL

IL

K

KK

KK

23

1,00

1,1

00

 |

:check n terminatio

|

 :step

 |

: base

+

+++++

¬=∆∧∧∆

=∧∧∧∧∆∧∧∆

∧∧=∆∧∧∆

kk

knknknnknn

kk

C

Ρ
CPP

P

Ρ
IL

IL

IL

K

KK

KK

k-induction with Path Compression

Compression
constraint

24

3. Abstraction/Refinement in Lustre (ii)

� Let N be a Lustre program

� Over-approximate N with N’ by
treating some of N’s non-input
streams as input

� Initial abstraction only contains
definitions of stream variables in
property (z)

� Refine abstraction by adding
definitions of variables in y

� CEGAR / structural abstraction
[24,52,18,4]

inputs inputs

non-
inputs

non-
inputs

abstracted
inputs

N N’
z1

…
zn

y1

…
ym

x1

…
xp

25

“Path” Refinement Example

P

y1 y2

26

“Path” Refinement Example

P

y1 y2

y3

y5y4

x2x1 y6

27

“Path” Refinement Example

P

y1 y2

y3

y5y4

x2x1 y6

P

y1 y2

y3

y5y4

x2x1 y6

28

k-induction with Abstraction

� Also checking for & eliminating spurious
counterexamples
� Done in base & inductive cases

11

00

|''

:step

 | ''

: base

+++++ =∧∧∧∆∧∧∆

∧∧=∆∧∧∆

knknnknn

kk

PP

P

IL

IL

KK

KK

29

Outline

� Background

� Research Contributions

� Experimental Results

� Conclusion

30

KIND solver

� We built a new verifier implementing
these ideas

� Uses Yices / CVC3 SMT solvers

� May be run in BMC mode or induction
mode

� Comparisons with existing tools: Lesar,
Luke, Rantanplan, SAL

31

Problem set

� 1047 problems
� Hand-crafted Lustre examples

� Published industrial case studies

� Rockwell Collins examples

� 376 Valid, 447 Invalid, 224 Unsolved

� Timeouts
� >900 sec

� Program abort

� Incorrect counterexample (incomplete)

32

Results: Impact of Enhancements

� Abstraction
� invalid (BMC) cases: ~2x speedup overall

� valid cases: ~2x slowdown (extra overhead)

� Path compression + Term. check:
� Solved 29/376 more problems in valid cases
(including all “hard” problems)

� Termination check:
� Kind solved 8/376 more problems than other systems

� High overhead for BMC/invalid problems (~10x slowdown)

33

Abstraction vs. Non-abstraction
(hard invalid problems)

Invalid Problems

0
30
60
90

120
150
180
210
240
270
300
330

18 18 22 22 23 23 32 33 33 33 34 42 43 43 43

Induction Depth

T
im

e
(s

ec
)

Kind -bmc

Kind -bmc -abs

34

Comparison w/ Other Systems

� Luke [22], Rantanplan [38, 39]
(Chalmers)

� Inductive model checkers

� Rantanplan adds SMT (supports ILP only)

� SAL (SRI) [31, 65]

� sal-inf-bmc inductive 2-state model checker

� Rockwell Collins translations to SAL [73]

� …

35

Comparative Results
(Rantanplan & Luke)

All solved problems

36

Comparative Results (SAL)

Invalid problems Valid problems

37

Conclusion

� Translation of Lustre program + properties into
suitable first order logic IL with built-in theories

� Used off-the-shelf SMT solvers to prove safety
properties of Lustre programs with k-induction

� Enhanced with path compression & abstraction

� Highly competitive with state of the art systems

38

Future Work

� Structural abstraction variants

� Modular verification

� Support for nonlinear algebra

39

Works Referenced
[4] Domagoj Babic and Alan J. Hu. Structural abstraction of software verification

conditions. In Proceedings of the 19th International Conference on Computer
Aided Verification (CAV 2007), pages 366–378. Springer, 2007.

[17] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: a declarative
language for real-time programming. In Proceedings of the 14th ACM
SIGACTSIGPLAN symposium on Principles of programming languages (POPL
’87), pages 178–188, New York, NY, USA, 1987. ACM.

[18] William Chan, Richard J. Anderson, Paul Beame, and David Notkin. Improving
efficiency of symbolic model checking for state-based system requirements. In
Michal Young, editor, Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 98), pages 102–112,
Clearwater Beach, Florida, USA, March 1998. ACM.

[22] Koen Claessen. Luke webpage, 2006.
http://www.cs.chalmers.se/Cs/Grundutb/Kurser/form/luke.html.

[24] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proceedings of the 12th International Conference on
Computer Aided Verification (CAV 2000), volume 1855 of Lecture Notes in
Computer Science, pages 154–169, 2000.

40

Works Referenced
[31] Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria

Sorea, and Ashish Tiwari. Tool presentation: SAL 2. In Proceedings of the 16th
International Conference on Computer-Aided Verification (CAV 2004). Springer-
Verlag, 2004.

[32] Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking
and induction: From refutation to verification. In Proceedings of the 15th
International Conference on Computer-Aided Verification (CAV 2003), volume
2725 of LNCS, 2003.

[38] Anders Franzén. Combining SAT solving and integer programming for inductive
verification of Lustre programs. Master’s thesis, Chalmers University of
Technology, 2004.

[39] Anders Franzén. Using satisfiability modulo theories for inductive verification of
Lustre programs. In Third International Workshop on Bounded Model Checking
(BMC 2005), volume 114 of Electronic Notes in Theoretical Computer Science,
pages 19–33. Elsevier, Jan 2005.

[42] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[43] Nicholas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Programming and
verifying real-time systems by means of the synchronous data-flow language
LUSTRE. IEEE Transactions in Software Engineering, 18(9):785–793, 1992.

41

Works Referenced
[52] Robert P. Kurshan. Computer-aided verification of coordinating processes: the

automata-theoretic approach. Princeton University Press, 1994.
[62] Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability,

Boolean Modeling and Computation (JSAT), 3:141–224, 2007.
[63] Mary Sheeran, Satnam Singh, and Gunnar St°almarck. Checking safety

properties using induction and a SAT-solver. In Proceedings of the Third
International Conference on Formal Methods in Computer-Aided Design (FMCAD
’00), pages 108–125, London, UK, 2000. Springer-Verlag.

[64] Hossein M. Sheini and Karem A. Sakallah. From propositional satisfiability to
satisfiability modulo theories. In 9th International Conference on Theory and
Applications of Satisfiability Testing (SAT’06), pages 1–9, 2006.

[65] SRI International. Symbolic Analysis Laboratory webpage. http://sal.csl.sri.com.
[73] Michael Whalen, Darren Cofer, Steven Miller, Bruce Krogh, and Walter Storm.

Integration of formal analysis into a model-based software development
process. In 12th International Workshop on Industrial Critical Systems (FMICS
2007), Berlin, Germany, July 2007.

[74] Mike Whalen. Autocoding tools interim report. Rockwell Collins internal report,
2004.

42

Some Terminology

L

L

MM

L

L

MM

L

K

fttttp

bbbbby

bbbbby

aaaaax

aaaaa

mmmmmm

llllll

4,3,2,1,0,

4,13,12,11,10,11

4,3,2,1,0,

4,13,12,11,10,11

instant
var

x

43210\
Key:

- Instantaneous

configuration

- Trace

- Path

- Counterexample

Inputs

Non-inputs

