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Motivation

Goal

Information flow policies re-
strict inappropriate access to
sensitive information.

Secret

Unclassified

Secret

Unclassified

OK

OK

OK

Bad

Security of many systems depend on the system correctly implementing
information flow policies.

Our Contribution: A generic, compositional, mechanized infrastructure
for verifying information flow properties of software implementations.
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Noninterference

Formalizing Information Flow: Background

Information flow properties are naturally formalized by a statement of
noninterference (Goguen and Meseguer, 1982).

Let s and s ′ be any two initial states that have the same values of
unclassified variables.

Any computation from s and s ′ leads to final states that have
identical values of unclassified variables.

There has been significant research on specification and verification of
noninterference since the 1980s. (Rushby, 1982; Haigh and Young, 1987)

Nointerference naturally extends to a lattice of security levels.
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Noninterference

Formalizing Information Flow: Definitions

Quick Preliminaries:
• A state is a valuation of variables.
• If l is a variable, l(s) is the value of l in state s.
• step(s) returns the state after one transition from s.

Some Definitions:
pre (s, s ′) , poised (s) ∧ poised (s ′) ∧ (

∧
l∈L l(s) = l(s ′))

post (s, s ′) , (
∧

l∈L l(s) = l(s ′))

Noninterference Condition:
If s and s ′ satisfy pre, and a final state t is reached from s, then a
corresponding final state t ′ is reached from s and t and t ′ satisfy post.
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Inductive Assertions

Approach

Our approach is based on inductive assertions.

Noninterference Condition:
If s and s ′ satisfy pre, and a final state t is reached from s, then a corresponding
final state t ′ is reached from s and t and t ′ satisfy post.

Key observation: Noninterference involves proving certain binary relation
is preserved by the code along the computations from s and s ′.

This property can be proven by proving the following:

The relation is preserved along each straight-line code fragment.

A loop invariant (on pairs of states) preserves the relation along each
loop iteration.

The loops along the two computation paths are always in sync.

This is the essence of inductive assertions.
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Inductive Assertions

Inductive Assertions by Symbolic Simulation

Pre Post

Loop
Invariant

Previous work showed how to do inductive assertion proofs of functional
correctness by configuring the theorem prover as a symbolic simulator.
(Matthews, Moore, Ray, Vroon, 2006)

The key contribution of the current work is to show how this can be
extended for noninterference properties.
The symbolic simulation framework now has to guarantee that the pair of
computations is in sync.
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Inductive Assertions

Verification Conditions for Noninterference

1. pre (s, s ′) ⇒ C (s, s ′) ∧ cut (s) ∧ cut (s ′) ∧ assert (s, s ′)
2. exit (s) ⇒ cut (s)
3. cut (s) ∧ cut (s ′) ∧ assert (s, s ′) ∧ C (s, s ′)

∧¬exit (s) ∧ exit (run (s, n))
⇒ assert (nextc (step (s)), nextc (step (s ′)))

4. cut (s) ∧ cut (s ′) ∧ assert (s, s ′) ∧ C (s, s ′)
∧¬exit (s) ∧ exit (run (s, n))
⇒ C (nextc (step (s)), nextc (step (s ′)))

5. assert (s, s ′) ∧ exit (s) ∧ C (s, s ′) ⇒ exit (s ′)
6. assert (s, s ′) ∧ exit (s) ∧ C (s, s ′) ⇒ post (s, s ′)

Noninterference follows from 1-6.

Each condition can be discharged by symbolic simulation using an
operational semantics.

SSR1: ¬cut(s) ⇒ nextc(s) = nextc(step(s))

SSR2: cut(s) ⇒ nextc(s) = s
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Related Work

Type-based Approaches

Classify program variables into
different security types.

Check that a low variable is not
assigned the value of a high variable.

low2 = low3;

low1 = high3;

Bad

But information flow proper-
ties are often conflated with
functional correctness.

<big hairy code>;
if (result !=1) then {
low = high;

}
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Related Work

Extending Axiomatic Semantics

There has been work done on using inductive assertions by extending
Hoare logic to capture information flow.

A representative effort by Amtoft and Banerjee (2007).

on operator to specify agreement assertions between state pairs

Axiomatic semantics for “loop flow” and “object flow”.

But capturing noninterference through axiomatic semantics is complicated.

The approach also needs a Verification Condition Generator for
information flow.

Our approach makes use of the same operational semantics
framework as used for functional correctness.
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Example

An Illustrative Example

This example is taken from Amtoft and Banerjee’s paper.

Procedure tricky1 (int high, low, n) {

int temp = low;

for i = 0 to n do {

if even(i) {

out = out + temp;

temp = high;

} else {

temp = low;

}

}

out = out + 7;

return out;

}

Our approach requires no more creative insight than Amtoft and Banerjee,
but does not require additional information flow axioms or infrastructure.

We could easily verify this code with respect to a pre-existing JVM model.

Page 27 (Hunt at al., UT Austin) Information Flow Analysis November 20, 2008 10 / 12



Example

An Illustrative Example

This example is taken from Amtoft and Banerjee’s paper.

Procedure tricky1 (int high, low, n) {

int temp = low;

for i = 0 to n do {

if even(i) {

out = out + temp;

temp = high;

} else {

temp = low;

}

}

out = out + 7;

return out;

}

Our approach requires no more creative insight than Amtoft and Banerjee,
but does not require additional information flow axioms or infrastructure.

We could easily verify this code with respect to a pre-existing JVM model.
Page 28 (Hunt at al., UT Austin) Information Flow Analysis November 20, 2008 10 / 12



Compositionality

Compositionality

Our approach is compositional.

Verify subroutines and other program components separately.

Compositional verification requires handling frame condition.

When a subroutine exits, the caller can continue execution.

This is typically handled by characterizing the program components that
are modified by the subroutine.

But for information flow verification, we do not want to develop full
functional characterization!

We can handle frame conditions by an additional symbolic
simulation that produces fake functional characterization.

Details in the paper.
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Conclusion

Concluding Observations

To our knowledge, this is the first framework for information flow
analysis through inductive assertions directly on an operational
semantics.

No VCG or axiomatic semantics for information flow is necessary.

Can handle information flow properties that depend on functional
invariants.

Of course, this work is in very early stages.

We are planning to extend this to handle:

dynamic and declassification policies

automated static analysis of data structure shapes

multithreaded programs
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